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Under the mild assumption of sign-controllability, a
closed-form expression parameterizing all the solutions
of the Hamiltonian differential equation over a finite
time interval is presented in terms of a strongly unmixed
solution of an algebraic Riccati equation ( ARE) and of
the solution of an algebraic Lyapunov equarion. This
result is employed for the solution of a generalized version
of the finite-horizon linear quadratic (LQ) problem,
encompassing the case of fixed end-point. Furthermore, it
is shown how this method can be applied to the H; preview
decoupling problem.
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1. Introduction

The linear quadratic {LQ) regulator is the prototype
of a large variety of fundamental optimization pro-
blems in system and control theory, and for this
reason has always received a great deal of attention. In
this paper, we refer to the finite-horizon L.Q problem,
whose solution is given in the literature in terms of the
solution of a Riccati differential equation, [2,18]. This
paper proposes a different perspective to deal with this
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problem and presents a new methodology for its
solution. Such a methodology does not require the
integration of the Riccati differential equation and
provides the solutions of different versions of the LQ
problem in a unified framework. In particular, the
problem statement considered encompasses the stan-
dard case of assigned initial state and quadratically
weighted terminal state as well as that of both assigned
initial and terminal states (the latter usually being
referred to as the fixed end-poimt 1.Q, [6,18,23]).
Indeed, differently from the existing techniques, this
methodology applies also to LQ problems with (i)
affine constraints on the states at the end-points and
(i) a performance index including an arbitrary posi-
tive semidefinite quadratic penalization term weight-
ing the difference between the states at the end-points
and two assigned target states.

The proposed method is based on a closed-form
formula parameterizing the set of trajectories solving
the Hamiltonian differential equation. From such
trajectories, the optimal solution is selected by imp-
osing the suitable boundary conditions. Different
parameterizations of the solutions of the Hamiltonian
differential equation have been presented in [13] and
{20] for the solution of finite-horizon LQ problems and
H, preview problems. In particular, in [13] such
parameterization involves the stabilizing and anti-
stabilizing solution of the infinite-horizon algebraic
Riccati equation (ARE), hence requiring the assump-
tion of controllability of the underlying system. In [20],
the reachability canonical decomposition is exploited
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to derive an alternative parameterization under the
milder assumption of stabilizability. In this paper, the
material in [13] and [20] 1s generalized in several
directions. In fact, we only need the sign-controllability
of the underlying system, [26,16,25], which is an extre-
mely weak system theoretic assumption. Furthermore,
contrarily to [20], we avoid the employment of a state
space decomposition, which is not robust from a
computational viewpoint. Indeed, the parameterized
expression of the solutions of the Hamiltonian differ-
ential equation herein presented involves the unmixed
solution of an ARE, [26,16,25], and the solution of a
Lyapunov equation. Finally, as already observed, the
optimal control problem analyzed and solved herein is
more general than those presented in [13,20].
The advantages of the present approach are:

o Nonstandard LQ optimization problems, that
cannot be handled with the existing tools of LQ
theory, can be explicitly solved by exploiting the
material herein developed. A specific example will
be discussed in Section 3.1.

s We derive closed-form expressions for the optimal
state and control trajectories and of the optimal
cost. These expressions enable the structure of the
optimal solution to be analyzed in terms of the
parameters of the problem. Moreover, it allows to
obtain the solution of more general control pro-
blems, where the dependence of the optimal solu-
tion on the parameters of the problem has to be
analyzed in view, for example, of a second optimi-
zation with respect to such parameters: an example
of this form is discussed in Section 3.1.

¢ From a computational viewpoint, the integration of
the Riccat: differential equation, which leads to a
heavy computational burden, is avoided. Instead,
this method relies only on algebraic procedures that
can be implemented by numerically robust routines.

e As a byproduct of the closed-form solution of our
problem, we obtain a new result on the differential
Riccati equation. More precisely, in Section 5 a new
closed-form expression is established under extre-
mely weak assumption for the solution of the
matrix differential Riccati equation with assigned
terminal condition.

+ As described in Section 6.1, this method turns out to
be a practical tool for a straightforward solution to
the H» decoupling with preview, where an input signal
which is known in advance of a fixed time interval
has to be decoupled from the output of an Linear
Time Invariant (LIT} system. This problem has
been addressed and solved in the literature, [28,15],
by resorting to other approaches. For the same pro-
blem in the H,, setting we refer to [11,5,8,4,9,27,10}.
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The solution presented in Section 6.1 has the advan-
tage of providing in a very natural and simple way a
closed-form expression of the decoupling filter.

Notation. Throughout this paper, the symbol R
denotes the imaginary axis in the complex plane. The
image and the null-space of matrix A are denoted by
imA and kerd4, while 4" and 4 denote the transpose
and the Moore-Penrose pseudo-inverse of A, respec-
tively. The spectrum of 4 is denoted by the symbol
o{A).

2. Statement of the Problem

Consider the LTI state differential equation
x(1) = Ax(¢) + Bu(r) (1

where, for all 1 >0, x(¢) € R" is the state, u(f) € R™ is
the control input, 4 € R™" B e R™™. Let W e R™¥
be full-row rank and let w & R*; consider the constraint

X(O)]
W = w. 2
[xm @
Let

12 S|_y
with Q e R™", § e R"™ and R e R™"™. Assume
R > 0. Moreover, let

e & 7

o= [9; 93]_8 >0 (3)

with €, O, ©; € R™". Finally, let T > 0 be the length
of the time horizon, and consider the quadratic per-
formance index

where zq, 2 € R". The optimal control problem dealt
with is the following:

Problem 1: Find a measurable u(t), t€[0.7), and an
absolutely contimuous xi't), t€[0,T), nunimizing the
quadratic index J{ x,u) under the constraints (1} and (2).

Remark 1: The formulation of Problem 1 is very gen-
eral, since 1t involves affine constraints on the extreme
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states (2) and since the differences between the extreme
states and the target states zy and zy are quadratically
penalized in J(x,u). In particular;

1. By setting W =1, 0], zr=0, ©,=0,=0, Pro-
blem | reduces to the standard LQ problem, in
which the initial state is assigned, x(0) = w, and the
terminal state is weighted quadratically in the per-
formance index through the penalty matrix ©;;

2. By setting W =1, and © =0, we obtain the fixed
end-point LQ, in which the extreme states are both

- x(0) i
sharply assigned, [x(T)] =W;

3. Problem | encompasses the casc when the initial
and terminal values y(0) and y(7) of an output
¥(1) = Cx(1) of the dynamical system described by
(1) are constrained to be equal to y, and yp,
respectively, by taking W=diag(C,(), and

W= [;} 0]. This case 1s often referred to as the
T

poine-to-point 1L.Q, see [23] and references therein.

4, Many nonstandard LQ problems which can be
useful in practice are particular cases of Problem 1.
Consider for example an LQ problem in which the
extreme states x{0) and x(T) are not assigned, but
they are constrained to be equal, that is, x(0)=
x(T%. Clearly, this case can be obtained by Problem
1 with W=[I, ~1I,] and w=0. Alternatively,
consider the case when the difference x(0)~ x{T)
1s not assigned but has to be quadratically penal-
ized in the performance index with a matrnix
A=AT>0

o) = /OT[xT(z) uT(r)]n[zmdr

+ (x(0) — x(T))" A(x(0) — x(T7).

