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ABSTRACT 

In recent years atomistic simulations have become increasingly important in 

providing molecular insight to complement experiments. Even for the seemingly 

simple case of ion-pair formation a detailed atomistic picture of the structure and 

relative stability of the contact, solvent-shared and solvent-separated ion-pairs can 

only be readily achieved by computer simulation. Here a new force field 

parameterization for the alkaline-earth carbonate interactions in water has been 

developed by fitting against experimental thermodynamic and structural data. We 



 2 

demonstrate that the present force field can accurately reproduce the dynamics and 

thermodynamics of the ions in solution, which is the key to producing quantitatively 

accurate data that can be compared against experiment.  

INTRODUCTION 

Alkaline-earth metals play an important role in many biological, mineralogical 

and industrial processes, and in water they are usually found as di-cations. In aqueous 

environments they can also bind with multiply charged anions, such as phosphate, 

sulfate and carbonate, ultimately leading to precipitation from solution as crystalline 

or amorphous phases under appropriate supersaturation.  

In the past decade, since the existence of stable pre-nucleation clusters was 

first suggested for CaCO3 and possibly other minerals,1,2 the early stages of ion 

association have come under considerable scrutiny both experimentally and 

computationally. The size and lifetime of these clusters are such that they remain 

difficult to probe with many experimental techniques. Direct structural 

characterization with atomic resolution therefore appears not to be currently feasible, 

and so simulation has played an important role in filling this void and in providing 

quantitative support for the available experimental information. 

Studying the properties of pre-nucleation clusters is also challenging from a 

modeling perspective. In the case of ab initio methods, where systems of only a few 

nanometers in size can be simulated for just tens to hundreds of picoseconds, a direct 

simulation of ion aggregation, nucleation and growth is far beyond what can be 

achieved in the near future. On the other hand, force field simulations are 

computationally much less expensive and can already generate μs-long atomistic 

trajectories for systems with sizes and concentrations comparable with experiment.3 
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That said, there is a risk that force field simulations can lack sufficient accuracy and 

may provide unreliable predictions of the thermodynamics and kinetics of systems. 

However, it is our contention that if a force field is carefully calibrated against 

experimental thermodynamic data, it can be an extremely powerful tool to study the 

very early stages of aggregation and, with the aid of advanced sampling techniques, of 

the nucleation process itself.  

The key first step toward accurate force field simulations of any system lies in 

the choice of the functional form and parameterization. There are already numerous 

parameter sets in the literature for alkaline-earth cations in water,4-10 and similarly 

many force fields also exist for their carbonate salts in the solid-state.11-17 However, 

the number of models that are capable of consistently describing both the ions in the 

solid-state and in aqueous solution is more limited.18-22 One such parameterization 

involves the inclusion of polarisability for oxygen via the shell model for water and 

carbonate of de Leeuw and Parker.18,23 Unfortunately this water model has been 

shown to freeze at room temperature,24 with the melting point having been computed 

to be close to 390 K.25 This potential was subsequently modified by Kerisit and 

Parker26 to resolve this issue. However, the water structure is still at odds with 

experiment with a reported equilibrium density of 1.27 g/cm3 and a distorted 

hydrogen bond network which result in a first peak of the pair distribution function 

that is too broad and integrates to ~12 molecules (see Fig S1 in the supplementary 

information). Given this discrepancy, it appears likely that any results obtained with 

such model would be substantially in error with regard to the hydration structure. 

For the case of the aqueous CaCO3 system, it has been recently shown that it is 

essential to ensure that the thermodynamics of the model are taken into account 
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during parameterization;20 something that has been widely overlooked in both 

previous and even subsequent works. Based on such models it is then possible to 

obtain results for solution speciation that are in good quantitative agreement with 

experimental data.3  

In the present study we build on our earlier model for CaCO3 as a starting 

point3 and extend it to include Mg2+, Sr2+ and Ba2+ using the same thermodynamically-

motivated approach. We should note that Tomono et al.22 have also recently published 

an extension of one of our models to this system, based on the use of a rigid water 

molecule. However, they determined the parameters for Mg2+ through the use of 

scaling arguments with reference to an earlier potential model, rather than by 

following the methodology that was used for Ca2+. As a result the model has been 

primarily tested for structural properties. The only validation of the thermodynamics 

against experiment was for the enthalpy of cation exchange between the solid and 

aqueous solution. For ions in aqueous solution we argue that it is important to 

calibrate against free energies, rather than enthalpies, since the entropic contribution 

cannot be ignored. For this reason we have derived a new force field that aims to 

reproduce the experiment solubility of alkaline-earth carbonates and is therefore 

grounded in the free energies of the relevant systems. As a starting point for the 

development of the new force field we use the parameters from our previous work on 

calcium carbonate3. Therefore the carbonate intramolecular parameters, including the 

partial charges, as well as the calcium-water and calcium-carbonate intermolecular 

interactions, are all left unchanged. Below we describe the parameterization process 

in detail and then discuss the application of the new force field to the free energy 

landscape for ion-pairing.  



 5 

 

COMPUTATIONAL METHODOLOGY 

In the first step of the parameterization the cation-water interactions were 

fitted against the experimental estimates of their hydration free energies as reported 

by David et al..27 In order to adjust the cation-water parameters we performed long 

molecular dynamics simulations (MD) in a 49.843 Å box of SPC/Fw28 water (4,177 

molecules) with the LAMMPS code29. The hydration free energy was calculated using 

the free energy perturbation (FEP) technique30,31  by progressively switching off the 

electrostatic and the van der Waals interactions between the ions and water. Each 

interaction was turned off in 20 stages and the free energy contribution of each stage 

was obtained from a 2 ns production run, after 200 ps of equilibration, which equates 

to a total of 80 ns for each production phase. The calculated hydration free energy 

was then corrected for finite size effects by applying all the relevant contributions, as 

per our previous work.20,32 Further technical details of the molecular dynamics 

simulations are given later.  

In the second step, the interaction between the cations and carbonate were 

determined by using a relaxed fit33 to the structures, as well as the experimental bulk 

moduli, within the program GULP.34 The structures of magnesite (MgCO3) and 

dolomite (MgCa(CO3)2) were taken from Markgraf and Reeder,35,36 strontianite 

(SrCO3) from Antao and Hassan,37 and witherite (BaCO3) at 0 GPa from the variable 

pressure study due to Holl et al.38 Here it should be noted that magnesite and dolomite 

adopt essentially the same underlying rhombohedral structure as calcite, while the two 

alkaline-earth carbonates containing the larger metal cations adopt an orthorhombic 

crystal structure, analogous to the aragonite polymorph of calcium carbonate. The 

bulk moduli for the heavier alkaline-earth carbonates were taken to be 58(10) GPa 
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and 50(8) GPa for strontianite and witherite, respectively, though we note there is 

some variability in the experimental results.39 For magnesite, dolomite and calcite the 

bulk moduli quoted are due to Fiquet et al,40 Ross and Reeder,41 and Zhang and 

Reeder,42 respectively.  

Having fitted the thermodynamics of the ions in solution correctly, the free 

energies of the crystalline carbonate phases at 298.15 K were also included in the 

observables to ensure that the solubility products of these minerals would be as close 

as possible to the experimental values. Here the lattice free energies were computed 

within the quasi-harmonic approximation with a shrinking factor of 8 in all directions 

to sample the phonons within the Brillouin zone using a Monkhorst-Pack mesh. For 

consistency with classical molecular dynamics simulations of the ions in solution, the 

zero point energy was excluded from the free energy of the solid phases during the 

lattice dynamics calculations. Corrections for the free energies of the isolated ions in 

the gas phase were added to the lattice free energy to complete the Born-Haber cycle.  

The final set of parameters developed in this work is given in Table 1, together 

with the equivalent values for Ca2+ previously reported. It should be noted that there is 

a small change in the carbonate-water interaction parameters reported here relative to 

our earlier works. This was made to improve the description of the hydration of the 

carbonate anion and its free energy of solvation. 

All the MD simulations, including the FEP calculations, used a 1 fs time step, 

which led to good energy conservation in control NVE runs, a 100 fs relaxation time 

for the length 5 Nosé-Hoover chain thermostat,43,44 and the reciprocal space 

electrostatics were calculated using the PPPM algorithm with an accuracy of 10-5. 

LAMMPS was then augmented by applying the PLUMED 2.0 plug-in45 in order to 
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calculate the cation-carbonate pairing free energies with the metadynamics 

technique.46 As collective variables (CVs) we used the cation-carbon distance and the 

cation-water coordination number (CN), which was defined using the continuous 

differentiable function; 

𝐶𝑁 =   
1− 𝑟! − 𝑑!

𝑟!

!

1− 𝑟! − 𝑑!
𝑟!

!
!

 (1) 

where r0=1.0 Å for all ions (except Mg2+ where r0=1.2 Å), n=4, m=8 and ri is the 

distance between the cation and the oxygen of i-th water molecule. We also used 

different values of d0 for each cation, to reflect the varying positions of the first peak 

of the pair distribution function with the water oxygen (1.9 Å for Mg2+, 2.1 Å for Ca2+, 

2.3 Å for Sr2+ and 2.5 Å for Ba2+). 

 The ion-pairing free energy profiles were constructed by running 

metadynamics simulations with Gaussians laid every 1 ps and with an initial height 

equal to kBT. The Gaussian widths were 0.2 Å and 0.1 along the distance and 

coordination number CVs, respectively. In order to ensure convergence of the final 

free energy we ran 30 parallel simulations using the multiple-walkers algorithm47 for a 

total simulation time of approximately 250 ns and we employed the well-tempered 

technique48 with a bias-factor of 5 to progressively reduce the heights of the 

Gaussians until convergence. 

RESULTS AND DISCUSSION 

BULK PHASES. The optimized lattice parameters, bulk moduli and free energies of 

dissolution for the mineral phases used in the current parameterization are given in 

Table 2. We note upfront that much of this information was used during the fitting 



 8 

procedure and therefore the level of agreement should not be totally unexpected. That 

said, for each alkaline-earth cation included there were only two free parameters 

within the fitting process for the solid phases, namely the A and ρ of Buckingham 

potential between the metal and oxygen of carbonate, and so some degree of 

compromise is necessary. In the present work the emphasis is placed upon obtaining 

the correct relative thermodynamics of species in the crystalline state and solution, 

followed by the structure, with the mechanical properties carrying the lowest weight. 

Hence, the consistent overestimation of the bulk moduli relative to experiment is to be 

expected, and is typical of many fully charged ionic models. In contrast, the lattice 

parameters are generally well reproduced with most deviations being less than 0.5%. 

The largest error is for witherite, where the b parameter is under estimated by 1.3%, 

while c is overestimated by almost the same amount leading to a, fortuitously, 

accurate volume for the mineral.  

In Table 2 we also report the linear thermal expansion coefficients for the 

minerals, which overall agree well with the experiments. In particular, we note that 

this force field reproduces the negative linear expansion coefficient of the calcite a 

axis at low temperature and that all the hexagonal crystals display greater expansion 

in the c direction than in a. For the orthorhombic phases, there is a similar trend with 

the thermal expansion parallel to the c axis being well reproduced, since this also 

corresponds to the direction normal to the plane of the carbonate anions as per the 

hexagonal c axis. This suggests that the force field reported here is also reliable for 

properties that go beyond the initial parameterization.  

Results for the thermodynamics of mineral dissolution are given in Table 2. 

These values were used as part of the training data for the derivation of the force field 
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and so, as expected, most of the calculated dissolution free energies are within 2 

kJ/mol of the experimental values. It should be noted that there is a statistical 

uncertainty in these values arising from the free energy of hydration of the cations and 

carbonate in solution. Despite performing new longer free energy perturbation 

simulations relative to our previous works, the residual uncertainty is of the order of 

the ambient thermal energy. Hence a discrepancy of 2 kJ/mol is within this statistical 

uncertainty. There is one case where the deviation exceeds this and therefore requires 

further comment. For the case of calcite the discrepancy is just in excess of 3 kJ/mol, 

which is increased relative to our previous estimate due to a shift of 1 kJ/mol in the 

solvation free energy of Ca2+ as a result of the longer simulations. However, we prefer 

not to change the parameterization for the interactions in calcium carbonate 

polymorphs since the model is also constrained by the need to accurately reproduce 

the relative stability of calcite versus aragonite. It should also be noted that the free 

energy of dissolution for dolomite was not fitted, but is still in good agreement with 

experiment. That said, there is considerable variability in the solubility of dolomite 

due to variation in the stoichiometry away from the ideal composition, as well as due 

to cation disorder.49 Here we have chosen an experimental solubility for ordered 

dolomite, which resembles the model adopted for the present calculations.  