A straightforward computation shows that this per-
formance index can be brought back to the form given
in (4) with

and Z{):ZT:O.

The set of Pontryagin-type equations corresponding
to Problem 1 are collected in the following lemma. As
1s well-known, in general the Pontryagin equations
give only necessary conditions for optimality. In the
case considered, however, since the underlying system,
the performance index and the extreme constraints are
convex functions in their arguments, the Pontryagin
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conditions are also sufficient for an optimum, as the
following lemma shows.

Lemma 1: If u(t) and x(t) are optimal for Problem I,
then A(r) e R", ¢t€[0,T] and v € B® exist such that
x(r), A(t}, u(t} and v satisfy for all 1€ [0,T) the fol-
lowing set of equations:

#(1) = Ax(t) + Bu(2), (5)
(i) eee
A(f) = —Qx(1) = Sutt) - 4T ND), (7)
8)-elis] v
Ru(t) + STx(1) + BTA(r) = 0. 9)

Conversely, if equations {5)—(9) admit solutions x{t),
uit), A(t), v, then x{t), u(t) minimize J{x,u) subject
to the constraints {1)-(2).

A complete proof of this generalized version of the
Pontryagin equations - where differently from the
standard case the constraints on the initial and terminal
states are coupled — can be found in [22, p. 6], where
sufficiency is proved along the same lines of Theorem 1
in [19]. A detailed discussion on the existence and
uniqueness of sclutions of Problem 1, and hence of
equations (5)—(9), will be carried out in Section 4.

Since R is assumed to be invertible, equation (9) can
be solved in u(t) yiclding

u(t) = —RYS"x(1) + BTA(D)). (10)

The latter can be substituted in (5} and (7), so as to
obtain the so-called Hamiltonian differential equation

PO = Hp(n), 1€ [0.7), (11)

where p(r) == [xT(r) AT{t)]" and the Hamiltonian

matrix H is defined as

—BR'BT

Ho—| 4~ BRIST
~A" + SR7'BT |

" -0+ SR'ST
(12)

see for example, [1, Chapter 2]. Hence, equations
(10), (11), (6), (8) are necessary and sufficient for an
optimum of Problem 1, as well, since they are
obtained by linearly combining (5-9).
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3. Hamiltonian Trajectories and Optimal
Control

Due to the linearity of the Hamiltonian differential
equation (11), a straightforward parameterization of
the solutions of (11} is given by

p(t) =e'py, 10,7, (13)

where the constant pg can be found by imposing the
boundary conditions on (13). However, in this paper
we are interested in a more explicit representation of
the solutions of the Hamiltonian differential equation
(11}, see Remark 2. To this end, let us assume that:

(A1} the pair (A,B) is sign-controllable;
(A2) H has no eigenvalues on /R.

We recall that the sign-controllability of the pair
(A,B) means that the set of uncontrollable eigenvalues
of 4 does not contain pairs of elements in the form
(A, — X), [26,16]. Assumption (A1) is the weakest form
of controllability: It is weaker than the assumption of
reachability, and even than that of stabilizability of
the pair (4,B). Indeed, it generically holds even in the
extreme case when B=0.

Now, consider the ARE

PA+ AT P—(S+PRR'(ST+B P)+Q=0.
{14)

To any solution P = PT € R™" of (14) corresponds
the closed-loop matrix
Ap:=A—BKp, Kp:=R'(ST+B"P). (15
Recall that a symmetric solution P, of (14) is said to
be unmixed if, by defining A, == 4p, and K, := Kp,
X, — X € a(A,) implies Re(A) = 0, [26,25). However, in
this paper we are interested in a more stringent prop-
erty: we define strongly unmixed a solution P, = P} of
(14) such that the spectrum of the corresponding 4,
does not contain mirrored pairs, that is, A € g(4,)
implies —A¢o(A4,,). Since A, is real, this is equivalent to
the fact that o{4,) does not contain opposite pairs
(A, —A). Clearly, if P, i1s unmixed and none of the
eigenvalues of 4, lay on the imaginary axis, then P, is
also strongly unmixed. Note also that given a solution
P = PTof (14) and the corresponding closed-loop matrix
Ap defined in (15}, the Lyapunov equation
ApY + Y4, + BRT'BT =0 (16)
has a unique solution ¥ = ¥T € R*” if and only if P
is strongly unmixed, [17, Theorem 5.2.2].
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Lemma 2: Let assumptions { A1) —({A2) hoid. Then, the
ARE ( 14) admits a strongly unmixed solution.

Proof: In [25, Theorem 5] it is shown that the sign-
controllability of (4,B) ensures the existence of an
unmixed solution P, of the ARE (14). Moreover, by
virtue of assumption {A2), P, is also strongly
unmixed, since o(A4,) C o(H), [2]1, Theorem 6].

Now we are ready to present the main result of the
paper, consisting of an explicit formula parameteriz-
ing all the solutions of the Hamiltomian differential
equation (11).

Theorem 1: Let assumptions ( Al )-( A2) hold. Let P, be
a strongly unmixed solution of (14), let A, be the cor-
responding closed-loop system matrix and Y be the
corresponding solution of (16). The set of solutions of
{11) is parameterized in p, g € R" as

p(t) = Jiep+ He T g, 1e 07, (17)
s o Y
where J| : |:Pu] and Jy = [PHY_[H]-

Proof: We first prove that (17) satisfies (11). By
exploiting (14}, (15) and (16), we easily get HJ, = J; 4,
and HJ, = —J,4]. By using these equalities, a direct
substitution shows that (17) satisfies (11). Conversely,
we will prove that all the solutions of (11) can be
expressed by means of (17) for suitable values of p
and ¢. First, note that the order of the linear differ-
ential equation (11) is 2#x, hence it admits 2» linearly
independent solutions. We will show that we may
select 2n linearly independent solutions from (17).
To this aim, we first need to show that U(?) :=
[t  Joete(T-0] is nonsingular for some 7€ (0,7].
This condition is easily checked. In fact, since
H/\ =414, and HJ, = —J:)_AI as already observed,
the subspaces 7 :=imJ|, and J;:=imJ, are H-
invariant and the eigenvalues of H restricted to J,
and to J, are the eigenvalues of 4, and of —AI,
respectively. Note that 4, and —A4 have no eigen-
values in common since P, is strongly unmixed.
Hence, 7, 1.7, = {0}. Finally, since e and e (T~
are full rank for all r € [0, 7], {/(t) is nonsingular for all
t€10,7]. Now, take 2n linearly independent vectors

i
ponding 2n trajectories pt) of (17) using p,, ;. We get
pity= U(tyx, for all t&[0,7}. Hence, S22, kipil1) = 0
for all r € [0,7] implies that 327 k,7; = 0, since U(¢) is
nonsingular for some ¢ [0,7). It follows that k;=0
for all i=1,...,2n, since (w)i~; . . on are Qinearly

W= {p,} c Rz", i=1,...,2n, and define the corres-
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independent. We may conclude that (17} gives rise to
2n linearly independent trajectories.