SOLUTION PROPERTIES OF INDIVIDUAL IONS. The hydration, structural and 

dynamic properties of the cations in aqueous solution computed using the final set of 

force field parameters are given in Table 3. The free energies of hydration were 

included in the training set used for force field fitting and therefore it is no surprise 

that they agree well with the experimental values. However, the majority of the 

quantities given in Table 3 were not part of the training set and therefore provide a 

strong validation of the present parameterization. When compared to previous force-
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fields for the alkaline earth metal cations that are available in the literature10,50,51 the 

present parameterization performs comparably to, or better than these prior models in 

reproducing the position of the water solvation shell, the coordination number, the ion 

self-diffusion coefficient and the water residence time. It is also worth noting here 

that for Ca2+ and Mg2+ the water structure around the ion is consistent with that 

predicted by the variable charge force-field of Yang and Li52, where polarization 

effects are effectively taken into account. Yang and Li52 also predict the solvation free 

energies for Ca2+ and Mg2+ to be slightly less negative (-1424 kJ/mol and -1722 

kJ/mol, respectively) than the literature values, including those used to fit our force-

field, but it is unclear which perturbation method they used to calculate these free 

energies and if any correction terms were accounted for. Similarly, the present 

parameterization performs comparably to previous force-fields for carbonate that are 

available in the literature19,53 and have been tested in ref 20, though we note that there 

is a paucity of good experimental data for this anion.   

For all cations, the position of the first peak of the oxygen pair distribution 

function (rCa/Mg-Ow) predicted by the present parameterization is slightly closer than the 

experimental values (by up to ~0.15 Å). This is probably due to the lack of the 

inclusion of electronic polarizability in the SPC/Fw water model that we employed. 

Despite the flexibility of the water potential, the moderate distortion of the water 

molecules in the first hydration shell of the cation cannot increase the water dipole 

moment sufficiently to compensate for the lack of polarization, and so a shorter 

cation-water distance is required to reproduce the experimental hydration free 

energies. The water structure obtained by the present force-field for aqueous Ba2+ is 

also consistent with recent ab-initio molecular dynamics simulations54 that predict the 

cation-water peak position to be at 2.8Å and a coordination number of 8. It is worth 



 11 

noting here that there is a large variability in the experimental numbers, which may 

due to differences in the conditions used, as well as the complexity of the 

measurements. Although, some of the techniques may be more accurate than others in 

obtaining the coordination number and cation-oxygen distance it is beyond the scope 

of this work to assess the experimental literature. 

In the case of Mg2+ we did not observe any water exchange events in unbiased 

simulations through out the duration of 50 ns and advanced computational techniques, 

such as Forward Flux55,56 or metadynamics,57 would be required to reliably calculate 

the water exchange rate around the Mg2+ cation, which is beyond the scope of this 

work. However, our estimates of the barrier height for water exchange at Mg2+ (+53 ± 

3 kJ/mol, see Figure S1 in the supplementary information) are in line with those from 

previous force fields (40-55 kJ/mol),58 though slightly higher than the experimental 

value (40 kJ/mol) determined from 17O NMR.59  

The self-diffusion coefficient of the cations has been calculated with three 

different box sizes (~25 Å, ~50 Å and ~100 Å) and then extrapolated to infinite size 

to remove finite size effects as shown to be important by Yeh and Hummer60 (Fig. 1). 

All the calculated values are slightly larger than the experimental values, but we argue 

that this is a reflection of the self-diffusion coefficient of SPC/Fw water (D0=2.86x10-

5 cm2/s), which is approximately 25% larger than the experimental value after 

correction for finite size effects (Fig. 1). 

In order to further probe the strength of the water-Mg2+ coordination, we 

performed an extra 50 ns MD run starting from a pre-formed ion-pair, MgCO3
(0)

(aq). 

During this simulation Mg2+ displayed only its preferred 6-fold coordination with 

respect to oxygen, where 5 oxygen atoms belonged to water molecules and one to 
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carbonate. During the whole 50 ns of the simulation no water exchange was observed, 

while the carbonate displayed relatively fast rotation around the carbon atom and all 

three oxygen atoms contributed equally to the completion of the Mg2+ coordination 

shell. It is, however, possible that the water exchange rate around magnesium is faster 

when bound to carbonate, although still outside of the timescales normally accessible 

by MD. 

The cation-water coordination number is also in good agreement with 

experimental estimates, though these generally have a large uncertainty. From the 

metadynamics simulations used to compute the ion-pair free energy, discussed below, 

we could also extract thermodynamic information on the accessible coordination 

states for the cations (Fig. 2), which will prove useful for the discussion of the ion-

pairing process. In the case of Mg2+ only 6-fold coordination with water is accessible, 

with all the other configurations too high in free energy to be visited. However, the 

situation is different for the other 3 cations, where multiple coordination geometries 

are accessible at room temperature. In the case of Ca2+ the most likely coordination 

number is 7, however the 8-fold coordination state is only ~4 kJ/mol less stable and 

separated by a ~12 kJ/mol barrier. The 6-fold coordination state is also a free energy 

minimum, but it is substantially higher in free energy (12 kJ/mol) and separated by a 

barrier of about 20 kJ/mol, which lowers the contribution to the average hydration 

state. For Sr2+ the most likely coordination number is 8, with 7 and 9 both about 11 

kJ/mol higher in free energy and all thermally accessible. Finally, for Ba2+ it is equally 

probable to have a coordination number of 8 or 9, with the two states separated by a 

barrier of about 8 kJ/mol. This gives rise to average coordination numbers of 6.0, 7.2, 

8.0 and 8.6 for Mg2+, Ca2+, Sr2+ and Ba2+, respectively, which are in good agreement 

with the experimental estimates (Table 3). The position of the first peak of the 
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carbonate water coordination number is also in good agreement with neutron 

diffraction experiments by Kameda et al.,61 although it is worth nothing that the 

measurements had been performed at very high concentration (~3M) while our 

simulations are effectively at infinite dilution. At such high concentration there are 

approximately 9 water molecules per carbonate ion and that is probably the reason 

behind the discrepancy between the measured (9.1) and calculated (12.1) average 

coordination number of carbonate. 