The following result provides the complete solution
of Problem 1.

Theorem 2: Let V be a basis matrix ' of the null-space of
W. Define F = et T Moreover, let P = diag(—P,,P,)

|2 , [ YFT
and z:i= |:ZT:|- Define L:= [F Y ]
0 —F"
U= [0 Iy ]
and

v L Yo ] e[ el 09

Problem 1 admits solutions if and only if £ € imN.
If this is the case, let Ky be a basis matrix of the null-

space of N, and define
P = {m = NT£+ Kyv: varbitrary}. (19)

Then, the set of optimal solutions of Problem 1 is
parameterized by

YEAI ( - l')

et

x(0)] _
[“(‘)] B {—Kue""' —RYSTY+ B"P,Y — BN (T-0)

Proof: Consider a solution of {5)-(9). By virtue of
Theorem 1, the fact that this solution satisfies (5), (7)
and (9) implies that its structure is that given by (17)
for suitable values of p and g. Moreover, this solution
satisfies the boundary conditions (6}, and (8). By
imposing such equations on (17) evaluated at t =0 and
t=T, we find the equalities

p+ YFTq o
W[ Fp+Yg | ™ W, (2n
[fP,,p — (P, Y — I,,)FTq} B 9[‘0 + YFTg— Zo]

P Fp+ (LY - 1L)g N Fp+Yg—zr

Wy
(22)

By premultiplying the second equation by V', we
obtain the compact equation N7 =£ in the unknown
p -
14 ]
Hence, we have shown that Nm = £ follows from (5)
to (9). But the converse is true as well: if £ € imN and
4
q;

wi=

m=

satisfies Nm=£, equations (17) and (10)

'In the case when ker# = {0} we consider ¥ to be void.
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enable x{r), A(f) and u(s) to be determined. Then v can
be computed from (R), since W is full-row rank. As a
result, a solution of (5)—(9) exists: such a solution 1s
optimal for Problem 1 by virtue of Lemma 1. Finally,
{19) parameterizes the set of solutions of the linear
equation Nm=¢ in the case when £&1mA. For all
m € P, the optimal state and control functions satisfy
(17) and (10), yielding (20} after straightforward
algebraic manipulations.

Remark 2: In Theorem 2 we have shown how the
parameterization (17) of the solutions of the
Hamiltonian differential equation (11) given in
Theorem 1 can be employed in order to provide a
complete solution to Problem 1. As aforementioned,
an alternative way of solving Problem 1 consists of

using the formula (13) as follows. Let
el = [‘II” ‘11'2] be partitioned comformably with
Ty ¥n
x(T) . H
; on notin that ) —e ., where
|:)\(T)] g P( ) Po
]71', rc P (20)

po = [;Egﬂ, we can eliminate x(7) = ¥ x(0)+
U1pA(0) and A(T} = T2y x{0) + ¥, A(0) from (6) and
(8), so as to obtain the equations

SEIRR

28]-el975]

along the same lines of the proof of Theorem 2. It is
easy to write these equations in the compact form
N py = £, where now p, can be regarded as the para-
meter to be replaced in p(f) = ¢"p, to find the optimal
state and costate trajectories. This solution i1s more
general than the one shown based on (17) in Theorem
1, since no assumptions are necessary on the pair (4,5)
and on the eigenvalues of the Hamiltonian matrix.
Nevertheless, the expression used for the determina-
tion of the parameter py depends on the matrices ¥,
Wis, Uy, sy an explicit relation between these sub-
matrices of ¢7 and the problem parameters is in gen-
eral not available. As such, if we use the trivial
parameterization (13) it remains unclear how to
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express the optimal solution in terms of the variations
of the problem data. On the contrary, this kind of
investigation is possible in the case we use the para-
meterization (17) in view of the many results available
in the literature estabilishing how the solutions of
AREs vary in terms of the variation of the matrices A,
Band I, [17,24].

Moreover, in the case where the pair (4,B) is stabi-
lizable, a further and more relevant advantage con-
nected with the use of (17) over (13) for the solution of
Problem 1 is numerical, as discussed in Section 6.

In the following theorem, a simple formula for the
computation of the optimal cost as a quadratic form
of the problem data is presented.

Theorem 3: Consider the matrices P, L, U, z, N and £
defined in Theorem 2, and let X := diag{—Y,Y). Define

ro NTTILT(® - P)L + UTXUIN? —N*TLTG]
o —OTLN* e
and
I, 0
G=10 -V'©
0 Dy

If Problem I has solutions, the optimal value J of the
Sfunctional J{xu) is given by the quadratic form

T =" zT]GT‘rG[‘;’]. (23)

Proof: From (10), the value ¢(x,u) of the integral in
J{x,u) associated with the optimal solution x(1), u(s) of
Problem 1 can be written as

)
(o) = fo pT(OTp(e)d, (24)

with T :=diag(Q — SR™'ST.BR-'BT),  p(t) :=
KE%] Let now be J := [2 {;] A simple compu-
tation yields H'J + JH = —2T', that can be used in
(24). By (11)

T'd
-5 | G mtodr

= x (0)A(0) = x(T)A(T).

By using th*is formula in J(x,u), we obtain an
expression of J in terms of x(0), A(0), x(T) and A(T).

c(xu) =
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Since the optimal state and costate satisfy (17), an
expression of J as a quadratic form of z and of the

value 7= [‘Z } corresponding to the optimal solution

can be determined after simple algebraic manipulations:

J ={TfT z7 ]
y [LT(G) -P)L+UTXU ~-LT® w]
-0'L S z|
Finally, consider (19), and note that different values
of v do not affect the corresponding value of the cost.
Hence, we may choose v =0, and an expression of J

as a quadratic form in £ and z is easily derived. Now,
since

€]- Ve: ~a7].

Zz

the expression (23) follows straightforwardly. WM

Remark 3: In the case when the pair (4,B) is not sign-
controllable, but the non sign-controllable part is
nonobservable in the performance index, a para-
meterization of the solutions of the Hamiltonian dif-
ferential equation can still be estabiished. In order to
clarify the meaning of sign-contrellable and non sign-
controllable part of the state, we first derive a sign-
controllability form of the pair (4,B). Consider the
pair (A4,B) in the reachability canonical form

Ay 0 1]
A= d B =
|:A2l Azz] an [Bz]’

where the pair (4, B>) is reachable. Define A :=
a{A ) e(—A4;). Hence, there exists T such that
T'An T = diag(4),,4},) with o(4),) = A. Hence, by
performing a change of coordinates in the original
system by means of the matrix U := diag(T,l}, we
obtain

U AU — T—'4nT 0
AnT+ Az An

A, 0 0 0

=10 4, 0|, U'B=|0],

Ay Ay An By

(25)
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where we have
[A:,.l Azl}.Thepair

% 4} 13
Agl An |’ B

is sign-controllable: in fact, the pair (4:;,87), as
already observed, is reachable, while the submatrix
A}, has not mirrored pairs of eigenvalues with respect
to the imaginary axis (and has no eigenvalues on the
imaginary axis).