As a final assessment of the parameterization of the force field for the isolated 

metal cations in water, we have computed the temperature-dependence of the free 

energy of hydration in the range of 290 – 350 K. All cations yield a good fit to a 

linear dependence of the free energy on temperature (see Figure S2 in the 

supplementary information) and thus it is possible to separate the contributions due to 

the enthalpy and entropy of hydration. These values are also given in Table 3. It 

should be noted here that the values of the free energy used to derive the 

parameterization of the force field for the alkaline earths were taken from the work of 

David et al for consistency with our previous derivation for Ca2+. However, since 

temperature-dependent data was not included in this study, this was taken from an 

alternative source where there was a systematic shift in the free energy relative to the 

fitted values, leading to what seems like an inconsistency in Table 3. This offset is 

predominantly due to differences in the enthalpy of hydration. In contrast, the 

entropies of hydration show good agreement with the estimates due to Marcus,62 

despite not being fitted, with the largest discrepancy being 24 J/K/mol (~9%) for Ca2+. 

The hydration enthalpy and entropy of carbonate were also calculated using the same 

procedure. Here we obtained ΔGhyd=-1312 kJ/mol, ΔHhyd=-1390 kJ/mol and ΔShyd=-

260 J/mol K, which are in excellent agreement with the estimates reported by 
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Marcus62 (ΔGhyd=-1315 kJ/mol, ΔHhyd=-1395 kJ/mol and ΔShyd=-264 J/mol K). In this 

case the hydration free energy used in the parameterization is also from this source, 

hence there is no offset to be considered for the enthalpy term. 

ION-PAIRING. Having validated the underlying force field model for the isolated 

ions, we now turn to consider the process of ion-pairing. In Fig. 3 we report the 2D 

free energy maps for the formation of an ion-pair with the carbonate ion calculated 

using multiple-walker47 well-tempered metadynamics48 as a function of the cation–

carbon distance and of the cation–water coordination number.  All free energy plots in 

Fig. 3 show a monotonous profile upon reduction of the cation-carbonate distance 

until the solvation shells of the two ions come into contact and, at a distance of ~7 Å, 

a solvent separated ion-pair (SSIP) is formed. Upon further reduction of the cation-

carbon distance to ~5 Å the two hydration shells fuse together to form a solvent 

shared ion-pair (SSHIP), where the ions are separated by only one layer of water 

molecules.  If one of the shared water molecules is displaced by the carbonate then 

initially a mono-dentate contact ion-pair (CIP) is formed; should a second shared 

water molecule be displaced then a bi-dentate ion-pair is formed, with a 

correspondingly shorter metal-carbon distance. This mechanism for the ion-pair 

formation ensures that the cation always has one of its preferred coordination 

numbers with respect to the oxygen atoms, which can either belong to the water or to 

the carbonate (Figure 4). Notably for all the cations the coordination number by water 

remains largely unchanged until the SSHIP is formed, which is consistent with the 

carbonate having a more labile hydration shell and being the first one to lose a water 

molecule in forming the SSHIP. 
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In the case of Mg2+, only a 6-fold coordination with oxygen is 

thermodynamically accessible and to form the CIP a molecule from the Mg2+ 

hydration shell has to be displaced, which is an activated process with a free energy 

barrier between the SSHIP and the CIP of ~25 kJ/mol. This is clearly shown in 

Figures 3 and 5, where the minimum free energy paths (red and black circles, 

respectively) are superimposed on the 2D free energy profiles. For Ca2+, Sr2+ and Ba2+, 

these cations can accommodate an extra oxygen in their hydration shell for a 

relatively small energetic cost and therefore a CIP can be formed without crossing a 

high free energy barrier. However, the lowest free energy state for the CIP 

corresponds to a configuration where the cation has lost one water molecule from its 

hydration shell and recovered its preferred coordination number with respect to 

oxygen. These are also activated processes for Ca2+, Sr2+ and Ba2+, but the height of 

the barrier decreases as the cations get larger and their hydration free energies less 

exothermic. The size of Ba2+ is such that it can equally accommodate 7 or 8 water 

molecules even when the CIP is formed, with both states being equally probable. 

The ion-pairing of Mg2+, Ca2+ and Sr2+ with both bicarbonate and carbonate 

has been previously studied using first principles based on the generalized gradient 

approximation.63 While both first principles and the present force field agree that 

carbonate is preferentially monodentate when ion-pairing with the alkaline earths, 

several differences are also evident, especially for the hydration state of the cations in 

the CIP. In particular, the average coordination number of Mg2+ was found to be 5.4, 

implying that the binding of carbonate leads to the displacement of 2 water molecules 

from the cation, whereas only 1 is lost in the present work. There are several possible 

reasons for this difference, other than a limitation of the force field parameterization. 

In particular, there was no specific enhanced sampling of the cation-water 
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coordination number in the first principles study and so it is unlikely that statistic 

convergence was obtained during the ~20 ps for which it was feasible to run at the 

time. In addition, the first principles simulations were run at 400 K, rather than 

ambient conditions, to try to overcome the systematic over-structuring of water 

known to occur for water at the level of theory used. However, increasing the 

temperature also increases the entropic driving force for loss of water and so the 

discrepancy may simply reflect the different conditions considered. A further point of 

disagreement between these first principles results and the present work is in regard to 

the stability of the SrCO3 ion-pair, which in the former case spontaneously dissociates 

after ~12 ps, while the force field suggests that it should be a distinct local minimum. 

Again the influence of limited statistics and temperature differences may be 

important.  