Let now the pair (4,B) be in the sign-controllability
form, that is,

_|A41 0O 10
A—[A3 Az] and B_[Bz]’

partitioned AT+ Ay as

where the pair (4,.8.) is sign-controllable and
a(A4,) = o{—A,). Let the non sign-controllable part of
the state be non observable in the performance index,
so that the matrices @ and § are partitioned accord-
ingly to this basis as

o-[s 8] = +-[2)

and A;=0. If the Hamiltonian matrix referred to the
sole sign-controllable part, which can be written as

Hy [ A; — B:R7'S] -B;R'B] ]

-+ SzR7!S; -"A; + SzR_lB;r

has no eigenvalues on the imaginary axis, a matrix P
and a matrix Y exist satisfying the ARE referred to
the sole sign-controllable part and the corresponding
closed-loop Lyapunov equation, respectively, so that
the matrices

1o 0 400
P[O Pz] and Y= 1:0 Yz]

are the solutions of the ARE and of the corresponding
closed-loop Lyapunov equation referred to the com-
plete system, respectively. By using these matrices in
(17), we obtain a parameterization of the set of solu-
tions of the Hamiltonian differential equation over the
time interval [0,7).

3.1. Examples
Consider the pair (4,B) given by

-3 0 0 0
A=]0 2 of, B=|0],

0 -1 1 1
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which is clearly sign-controllable (but not stabilizable
nor antistabilizable), and a Popov matrix II in which

(15 3 3 0 |
Q=5|3 12 3], S=|-1|. R=z,
3 3 15 0

sothat =117 >0 Let zp = {1 2 3] and zr =
[0 1 0] Let © be partitioned as

189 &
6= {@; @]
where

(12 0 0] 0 2 0

=10 0 0}, €=[(0 0 0],
| 0 0 0] 0 0 ¢
[0 0 0]

0,=|0 4 0
[0 0 24

Moreover, consider the following constraints on the
extreme states, in which 7= 2:

x1(0) — x3(0) =2,
x2(0) +x3(T) = 2,

x(T)=1.

It is easily seen that the matrices

1 0 -3

Pu:% 0 -2 0 and
-3 0 -3

0 0 0

Y=-10 0 0

0 0 -1

are an unmixed solution of the ARE corresponding to
the eigenvalues { — 3,1,2} of the Hamiltonian matrix,
and the corresponding solution of the Lyapunov
equation, respectively. First, we compute the para-
meters p and g by means of the formula Nax=¢ in
Theorem 2. In this case N is invertible, so that
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7w = N™'&. Straightforward computations yield the
following expressions for p and g:

1] P 1.0749

| = é de™ | ~ | 0.0183 and
L 73 ] 73 —0.4690
[q) ] q\ 29712

gz Z;i gy | =~ 1 -0.9424
L4 | 73 0.0006

where

d:= 121 - 7847 — 480! — 49¢'% + 158467,

pi =T33 — 18e* -+ 126% - 840 — 48¢!?
— 80e' + 21e' + 200¢'% — 42¢%
— 40672 + 244¢%),

|
Psi=—5 (484 — 42e* — 224¢" + 25265 + 4978
— 168" — 2009612 — 1752¢™ + 2688¢'¢

+ 126e'® — 67202 — 252¢%% + 1344
+ 1464¢°%),

g1 = — 27496 + 213¢* — 216* + 147"
+ 672¢'2 + 500e'* — 1176e'® — 1070e"®
+ 706 — 427¢% — 11886 + 237607%)

Ga :=e 8(2485 — 4764¢% — 9458 - 126¢'°
— 14630¢'2 — 95766 + 28910¢'°
+ 19776 + 1019262 + 16802

— 7616¢** — 34020 + 410486 — 82240¢%7),

Gr:=14e7 (32— T1e* + 7e* + 72" — 25262

—60e'? 4 560¢'® 4 120e'® — 11262° 4 208¢™).

Now, by using (20) the expression of the optimal
state trajectory and control law can be determined in
closed form:

|

1
x1(f) ==(e "+ 3)p + 2(393‘ =3¢ )p3

1
b, 1
+5€’ gy —56" ‘g,
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xa(t) = e*'pa,

1 1
x3(0) = 7(¢" = e)pr+ 7 (37 + €M)y

1 s0-y 1 50y
26’ q 66 q3,

1 3
u(e) =5 (3% = e pr + S (e + ).

Finally, the optimal cost is computed in closed-
form as

J=—~104.3325,

e

where

¢ = 2485¢% — 99767 + 9878 — 252¢7
— 13286¢* — 8568¢° 4- 58842¢° + 40392¢!°
— 52920e'% — 39048¢™ — 20671¢'® — 6804¢'®
+ 541526%0 + 10248 — 164480¢™
+ 16823267,

In Fig. 1, the optimal state and input functions are
presented. To the best of our knowledge, this problem
has not been solved {(and is not easy to solve) with the
classical approach to the LQ problem.

Remark 4: The solution of Problem | and the optimal
cost have been explicitly written as parametric func-
tions of the vector £. This form of the optimal solution
is particularly convenient to deal with parametric
problems, in which the dependence of the optimal

Optimal state trajectory
T v T

2 T — T
15 N B L LT YIS FEPRH R R4
1 R LCh] RTTTE NN SRy PP S
. L .
05 . R R e e Lo -
o s —
YR s SO S S S
T
! Q 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2

COptimal control
8 T T T T T

Fig. 1. Optimal state trajectory and control function.
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state and input trajectories and of the optimal cost has
to be analyzed as a function of the parameters of the
problem. As an example, consider the problem
described in Example 1, where however zg may vary
around its nominal value Zp = {1 2 3]'. In other
words, zg = Zp + Azg. We are interested in analyzing
the variations of the optimal cost J* with respect to
small variations Az, This corresponds to expressing
J* as a function of zy and to computing the gradient

21, In the present case it can be easily checked
that

B_Jy N 71.3972

fzg T T 0

Similarly, if some of the parameters of the problem
are not assigned, a further optimization can be
achieved with respect to these parameters. For
example, consider the problem of Example 1 where,
however, the target states z, and zy are not assigned,
but they are constrained to be equal, that is, zp=1z2y
since the minimum J* of the performance index J{x,u)
can be expressed as a quadratric form of w, zg and zp,
by taking the constraint zo=zy into account, this
minimum can be also expressed as a quadratic form
g{w,zp) of w,zy. The minimum of this problem can be
obtained by performing a minimization of the quad-
ratic form g{w,z,) over zy, which is standard and easy
to solve.