Although the main focus here is on the ion-paired states, it is also important to 

ensure that the free energy profiles are valid in the long-range limit, such that they 

show the correct asymptotic behavior. If we consider two doubly charged point 

particles interacting via a screened electrostatic potential (εr=79.6 to be consistent 

with the SPC/Fw water model at 298.15 K) and a repulsive short range potential, we 

can analytically calculate the system free energy as a function of the distance between 

the particles and use this to confirm that the well-tempered metadynamics results for 

both the all atom and simplified two particle simulations correctly reproduce the 

analytic solution of the problem for the dissociation limit (see Figure S3 in the 

supplementary information). We note that, within statistical noise, the three curves 

perfectly overlay beyond ~10 Å and that, after the electrostatic interaction has become 

negligible compared to the thermal energy, the free energy curve decays 

monotonically as −𝑘!𝑇  ln  (4𝜋𝑟!). This term is the configurational entropy of the 
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system and implies that the absolute free energy difference between a bound and 

unbound ion-pair depends only on the volume available to the species.  

 It is worth commenting here on the importance of using the cation 

coordination number as a second collective variable. In fact, if only the cation-carbon 

distance were to be used in the metadynamics calculations (or with any other free 

energy technique that relies upon the correct identification of the reaction coordinate 

to be used as a CV) one would obtain a free energy profile given by the dashed lines 

in Fig. 5. By comparing the minimum free energy path (dots in Figures 3 and 5) and 

the 1D pairing free energy profile (dashed line in Figure 5) it is evident that some free 

energy barriers are not present in the 1D profile. This is particularly critical for the 

case of Mg2+, where the transition from SSHIP to CIP appears almost barrier-less in 

the 1D profile, while in reality there is a significant 25 kJ/mol barrier related to 

removing one water molecule from the Mg2+ hydration shell. This is due to the fact 

that two free energy basins (SSHIP and CIP) overlap along a hidden reaction 

coordinate (coordination number) and only the minimum free energy value from 

either of the two basins appears in the 1D profile along the Mg2+-carbon distance. 

This is a general problem intrinsic to all techniques that require the choice of CVs to 

calculate free energy profiles (metadynamics, Umbrella Sampling, Steered MD etc.) 

when an important (slow) degree of freedom is missed, while other approaches such 

as the String Method64,65 and Transition Path Sampling66 may not suffer from this 

issue. The same artifact is present in the case of the other cations, but here the hidden 

free energy barrier is small (< 8 kJ/mol) and can be readily overcome by thermal 

fluctuations. Therefore, in these cases the coordination number can be safely 

neglected in any studies involving the formation and dissociation of any ion-pairs, as 

shown for example in ref 3.  
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Now that we have described the importance of choosing the correct number 

and type of CVs for our free energy calculations, as well as having validated the long-

range limiting behavior, we can turn our attention to how our theoretical predictions 

compare with the experimental estimates. First of all it is worth noting that the very 

low solubility of the alkaline-earth carbonates prevents the use of many experimental 

techniques, such as dielectric relaxation spectroscopy,67 to determine the ion-pairing 

equilibrium constants and thereby the free energy, which instead has to be inferred by 

measuring the residual free ion concentrations in solution either by titration methods 

or ion selective electrode measurements.68 These experimental techniques rely on the 

choice of a model that accounts for the possible equilibria in solution, which, 

particularly in the case of CaCO3, may be more complex than for other species.1,3 

Moreover, for ion-selective electrode measurements it is not clear whether species 

like the SSHIP or the SSIP are recorded as bound or separated. The standard pairing 

free energy can be calculated from the measured dissociation constant using the 

relationship: 

𝐾!"# = exp −∆𝐺!"#/𝑘!𝑇 . (2) 

From a computational perspective, the first and most straightforward approach 

one can devise to calculate the dissociation free energy is to directly measure the 

height difference between states from the free energy landscape. However, there is 

some ambiguity in the choice of the distances at which the ion-pair can be considered 

completely dissociated. To be consistent with the experimentally reported pairing free 

energies, one could think of measuring the free energy difference between the bound 

state and a state corresponding to the average distance of the ions at 1 M standard 

concentration. However, apart from for the ideal gas case, this is an ill-defined 
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distance and in many solid-state physics books one can find two popular 

approximations for this quantity depending on the assumed packing of the particles; 

namely the cubic root of the inverse particle number density and the Wigner-Seitz 

radius, which differ by a factor of ~1.6. In fact, the former corresponds to the radius 

of a sphere of the volume available to the ions, while the latter is the side of the cube 

with the same volume. For the case of a 1 M solution these two assumptions yield 

approximate values of 7.3 Å and 11.8 Å, respectively. The free energy profiles in the 

region between these two distances (see Figure 3) are still structured due to the 

presence of explicit water molecules surrounding the ions and this could lead to a 

large uncertainty in the measured value. A somewhat less ambiguous definition would 

be to choose the maximum point of the free energy barrier between the bound and 

dissociated states that we can obtain from the analytic calculations. However, this has 

no explicit connection to the system concentration. The maximum in the free energy 

curve is located at a distance, Rmax=14 Å, where the attractive electrostatic force is 

exactly counterbalanced by the entropic force that tends to separate the ions; 

𝜕  ∆𝐺(𝑟)
𝜕𝑟 = 0          ;               

𝜕
𝜕𝑟

1
4𝜋𝜀!𝜀!

−𝑞!

𝑟 + 𝑈(𝑟)− 𝑘!𝑇 ln 4𝜋𝑟! = 0. (3) 

where q is the charge on the ions and takes the value 2 in the present case. If we 

assume that that the non-electrostatic interaction (which is likely to be predominately 

due to van der Waals attraction), U(r), can be neglected at such a distance, it can be 

easily shown that in the case of divalent cations immersed in a medium with relative 

dielectric constant εr=79.6 (again equivalent to SPC/Fw at 298.15K) the radius for the 

maximum is given by: 
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𝑅!"# =
1

4𝜋𝜀!𝜀!
𝑞!

2𝑘!𝑇
≈ 14  Å. (4) 

Rmax could therefore be regarded as the threshold distance beyond which the ion-pair 

can be safely considered dissociated. Alternatively one could use the Bjerrum length 

as the distance beyond which the ions can be considered unbound. The Bjerrum 

length takes its name of the scientist who pioneered the theory of dilute electrolytes in 

the early 1900s69 and it is defined as the distance at which the electrostatic interaction 

equals the thermal energy (kBT), which for divalent ions is ~28 Å. In order to reduce 

the computational cost of the free energy calculations we limited our metadynamics 

pairing free energy calculations to a maximum X-𝐶𝑂!! distance of 20 Å, therefore in 

Table 4 we report the dissociation barriers as the free energy differences between the 

most stable CIP configurations and Rmax. However, by examining the analytic and 

computational solution of the pairing free energy problem for two ideal point particles 

(Fig. SI2) it is evident that the free energy between 14 Å and 28 Å changes by less 

than 1 kJ/mol, which is well within the accuracy of our calculations. 

In a further alternative, one could use a more rigorous approach by following 

in the steps of Bjerrum and Fuoss69 who showed that the dissociation constant of an 

ion-pair can be obtained by direct integration of the potential of mean force φ(r). 

Bjerrum and Fuoss assumed that a dilute electrolyte solution could be simply 

described as finite size particles immersed in a continuum dielectric medium, which 

led them to the expression for the dissociation constant; 

𝐾!"# = 4𝜋𝐶! exp   −𝜙 𝑟
𝑘!𝑇   𝑟

!  𝑑𝑟
!!

!!
. 

(

(6) 
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where R1 is the distance at which the ion-pairs can be regarded as dissociated, R0 is the 

minimum distance at which the ions can be found and C0 is a constant necessary to 

convert the concentration from the simulation units (Å-3) to the standard units 

(mol/dm3). A similar approach was used by Chialvo et al.70 In ref 69 the potential of 

mean force was obtained analytically by assuming only a screened electrostatic 

interaction between the ions and the minimum cation-anion distance was regarded as 

a fitting parameter. However, from our metadynamics calculations we have access to 

the all-atom pairing free energy profiles and we therefore calculate the dissociation 

constant by using them instead of the analytic potential of mean force obtained from a 

continuum approximation. In order to derive the potential of mean force, Δφ(r), from 

the 2D free energy profiles we performed a dimensional reduction by taking a 

thermodynamic average along the coordination number and then used the relationship 

between the potential of mean force and the free energy: 

∆𝐺 𝑟 = 𝜙 𝑟 − 𝑘!𝑇 ln 4𝜋  𝑟! .   
(

(7) 

For the lower limit in the integral in Eq. (6) we choose R0 = 2 Å, although the 

calculated dissociation constants are not very sensitive to the actual value, provided it 

is sufficiently small. It is worth nothing here that the free energy profiles obtained 

from MD simulations are usually defined to within an additive constant, which 

cancels out when free energy differences are calculated. However, in the present case, 

because of the presence of a definite integral in Eq. (6) the actual value of this energy 

offset is important for the calculation of the dissociation constant. Hence, in order to 

have the correct asymptotic limit for Δφ(r) we have offset all the free energy curves 

calculated with metadynamics to overlap with the analytic limit of the free energy for 
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distances between 10 and 14 Å (Figure 3). We also tested that the results depend little 

on the upper bound of the integral, with the calculated pKdis changing by less than 

0.01 if R1 is reduced from 28 Å (Bjerrum length) to 11 Å.  

In the case of Mg2+, given the large hidden free energy barrier separating the 

CIP and the SSHIP, one could argue that a lot of information is lost by using the 1D 

free energy profile in Eq.6, which could lead to a discrepancy in the results. However, 

the separation between the CIP, SSHIP and SSIP in the collective variable space is so 

sharp that it allows us to study the SSHIP-dissociated ions and the CIP-SSHIP 

equilibria separately with confidence that we are not introducing artifacts by imposing 

boundaries between the various states. The first equilibrium can be simply obtained 

by using Eq.6 with a 1D free energy profile calculated by excluding all the Gaussians 

corresponding to a coordination number smaller than 6 and we obtained 𝑝𝐾!"#!!"#$ =

2.0. Analogously, by excluding all the Gaussians corresponding to Mg-C distances 

larger than 6 Å we can obtain a 1D free energy profile for the CIP-SSHIP equilibrium 

along the coordination number. We can then use the ratio between the probabilities of 

the system to be in either of the two states; 

𝐾!"#!"#!!!"#$ =
exp −∆𝐺 𝑐

𝑘!𝑇   d𝑐
!
!

exp −∆𝐺 𝑐
𝑘!𝑇   d𝑐

!
!

= 
(

(7) 

to calculate equilibrium constant for that process, which gives 𝑝𝐾!"#!"#!!!"#$ = 2.3. In 

Eq. 7 the integral is now performed along the coordination number CV (c), with the 

integration limits set so as to bound the CIP and SSHIP minima. Combining these two 

equilibrium constants we get an overall pKdis of 4.3, reported in parenthesis in Table 

4. 
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Comparing the experimental estimates of the pairing free energy with the 

predictions from our simulations, we note that agreement is good for Ca2+, Sr2+ and 

Ba2+ (differences < 5 kJ/mol) while for Mg2+ there is a substantial discrepancy (>10 

kJ/mol). This is somewhat surprising since the force field parameters for all the 

species have been fitted by including the solubility of the minerals, which critically 

depends on the ion-ion and ion-water interactions. Although it is impossible to 

completely discount that this could be a flaw of the force field, despite careful 

consideration of the thermodynamics during its derivation, we believe this is unlikely 

to be the complete explanation. This conjecture is supported by the observation that in 

order to change the force field parameters to get an accurate equilibrium constant 

using the Bjerrum and Fuoss approach we would have to hugely destabilize the CIP, 

which can be achieved by either increasing the Mg2+ carbonate repulsion and/or 

reducing the Mg2+ hydration free energy. However, such changes would either cause a 

dramatic degradation of the properties of the solid mineral phases or completely 

change the hydration free energy of the isolated Mg2+ ion. Indeed, the extent of the 

change would have to be so large as to make Mg2+ almost the same as Ca2+ within the 

force field model; something that seems unlikely to be realistic.  

Instead we argue that there may instead be genuine physical reasons for the 

above disagreement in the ion-pairing free energy for Mg2+. In this case a key factor 

could be the slow water dynamics around the cation leading to the large free energy 

barrier separating the CIP and the SSHIP, which makes both states long-lived, while 

in comparison the remaining dissociation is a fast process. Therefore, the 

experimental techniques employed to measure the dissociation constant by indirectly 

probing the free ion concentrations might be sensitive to this equilibrium, instead of 

to the full dissociation, as defined by the ions to be separated by more than RB. On the 
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other hand, further equilibria leading to pre-nucleation species, not accounted for in 

the experimental data analysis, could also contribute to this discrepancy. Finally, it is 

worth mentioning that the lack of polarization in our model might lead to an 

underestimation of the stability of the SSHIP, where one or more water molecules are 

sandwiched between Mg2+ and 𝐶𝑂!! and could be highly polarized. However, this is 

open to debate and requires accurate high level ab initio quantum mechanics to 

resolve, and will be the focus of future work. 