4. Existence and Uniqueness of an Optimum

In Theorem 2 it has been shown that a necessary and
sufficient condition for optimality is that the vector &
lies in the range of the matrix N, which is equivalent to
the fact that equations (21)}-(22) admit solutions for
some p and g. Now, we are interested in showing that
the existence of a state trajectory and a control func-
tion satisfying the constraints (1) and (2) implies the
existence of a solution for Problem 1. This condition is
more informative than that represented by the inclu-
sion £ € imM, since it is equivalent to the fact that the
first block-row w of £ lies 1n the range of the first
block-row WL of N, that is, we im WL,
The following theorem addresses this issue.

Theorem 4: Problem I admits solutions if and only if a
trajectory of (1) exists satisfying the constraint {(2).

Proof: First, note that the only if part of the proof is
obvious, since the solution of Problem 1 is indeed a
trajectory of (1) satisfying the constraint (2). Now, we
assume that (1) and (2} admit solutions. Denote by
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[xg] any vector of R¥ such that W[x”] =w. The
Xr xr

set of initial and terminal states satisfying the terminal
constraint (6) can be parameterized as

B((%] = Vot Lf‘;] (26)

where ¥ is a basis matrix of the null-space of Wand o
is an arbitrary vector. Moreover, (1) represents a
constraint on the extreme states x(0) and x(7) that can
be written as

x(T) = e*Tx(0} + Ry, (27)

where R, is a basis matrix of the reachable
subspace from the origin, that is, 1mRy; =
im{B AR A""'B], and T is an arbitrary
vector. From (26) and (27} it follows that a trajectory
of system (1} exists satisfying (2), if and only if the
initial state x(0) satisfies

Agx(0) = Vo — Rr + &, (28)
_ 0
for some vectors ¢ and 7, where R:= [R ,
0
Ag = [ ﬂn;r], X = [x"]_ Now define A;:=
e Xr

[V —-R], A:=[A4y A] and p:= [:] Hence,
equation (28) can be written as

/I[x(o)] =z
p

Hence, the set of initial states for which an input
trajectory exists such that the corresponding state

evolution satisfies W[x(O)

x(T)

]—w may be para-
meterized as
x(0) = (L, 0](A"x+Ky),

where X is a basis matrix for the null-space of 4 and
» Is an arbitrary vector. The latter can be written
concisely as

x(0) =Ky +x

where x':=[I, 0]4'% and K:=[{, 0]K. Now,
we temporarily add to the original constraints (1) and
(2), herein briefly denoted by C, the additienal con-
straint on the initial state p=yy. This additional
constraint sharply fixes the initial state of the resulting
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modified problem. Moreover, it is immediate to
check that

iréfJ(x,u) = inf[ inf J(x,u)| 29)

yo Coy=w

holds. The infimum inside square brackets on the
right-hand side of (29) still has the form of Problem 1.
Hence, we are concerned with the case of sharply
assigned initial state. In this case the existence of
solutions for Problem 1 is proved in [3, p. 85], where it
is assumed that the matrix S is zero. However, the
general case when S may differ from zero can be
brought back to that of §=0 by assigning u(r) =
- R7'STx(1) + wi?) and by minimizing the quadratic
index with respect to the new control variable ().
Thus, we get an equivalent problem where the corre-
sponding matrix S is zero. Hence, infc y-y, J(x,u)} is
indeed a minimum. Moreover, in view of Theorem 3,
such a minimum can be writlen as a positive semi-

definite quadratic form in [3;?] where &k := [j] It

follows that the infimum over y; on the right-hand
side of (29) is a minimum as well. The existence of a
minimum of J(x,u) over the original constraints C
guarantees that Problem 1 has solutions.

Now we are interested in proving an alternative
necessary and sufficient condition for the existence of
the optimal solution, which is given in terms of the
problem data, so that it can be tested without the need
of solving the algebraic Riccati and Lyapunov equa-
11ons.

Corollary 1: Ler Ry be a basis matrix of the reachable
subspace from the origin. Problem 1 admits solutions if’
and only if we imWZ, where

| 4 0
2=l 2]

Proof: By taking Theorem 4 into account, we will
show that a trajectory satisfying (1) and (2) exists if
and only if w € imWZ. Concerning the only if part, the
existence of a trajectory satisfying (1) and (2) implies
that a vector 7 exists such that (27) holds, so that the
constraint (2) can be written as

W meioy s ror) =720 =

which clearly admits solutions if and only if w € imWZ.
These steps can be performed in the reversed order, so as
to prove the if part of the statement.

The following theorem addresses the issue of
uniqueness of the solution of Problem 1. At first sight,
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one could think that a simple way to decide whether
the solution of Problem 1 1s unique is that of deter-
mining if N« = £ has a unique solution, When the pair
(A,B) is not reachable, however, there are cases when
the solution of Nm=£ is not unique, but Problem 1
admits only one solution. For example, consider the
following matrices

o b 2= o
A= , B= R
0 -1 0
Q=0hL &§=0, R=1,
with assigned initial and terminal states, that is,
x(0) = {3] and x(T} = {g] where T=2. A simple

computation shows that

L+v3 1 23
P, = [ i] and ¥ = ["54: 0}
3 1 0 0

I—f=,

are respectively an unmixed solution of the ARE
and the corresponding solution of the closed-loop
Lyapunov equation. Since the extreme states are

both assigned, it follows that W=1[,and £ = [;c(((})) ] J
so that
10 e g
w1 0 0 0
N— WL - 3_2‘6 0 2_? 0 +
0 e ? 0 0

which is clearly singular, and £ €imN. Hence, the
solutions of Nwm=¢ are parameterized in the null-
space of N as w=NTE{+ Kyv, where Ky=
[0 0 0 1] is a basis matrix of kerN and v is an
arbitrary vector. However, it can be easily checked
that the optimal solution is unique, since, by taking
(20) into account, a simple computation shows that

p Ye”: (T-1) X
—Ket —RUSTY + BTP,,Y—BT)EA:(T"')] N
eV 0 %e“’@(z_” 0 0
= 0 e’ 0 0 ol
l+215e—\/§.' o 5—5fe—\/§(2—rJ 0 ;

which Is equal to zero for any ¢ € [0,2]. Hence, all the
solutions of Nm =€ lead to the same optimal state and
input functions for Problem 1. As a result, the
uniqueness of the solutions of Nmr=¢ is only a suf-
ficient condition for the uniqueness of the solution
of Problem 1. The following theorem, on the con-
trary, provides a necessary and sufficient condition
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depending only on the problem data; hence, it can be
tested without the need of solving the ARE. As a
consequence of this theorem, we obtain an alternative
parameterization of all the solutions of Problem 1.

Theorem 5: Define Q=0 —SR'ST and A:=
A—BR'ST. Let

o ]
M= Ez , where =, := G[e;TJ,

-:]

| © (30)
_ 04 | _ R
2= P S3E LJT}

L_inﬂ_l

Suppose (1) and (2) admit solutions. A solution of
Problem 1 is unique if and only if kerM = {0}.

Proof: (If). Let x'(1), ' (£) and x"(1), ¢/'(¢) be two dif-
ferent solutions of Problem 1. They both satisfy (5)-
(%) for suitable M(7), ¢/, X'(r), v, respectively. A
stratghtforward computation over (5)—(9) shows that
their  difference  x(¢) := x'(1} = x"(1), u(t) =
(1) —u"(t) satisfies (5)-(9) with A{s) = N(1)—
X0, vi=v — v, zg=z;=0, w=0, hence it is the
optimal solution of the optimal control problem
consisting of the minimization of J{x,u) with
zg=2z7y=0, under the constraints (1) and

W[;(((T]'))] = 0. For this problem, the identically zero
state and input functions are optimal, since they
satisfy all the constraints and the corresponding cost is
zero. Hence, x(¢) and w(¢) are not identically zero but
the corresponding cost is zero. In particular, this tra-
Jectory and the corresponding control u(f) are such

that
[.SQF ;} [i((g] =0 ae.in[0,7],

since =TT >0. Tt follows that u(s)=
~-R~'S7x(?), hence by substitution the optimal state
trajectory x(f) is a solution of the differential equation

(31)

and the integrand functicn of the performance index
reduces to x'(f)Qx(r), which is zero almost every-
where in [0,7] if and only if x(0) € ker =;. From (31) it
is found that x(T) = e7x(0). Since © is positive
semidefinite, the state trajectory x(f) 1s optimal only
it ©[xT(0) x"(N]"=6[xT(0) xT(0)eA 7] =0,

x(t) = (A — BR'S")x(r) = Ax(1),
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hence only if x(0) € ker=;. Finally, since x(7) =

eATx(0), from W[;;”T]x(o):O, it follows that

x(0} € ker Z;. As a result, if the solution is not unique,
a nonzero initial state x(0)} exists such that
x(0) € ker AL

(Only if). Let x°(r) and #°(¢r) be an optimal state
trajectory and the corresponding control law, respec-
tively. Define

£(0) = (4 - BRT'ST)&(r) = AL(0), (32)
where £(0) is supposed to be a nonnull vector of the
null-space of M. Consider the new trajectories

) =x"() +£(0) and

a(t) = (1) - R7'STE(1), (33)

We show that this state trajectory x(f), together
with the input function #(¢), is still optimal for Pro-
blem !. First, notice that x{¢) satisfies the constraints
(2) since by definition £(0) € ker Z3. Moreover,

I
=) olin 3l
since £(0) € ker =,. Finally,

x°(1)

ofy 1 of T Il
e Tt
)‘c(r)]
(1)
since £{0) € ker Z;. As a result, the two state trajec-
tories x°(¢) and %{r) are both optimal for Problem 1.

~ 157 @ ()n|

Remark 5: Once given an optimal solution x°(7),
#°(r) for Problem 1, equations (32) and (33) provide an
alternative parameterization of the set of optimal
solutions of Problem | in terms of the set of initial
states x(0) € ker M. In other words, (32) and (33)
provide the expression of all the optimal solutions of
Problem 1 — when the latter admits solutions — that
are therefore defined modulo the free motions that
originate from initial states belonging to the null-
space of M.

5. The Riccati Differential Equation

A further important consequence of Theorem 1 is the
possibility of deriving an explicit expression for the
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solution of the Riccati differential problem with
assigned terminal condition:

P(t) + A7 P(r) + P(1)4
—(P()B+SRB PH+SY+0=0,
P(T) = Pr.

(34)

First, we present a well-known result [12, pp. 274
275), [7, p. 987] which relates the solution of (34) to
that of the matrix Hamiltonian differential problem.

Lemma 3: Let H be defined in (12). Let T>0 and
Pr=PL20. Let XA :{—00,T] — R™" be the solu-
tion of the matrix Hamiltonian differential problem

ol -# bl el 1n)
(33)

Then, X(t) is nonsingular for all 1 € { — co,T) and the
solution P(t) of (34) equals A() X1 (1), t€ ( - 00,T].

Since Theorem 1 provides a closed-form repre-
sentation of the solutions of (11}, and hence of (35), it
is not difficult to determine an explicit expression of
A{DX~1(1), as the following theorem explains. Similar
formulae can be found in the literature, {7}. However,
they are valid under more restrictive assumptions on
the pair {4, B), such as controllability or stabilizability.

Theorem 6: Let assumptions ( Al)-{ A2) hold. Let P, be
a strongly unmixed solution of (14), let A, be given by
{15} and Y be the corresponding solution of (16). The
matrix P(t) = A()X (1), with

X(8) =e~ %01, — ¥(P, - Pp)) (3
+ Ye T0{p, — Py,
A(f) = P01, — Y(P, — P7))

. 37
+(P,Y = IL)etT=0(p, — Pp), (37)

is the solution of {34).

Proof- As a straightforward consequence of Theo-
rem 1, the solutions of the differential equation (35)
can be parameterized in &, ¥ € R™" as

- (g o

By imposing the terminal conditions X(7)=1/, and
AMT)=Pr on the latter, we find ® =e 7 (YPr—
YP, + Iy} and ¥ = P, — Py. Thus, the corresponding
X(f) and A(?) are then given by (36) and (37). Hence,
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by virtue of Lemma 3, X(7) is invertible for all ¢ €
(—o0,T) and P(r) = A(£) X' (1) is the solution of (34).

6. Stabilizable Pairs

If the pair (4,B) is stabilizable, in Theorem 1 we can
choose as a strongly unmixed solution of the ARE
(14) the maximal solution P, = P] > 0 that is stabi-
lizing, that is, such that all the eigenvalues of the
corresponding closed-loop matrix A , are in the open
left-half complex plane, |21, p. 354]. In this case, the
expressions of the optimal state and input functions
are given in terms of the matrix exponentials exp[4 , /!
and exp(d](T—t)]. Hence, the optimal solution
involves exponentials of strictly stable matrices in the
overall time interval [0,7], thus ensuring that its
computation is numerically robust even for large time
horizons. Furthermore, in this case the matrices P,
A, and Y may be computed by standard and reliable
algorithms available in any control package (see e.g.
the MATLAB® routines care.m and lyap.m).

6.1. H; Decoupling with Preview

An interesting example of a possible application of the
approach presented in Section 3 is the H; decoupling
of previewed input signals. The H; decoupling by state
feedback 1s a well-known and deeply investigated
method for the rejection of an unknown input, [14,24].
When the signal to be decoupled is known in advance,
a great improvement can be achieved in its rejection
by taking advantage of this pre-knowledge through a
feedforward unit whose input is the previewed input
signal, and that accounts for the so-called pre-action,
[28,15,27,20]. Consider the LTI systemn ¥

X(0) = Ax(8) + Biult) + Baw(r), x(0) =0,

(38)

(1) = Cx(£) + Dyulr) + Dyw(s), {39)

where, for all 1 >0, w(f) € R" is the input signal to be
decoupled from the output y{1) € R*. The signal w(z)
is supposed to be zero in [0,7) and known in advance
with a preview time T > 0. Define the previewed input
wu(2) i= w(t+ T), > 0.

Problem 2: Find an LTI feedforward compensator %,
connected as in Fig. 2 such that the transfer function
matrix G(s) of the overall system ¥, from the previewed
input wpy(t) to the output y(t), is internally stable and
its Hy norm |Gl is minimized.
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wp{f) 4T _ delay wlt) 5 1)
ult) >
2 .