CONCLUSIONS 

In conclusion, we have developed and characterized a thermodynamically 

consistent set of force field parameters to describe the early stages of aggregation of 

alkaline-earth cations with carbonate in water. The force field was calibrated against 

structural (crystal structures) and thermodynamic (solubility and hydration free 

energy) data and accurately reproduces experimental dynamic and thermodynamic 

properties of the ions, many of which were not included in the training set. While the 

results for the thermodynamics of ion-pairing with carbonate show some discrepancy 

with respect to experiment, it is proposed that this could partially reflect uncertainty 

with regard to the molecular process whose equilibrium is being measured rather than 

solely an error in the parameterization of the simulation. In the case of magnesium, it 

is possible that the measured equilibrium involves the solvent-shared ion-pair, thereby 

explaining the similarity of the experimental results for Ca2+ and Mg2+, which would 

be unexpected based on the thermodynamics of the contact ion-pair.  

The current new force field parameterization now makes it possible to extend 

previous simulations of calcium carbonate ion aggregation in solution to other 

alkaline-earth metals. In turn this makes it feasible in future studies to address the 
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question of whether pre-nucleation species may also exist for alkaline-earth metals 

other than calcium, as well as probing systems containing mixtures of different 

cations, such as Ca2+ and Mg2+ that are of relevant to issues such as the stabilization of 

amorphous calcium carbonate by impurities and the formation of dolomite.  
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Table 1. Force field parameters for the interactions between the alkaline-earth cations 

and oxygen of water (Ow) and that of carbonate (Oc). The parameters for Mg2+, Sr2+ 

and Ba2+ are those developed in the present work, while those for Ca2+ are taken from 

our previous work3 and are given for comparison. A cut-off of 9 Å is used for all 

short-range potentials with a taper function applied over the last 3 Å. Parameters for 

water are those of the SPC/Fw model,28 while for carbonate details can also found in 

our previous works,3 except for the Oc-Hw repulsive potential that has been modified 

in the current study. A full tabulation of the force field parameters in LAMMPS 

format can be found in the Supplementary Information. 

Buckingham  A (eV) ρ (Å) C (eV Å6) 

Mg Oc 3944.8613  0.238160 0.0 

Ca Oc 3161.6335 0.271511 0.0 

Sr Oc 14250.269 0.244116 0.0 

Ba Oc 13478.151      0.258299 0.0 

Oc Oc 63840.199 0.198913 27.89901 

Oc Ow 12534.455133 0.202 0.0 

Oc Hw 340.0 0.217 0.0 

     

Lennard-Jones  ϵ (eV) σ (Å)   

Mg Ow 0.001137 2.82  

Ca Ow 0.000950 3.35  

Sr Ow 0.000776 3.65  

Ba Ow 0.000657 3.965  
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Table 2. Comparison of the experimental and calculated structure and properties of 

the alkaline-earth metal carbonate phases. The lattice parameters at 300 K correspond 

to average values obtained from a 4 ns NPT run at 1 atm using a 3,360 atom 

simulation cell. The linear thermal expansion coefficients have been calculated by 

running 5 ns long NPT simulations at 5 temperatures between 100 K and 500 K while 

the cell angles were kept fixed. 

 Experiment Calculated 0 K Calculated 300 K 
Magnesite    

a (Å) 4.6339 4.6114 4.615 
c (Å) 15.0177 15.0687 15.165 

αa (10-6 K-1)  6.7535  3.7 
αc (10-6 K-1)  22.935  23.1 

K (GPa) 108 143  
ΔGdis (kJ/mol) +44.868 / +44.571 +44.6  

Dolomite    
a (Å) 4.8064 4.7912 4.794 
c (Å) 16.006 15.9244 16.026 

αa (10-6 K-1)  6.236  3.1 
αc (10-6 K-1)  25.836  24.4 

K (GPa) 94 107  
ΔGdis (kJ/mol) +48.749 +47.3  

Calcite    
a (Å) 4.991 4.9398 4.935 
c (Å) 17.062 17.1013 17.221 

αa (10-6 K-1)  -2.835  -2.1  
αc (10-6 K-1)  32.335  26.2 

K (GPa) 67 85  
ΔGdis (kJ/mol) +48.1/+48.568 + 45.1  

Aragonite    
a (Å) 

4.961  
4.988 4.995 

b (Å) 
7.967  

7.992 8.024 

c (Å) 
5.741  

5.534 5.601 

αa (10-6 K-1) 9.135  4.8 
αb (10-6 K-1) 18.835  14.7 
αc (10-6 K-1) 37.135  42.7 

K (GPa) 6572 75  
ΔGdis (kJ/mol) +47.7/+47.368 +44.1  

Strontianite    
a (Å) 5.1075 5.1319 5.142 
b (Å) 8.4138 8.4368 8.450 
c (Å) 6.0269 6.0008 6.066 

αa (10-6 K-1)  12.773  6.7 
αb (10-6 K-1)  12.873  6.2 
αc (10-6 K-1)  43.173  40.6 



 30 

K (GPa) 58 64  
ΔGdis (kJ/mol) +52.974 +51.3  

Witherite    
a (Å) 5.316 5.2970 5.308 
b (Å) 8.892 8.7789 8.799 
c (Å) 6.428 6.5059 6.568 

αa (10-6 ∘C)  10.573  6.7 

αb (10-6 ∘C) 6.073  8.0 

αc (10-6 ∘C)  48.073  36.4 
K (GPa) 50.4 57.3  

ΔGdis (kJ/mol) +48.975 +50.1  
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Table 3. Comparison of the experimental and calculated properties of the alkaline-

earth cations and carbonate in aqueous solution. Here rX-Ow is the metal-oxygen 

distance in the first hydration shell, CN is the coordination number of the species by 

water, τ represents the time scale for water exchange in the first solvent shell, and D0 

is the diffusion coefficient of the ion in water. aFrom our simulations the first peak of 

the carbon hydrogen pair distribution function is a convolution of two very close 

peaks (see Supplementary Information). 