- w(t)

z

Fig. 2. Hy-optimal decoupling scheme of a previewed signal w,.

Let (e}, -y be the standard basis of R". Recall
that the H, norm of G(s) can be expressed in terms of
the impulse response matrix G(t) of & as

~ 2 _ r o0 AT r\.
161 =3 | arwdwa (40)

where Gi(¢) denotes the i-th column of G(¢), that is, is
the response of ¥ with zero initial state to the input
wp(t) = e;6(1), (6(¢) denoting the Dirac impulse), [14,
p. 265]. Assume that

(B1) the pair (A4,8)) is stabilizable;

(B2) (4,B,,C,D) has no invariant zeros on /R and
Dy is full-column rank;

(B3) imD; C im D,.

Define Q:=C'C, §:=C"D; and R:= DD,
Assumption (B2) ensures that R = R” > 0 and that
the corresponding Hamiltonian matnx (12) has no
eigenvalues on /R, [29, Theorem 13.7, Lemma 13.9,
Corollary 13.10]. Hence, assumptions (B1)-(B2)
ensure that the stabilizing solution P, = P] >0 of
the ARE (14), with B := By, exists.

Theorem 7: Consider Problem 2. Ler assumptions
(B1)-(B3) hold. Let Py = P] >0 be the stabilizing
solution of the ARE (14), let Ay = A — B K., where
Ky = R™YST + B] P.). The optimal compensator %,
Jor Problem 2 is described by the following input—
output relation:

u{f) = /0 B(T)w,(t — T)dr - K, x(¢)

(41)
- DTDQW([),
where (1) := —R"'B]e*H7-0p, B,
Proof: First, suppose Dy=0. Let i€ {l,... r}. Con-

sider the problem of minimizing the i-th term of the sum
in (40). As already observed, this is equivalent to finding
uft), t € [0, + 00), that minimizes [~ v} (r)yi(¢)dt, where
yd{1) is the output of (38)-(39) where wi(1) = e;6{r — T,
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whose effect is the instantaneous transition of the state
x{yatt=T;

T
x(T) = [0 e T (Biuy(1) + Brei8(t — T))dr.
(42)

Hence, x{T) = B, +x,~(T_;_, where B is the i-th
column of By and x;(T-) := f e*7=") Bju;(r)dr is the
state at = T obtained by the application of the sole
input uf#), 1€[0,7). The optimal control ufr),
r€|T,+ oc), is then obtained by solving an infinite-
horizon L.Q problem consisting of the minimization of
the quadratic index f7° pT(r)yi(r)dt with initial con-
dition x{7), and can be expressed by the algebraic
state feedback (1} = ~Kyxi(1) = —K e+, (T),
t>7T. The corresponding optimal cost is given by the
quadratic form x, (TP, x;(T), [17, Theorem 16.3.3].
Hence, the contnbutlon of the infinite-horizon part
can be expressed by the end -point penalty term

T(DPyxi(T) = (x{T-) + BY) P(x(T_) + By),
which is added to the finite-horizon part. Hence, the
optimal control law u{r}, 1 €[0,7), is the solution of
the mimimization of the functional

T
Ji ::/(; v (yiyde
+ (x{T_) + BY) Py (xd{T_) + BY).

(43)

The minimization of this index can be achieved as a
particular case of Problem 1, in which 6, =8,=0,
©;="P,, zr =—B5 and W=[I, 0]. The optimal
state and costate can be expressed by (17) in terms of
pand ¢, where P, = P, and A, = 4,. The boundary
conditions x{0)=0 and M{7)= Py(x:(T)+ B))
derived from (6} and (8) yield

pi=YeTPLB, and g,=-P,B, (44)
where Y is the solution of (16) with B= B,. By virtue

of (10), the optimal ufr), t£[0,7) is obtained by
replacing (44) in

w(1) = =K, et'p; — (K.Y ~ R71B Jet{T=0 g,
(45)

On the other hand, as already observed, for t+> T
the optimal control law is w(1) = —K, e+ (=T x(T,
where, by virtue of (42), (17) and (44) we find x;(T) =
Bi -+ e'+Tp, + Yg; It is easily checked that the control
scheme in the statement, which does not depend on i,
gives rise to this input function when fed by the
input w;(f} = e;6(t — T}, so that it minimizes each J;
simultaneously.

.3
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If D, differs from zero, Problem 2 can stll be
solved, provided that the condition imD, CimD; is
satisfied. In fact, by taking (39) into account we easily
see that the impulse response matrix G(t) would
involve a term D;8(1 — T) such that the integral in (40)
would diverge, unless its contribution is directly can-
celed by a part of the control input w(r). In other
words, the H, norm of the overall system is finite if
and only ifimD; C imD, and the control input has the
following structure:

u(t) = — D} Daw(t) + u(1),

where the first part —D7 Dyw(f) cancels the feed-
through term D,w(1) from the output since
imD, C im D, while the term () is the control that
follows from the procedure presented as Theorem 7.
In fact, we have recast the problem as one of the types
dealt with in Theorem 7, that is, in which the feed-
through matrix from w(f) to y(f) is zero, where u(r) is
now replaced by u r} and Bwi(t} is replaced by
(Bg - B]D?D;;)W(E).

The inner structure of the optimal compensator X,
involves a finite impulse response system, whose
impulse response matrix is &(s) for 1€ [0,T) and zero
elsewhere, an algebraic state feedback — K, x(7) and a
feedforward term —Df D.w(z). The transfer function
matrix G gg(s) of the finite impulse response system is
given by the £ -transform of ®(z), that leads to

GF]R(.S') :R_lB;reAIT(AI + .S'In)_l

x (e AT _ 1P B,

7. An Example and Concluding Remarks
In this section, we present a simple example of H,

decoupling with preview, and we briefly discuss the
results presented in this paper.

7.1. An Illustrative Example

Consider a system (38)—(39), where

05 1 04 0
01 07 0 —05
10 o0 04 o [’

0 0 0 0.6
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subject to the scalar input w(¢) depicted in Fig. 3,
which is a clock-type function with values in {0,2} and
duty cycle 0.5. By following the design procedure
outlined in Section 6.1, aimed at deriving a compen-
sator I, for the rejection of the previewed signal w{¢)
from the output y(r) of £, in Fig. 4 we compare the
different output functions that are obtained by vary-
ing the value of the preview time 7.

In fact, in this case, assumptions (B1)-(B3) hold
true. The optimal compensator ¥, can be designed
as shown in Theorem 7, working jointly with the
algebraic unit accounting for the feedforward action
—D{ Dyw(r). The first subplot in Fig. 4 shows the
rejection that can be achieved when the preview time T
is zero, that is, when the signal w() to be decoupled is
accessible for measurement but not previewed. The
second and the third subplots present the output y(r)
for increasing values of T, that is, for T=1 and T =4,
As we could expect, the rejection achieved con-
siderably improves as the preview interval increases.
Note also that in this interval there is an evident
transient, which is due to the fact that the input
function w(r), in the case considered, is not zero in
[0,7). Hence, during this transient, the compensator
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Fig. 4. Output functions obtained with the preview time T=0,
T'=1 and T=4, respectively.

has no previewed information on the actual value of w
{r}, and no rejection is possible except for that deter-
mined by the feedforward term —D7Dyw(t). Even
if all the outputs in Fig. 4 seem to be equal in [0,7],
this is not true: during this time interval the compen-
sator takes into account the future information on w
(1), so as to minimize the effect of w(#) on y(f) when
t>T.

1.2, Conclusions

In this paper, a generalized version of the finite-
horizon LQ problem has been presented and solved.
The method proposed for its solution, based on a
parameterization of the state-costate functions satis-
fying the Hamiltonian differential equation, presents
several advantages.

o Itis based only on algebraic tools, that is, the ARE
and the Lyapunov equation. Thus, it does not
require the integration of the differential Riccati
equation (which is well-known to be very demand-
ing from a computational viewpoint}.

o Itcan be applied under the very weak assumption of
sign-controllability of (4,B).

o It yields a useful formula for the optimal cost, as a
quadratic form of the problem data. The closed-
form expression of the optimal trajectory and of
the optimal cost can be exploited for the analysis of
the structural properties of the optimal solutions
and for solving more general (possibly parametric)
optimization problems, for example, problems
having the LQ as a subproblem. For example,
consider the case of two (or more) optimal control
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problems that are coupled by constraints or by a
weight on the respective boundary conditions.

e In the case of stabilizability of the underlying
system, the numerical robustness of the present
solution is ensured if we choose as a strongly
unmixed solution of the ARE its maximal solution
P, that can be very easily determined by wide-
spread and reliable software routines. Moreover, in
this case the parameterization, and consequently
the computation of the parameters p and g asso-
ciated with the optimal solution appear to be
robust, since the matrix exponentials in (17} are
well-conditioned for all € [0,7].

o The application of this methodology for the deter-
mination of a closed-form formula of the solution
of the differential Riccati equation with assigned
terminal condition has been briefly discussed in
Section 5. Finally, an easy solution has been pro-
posed to the F; decoupling with preview, based on
the previous results.

References

1. Abou-Kandil H, Freiling G, Ionescun V, Jank G. Matrix
Riccati equations in control and systems theory. Birkhaser,
Boston, 2003

2. Athans M, Falb PL. Optimal control: an introduction to
the theory and its applications. McGraw-Hill, New York,
1966

3. Berkovitz LD. Optimal control theory. Springer-Verlag,
New York, 1974

4. Bolzern P, Colanen P, De Nicolao G. On discrete-time He,
fixed-lag smoothing. IEEE Trans Signal Process, 2004; 52:
132141

5. Bolzern P, Colanen P, De Nicolao G, Shaked U. Guaran-
teed H,,, bounds for Wiener filtering and prediction. Int J
Robust Nonlinear Control, 2002; 12(1): 41-56

6. Brunovsky P, Komomik J. The Riccati equation solution of
the linear guadratic problem with constrained terminai state.
IEEE Trans Autom Control, 1981; AC-26(2): 398-402

7. Callier FM, Winkin J, Willems JL. Convergence of the
time-invariant Riccati differential equation and LQ-pro-
blem: mechanisms of attraction. Int J Control, 1994; 59(4):
983-1000

8. Colaneri P, Ferrante A. A J-spectral factorization approach
for H,, estimation problems in discrete-time. IEEE Trans
Autom Control, 2002; AC-47(12): 2108-2113

9. Colaneri P, Ferrante A. Algebraic Riccati equation and J-
spectral factorization in H,, estimation. Syst Control Lett,
2004; 41(5): 383-393

10. Colaneni P, Ferrante A. Algebraic Riccati equation and J-
spectral factorization for H,, smoothing and deconvolution.
SIAM J Control and Optim, 2006; 45: 123-145

11. Colaneri P, Maroni M, Shaked U. H,, prediction and
smoothing for discrete-lime systems: a J-spectral factor-
ization approach. In Proceedings of the 37th IEEE
Conference on Decision and Control (CDC 1998), Tampa,
USA, December 1998; 3: pp. 2836-2842



488

12.

13.

14.

15.

16.

17.

18.

19.

20.

Coppel WA, Linear-quadratic optimal control. In Proceed-
ings of the Royal Society of Edinburgh, 1974; 73A:
pp- 271-289

Ferrante A, Marro G, Ntogramatzidis L. A parametrization
of the solutions of the finite-horizon L) problem with
general cost and boundary conditions. Automatica, 2005; 1
(8): 1359-1366

Ionescu V, Qara C, Weiss M. Generalized Riccati theory
and robust control, a Popov function approach. Wiley,
1999

Kojima A, Ishijima $. LQ preview synthesis: optimal
control and worst case analysis. IEEE Trans Autom Control,
1999; AC-44(2): 352-357

Kudera V. Algebraic Riccati equations: Hermitian and
definite solutions. In S. Bittana et al. (Eds.), The Riccati
Equation, Communications and Control Engeneering,
Springer, Berlin, 1991

Lancaster P, Rodman L. Algebraic Riccati equations.
Clarendon Press, Oxford, 1995

Lewis FL, Syrmos V. Optimal Control. John Wiley & Sons,
New York, 1995

Mangasarian OL. Sufficient conditions for the optimal
control of nonlinear systems. SIAM J Control, 1966; 4(1):
139-152

Marro G, Ntogramatzidis L, Zattoni E. H,-Optimal Decou-
pling of Previwed Signals in the Continnous-Time Domain.
In Proceedings of the 2004 American Control Conference

21.

22,

23.

24,

25,

26.

27.

28.

29,

A. Ferramte and L. Ntogramatzidis

(2004 ACC), Boston, Massachussets (USA), June 30-July
2 2004. pp. 2717-2722

Molinari BP. The time-invariant lincar-quadratic optimal
control problem. Automatica, 1977; 13:347-357
Ntogramatzidis L. A unified approach to the Linear
Quadratic Regulator with applications to H; problems with
delays. PhD thesis, University of Bologna, 2003

Perez H, Devasia S. Optimal output-transitions for linear
systems. Automatica, 2003; 39(2): 181-192

Saberi A, Sannuti P, Chen BM. H; Optimal Control. System
and Control Engineering. Prentice Hall International,
London, 1995

Scherer C. The solution set of the algebraic Riccati equation
and the algebraic Riccati inequality. Linear Algebr Appl,
1991; 153: 99-122

Shayman MA. Geometry of the algebraic Riccati equ-
ation, Part 1. SIAM J Control Optim, 1983; 21:
375-394

Tadmor G, Mirkin L. H,, control and estimation
with preview-part [: matrix ARE solutions in continuous
time. IEEE Trans Auatom Control, 2005; AC-50(1):
19-28

Tomizuka M. Optimal continuous finite preview pro-
blem. IEEE Trans Autom Control, 1975; AC-20(3): 362
365

Zhou K, Doyle J, Glover K. Robust and Optimal Control.
Prentice Hall, New York, 1996