 Exp. Previous simulations This work 

Mg2+    

ΔGhyd(kJ/mol) -176827 -190810 -1766 

ΔHhyd(kJ/mol) -194562  -1876 

ΔShyd(J/mol/K) -35062  -368 

rX-Ow (Å) 2.00-2.1576 2.250 / 
1.9851 / 2.3120 2.00 

CN 676 6.250 / 6.051 / 7.120 6 

τ (ns) 150059 0.42250 / >10 / 0.120 >100 

D0 (10-5 cm2/s) 0.7177 0.6250 0.86 

    

Ca2+    

ΔGhyd(kJ/mol) -144427 -159310 -1444 

ΔHhyd(kJ/mol) -160062  -1532 

ΔShyd(J/mol/K) -27162  -295 

rX-Ow (Å) 2.33-2.4476 2.550 / 2.3851 2.36 

CN 6-1076 8.050 / 6.219 / 7.520 7.2 

τ (ns) 1.1-1.678 >150 / 0.122  / 0.04920 0.23 

D0 (10-5 cm2/s) 0.7977 0.5550 / 0.5819   0.95 

    

Sr2+    

ΔGhyd(kJ/mol) -131727 -144810 -1316 

ΔHhyd(kJ/mol) -147062  -1392 

ΔShyd(J/mol/K) -26162  -254 

rX-Ow (Å) 2.60-2.6576,79,80 2.950 / 2.5851 2.55 

CN 7.9-1576,79,80 9.150 / 8.051 8.0 

τ (ns) 1.081 0.5150 / 0.04351 0.36 

D0 (10-5 cm2/s) 0.7977 0.5450 0.94 

    

Ba2+    

ΔGhyd(kJ/mol) -119027 -131710 -1185 

ΔHhyd(kJ/mol) -133062  -1254 

ΔShyd(J/mol/K) -22462  -230 

rX-Ow (Å) 2.75-2.9076,79,80 2.7851 2.75 
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CN 8.1-9.576,79,80 8.851 8.6 

τ (ns) 0.282 0.01551 0.13 

D0 (10-5 cm2/s) 0.8477  0.90 

    

CO3
=    

ΔGhyd(kJ/mol) -1315 -140420 / -117520 -1312 

ΔHhyd(kJ/mol) -1395  -1390 

ΔShyd(J/mol/K) -264  -260 

rCc-Hw (Å) 2.6561 1.7819   2.29 / 2.74a 

rCc-Ow (Å) 3.3561 2.6919   3.24 

CN 9.161 4.319   12.1 

τ (ns)  0.03619   0.017 

D0 (10-5 cm2/s) 0.883-0.95584 0.619  1.0 
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Table 4. Dissociation constants and free energies for ion-pairs between the alkaline-

earth cations and the carbonate anion. For Mg2+ we calculate the dissociation constant 

also by considering the CIP-SSHIP equilibrium separately from the SSHIP 

dissociation process (see text for the details) and this value is reported in parenthesis. 

For the calculated values both the results from integrating along the free energy 

surface, as well as direct estimation by taking differences (labeled “from FES”), are 

reported.  

 Mg2+ Ca2+ Sr2+ Ba2+ 

Experimental pKdis
68 2.84-3.00 3.00-3.20 2.76 2.70 

pKdis 5.3 (4.3) 3.9 2.6 2.5 

pKdis – from FES 4.27 3.27 1.55 1.23 

     

Experimental ΔG (kJ/mol)68 -16.3/-17.2 -17.2/-18.3 -15.8 -15.5 

ΔG (kJ/mol) -30.4 (-24.7) -22.4 -14.9 -14.4 

ΔG – from FES (kJ/mol) -24.5 -18.8 -9.0 7.1 
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Figure 1. Self-diffusion coefficient of water and of the aqueous metal cations as a 

function of the simulation box size. 
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Figure 2. Free energy as a function of the water oxygen coordination number for the 

metal cations. The minima deviate slightly from the expected integer coordination 

values due to numerical factors arising from the need to define a smooth and 

continuous analytic definition of the coordination number for use as a collective 

variable (see Eq (1)).  

 



 36 

Figure 3. Metal-carbonate pairing free energy as a function of the metal-carbon 

distance and of the metal-water coordination number. On the Mg2+ plot (top left) we 

have overlaid letters corresponding to the panels of Figure 4, which shows 

representative configurations for the four free energy minima. The beads on the 2D 

free energy plots show the minimum free energy path for formation/dissociation of 

the ion-pairs. The free energy landscape is color coded according to the scale bar on 

the right of each panel, with the zero of energy being taken as the most stable ion-

paired state.  
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Figure 4. Representative atomic configurations of the Mg-CO3 ion-pair: bi-dentate 

CIP (A), mono-dentate CIP (B), SSHIP (C) and SSIP (D); the Mg-C distances are 

~2.6 Å (A), ~3.5 Å (B), ~3.9 Å(C) and ~7 Å (D). The water molecules in the 

carbonate hydration shell are colored in blue, while for those in the Mg hydration 

shell a thicker licorice representation is used with oxygen in red and hydrogen in 

white. The atoms of the ion-pair are shown using a ball and stick representation with 

Mg, C and O colored brown, cyan and red, respectively. The letters identifying the 

panels have also been superimposed on Fig. 3A to identify the free energy minima. 
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Figure 5. Projection of the 2D pairing free energy maps on to the metal-carbon 

distance (colored lines) with the minimum free energy path superimposed (beads) and 

the 1D free energy profile that would be obtained by neglecting the coordination 

number CV. Each colored line represents a cut through the 2D map at a specific value 

of the coordination number. For clarity, the 1D free energy profiles have been offset 

by either 10 kJ/mol (Mg2+ and Ca2+) or 5 kJ/mol (Sr2+ and Ba2+). The color 

corresponds to the free energy of the point as per the side bar, which has been kept 

constant in all the images. 
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Graphical TOC 
Atomic density around the Mg2+CO!!!(aq) contact ion-pair in water. Red and white are 
used for the water oxygen and hydrogen, while cyan and pink are used for the carbon 
and oxygen of the carbonate ion. 
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