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ABSTRACT

A new gravimetric determination of the geoid of the British Isles has been made, using a modified
version of Stokes integral in combination with a global geopotential model and a digital lerrain model

INTRODUCTION

The Global Positioning System determines positions very accurately in a
terrestrial three-dimensional Cartesian frame, and the resulting X,Y,Z co-
ordinates are easily convertible into ellipsoidal co-ordinates — latitude, longitude
and height above the ellipsoid [7]. However, the conversion of ellipsoidal height
into a meaningful physical quantity, namely orthometric height or height above
the geoid requires a correspondingly accurate knowledge of the geoid-ellipsoid
separation, or geoid height, as given by the equation

H=h-N 1

where H is orthometric height, / ellipsoidal height and N geoid height. Also, in
addition to this direct practical function, a knowledge of the geoid is of scientific
interest in the contribution it makes to the understanding of the Earth’s crustal
structure. The only feasible method of determining geoid heights over a large arca
to the required accuracy and density is the gravimetric method.

Since the first gravimetric determination of the geoid of the British Isles in 1979
[6], a number of developments have taken place. The amount of data available,
both local and global, has greatly increased, while new methods of computing
geoid heights from gravity observations have been devised. The method which was
used in the study on which this account is based [1] uses a refinement of Stokes
integral. The latter is sometimes characterised as a simple spherical approximation
that requires a continuous gravity field and which takes no account of the
topography, and on these grounds is considered to be insufficiently accurate for the
precise determination that is now required. In fact, given sufficiently dense data
coverage, together with the application of recently developed theoretical and
practical modifications of the basic integral these objections can be overcome. It
is also claimed that the Stokes method requires excessive computation time, but
this is now clearly no longer a problem. Thus. with a very large data set and
unlimited computing resources, this method becomes a natural choice, and in this
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pure form allowed investigation of the effects of Stokes' approximation and
assumptions. In this situation the possible advantages of some of the more recently
developed methods were not at all obvious, although they could be applicable in
other circumstances —with a sparse data set, for instance, or where computing
facilities are limited. For example, while the Fast Fourier Transform (FFT)
technique is, as its name implies, computationally extremely fast, the trans-
formation to the frequency domain involves a gross simplification of the Stokes
kernel. Least squares collocation, while theoretically sound, suffers from the
practical disability that it generates a system of equations of order equal to the
number of observation points, so that whilst it might be appropriate in regions
where measurements are sparsely distributed or heterogeneous, its application in
an area containing several hundred thousand observations involves the selection of
data points, amounting effectively to throwing away information. Furthermore,
the method becomes unstable if the data points are too close together. On balance,
therefore, it appears that Stokes integral, corrected for ellipsoidal and topographic
effects, with data averaged over small cells, is the most suitable and accurate
method of determining the geoid of the British Isles.

METHOD

The well-known Stokes formula for the height of the geoid above the ellipsoid
is

R
= J SGp) Agdr @

where
N = geoid-ellipsoid separation
R = radius of the Earth
<y = mean value of gravity
S(y) = Stokes’ function or kernel
1 = angular distance to the gravity anomaly
Ag = free-air gravity anomaly
do = element of the unit sphere o
the integration being taken over the unit sphere. The gravity anomaly is the
difference between the observed value of gravity, reduced to the surface of the
geoid by means of the so-called free-air correction, and normal gravity, the
theoretical value of gravity on the surface of the reference ellipsoid.
Stokes function is given by
SGfr) = cosec (1 /2)—65in (47/2) + 1 — 5 cos ()
—3cos (i) In[sin (1 /2) +sin*(y/2)]  (3)
An important alternative formulation of Stokes’ function in terms of Legendre
functions is
&.2n

1
s = Lo

=t

P (cosy) @)

where P,(cos ) is the Legendre function of degree #. This formula enables the
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value of S(3) up to any given degree to be determined, and is of direct application
in the analysis that follows.

At any given point the geoid height is given by the integration of gravity
anomalies, multiplied by the appropriate values of Stokes function, over the entire
Earth. However, as the distance from the computation point increases, the degree
of accuracy with which the gravity anomalies must be known diminishes, This can
be seen from the fact that Stokes function is infinite at the computation point, and
has the values 1163 at i =0.1°, 125 at 1° and from about 26° oscillates between
about +3. The global distribution of terrestrially surveyed gravity values is
patchy, and in many areas non-existent, but in recent years this deficit has been
overcome by the creation of global geopotential models, based on the available
gravity data, but powerfully reinforced by results from the analysis of the
perturbations in the orbital paths of satellites and from data derived from satellite
altimetry over the oceans. Such models are capable of representing the long
wavelength clements of the global gravity field, and provide an acceptable
representation of it for use in conjunction with a dense and accurate local gravity
survey. The expression for geoid heights derived from a geopotential model, N,
takes the following form

GM
=

n=2 m-o

e w e L o
{5 L[ tComcosms s,psnmsng) )
where

G = the Newtonian gravitational constant

M = mass of the Earth, including the atmosphere

r = distance from Earth’s mass-centre
a = Earth’s equatorial radius
¢, A = geocentric latitude and longitude
C s S,y = lully normalised harmonic coefficients of degree n

and order 1, reduced for the zonal harmonics of
the reference ellipsoid

P, (sin¢) = fully normalised associated Legendre function of
degree and order n.m

nmax = maximum degree of geopotential model.

The simple application of the called fundamental equation of physical
geodesy together with Bruns® equation [2] enables the sum of the harmonic
components of the gravity anomalies up to any given degree to be calculated from
the same series as the geoid heights, namely

GM (s a 0o ) .
8= S E £ 00 (&) (Copcosmr 5, s ing]
LS r
where Ag, . is the total component of the gravity anomaly up to degree nmax
and the remaining notation is as in equation (5).
If, in the area of interest, the long-wavelength element of the geoid heights is
caleulated from such a global model, then it is only necessary to add the difference
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due to the local short-wavelength gravity field. In other words, the gravity
anomalies to be used in Stokes integral are referred to the surface of the figure
represented by the model instead of to the reference ellipsoid, and this is done by
subtracting the gravity anomalies of the same degree as the model geoid heights
from the observed gravity anomalies. This greatly reduces the effect of the
spherical approximation used in the derivation of Stokes’ integral.

It would seem that the two quantities in the integrand of Stokes’ integral should
be of the same degree, so that if the gravity anomalies are reduced by degree M,
the maximum degree of the geopotential model employed, then so should Stokes
function. Sub ing Ag,,. given by equation (6), from Ag to obtain the residual
gravity anomaly Ag,,,, (where from now on the subscript M+ 1 denotes the
summation of terms of degree greater than M), and S(3}),,. given by equation (4).
from S(3) to get the corresponding value of Stokes function, equation (2) is
replaced by

N = Nyt | St Bt o
where N, is the geoid height given by the geopotenual senes to degree and order
M. However, because of the orth in the i of
harmonic prod [2]. the following relationships are valid

[ Suathtsstn= [ 5ot = [ sinsenar  ®
and, as described later, it is the third of these ions that is actually employed
in the computation.

The y of a geop I model is d dent on that of the observational

data from which it is derived, while its horizontal and vertical resolution are
expressed by its degree and order. Clearly the more accurate and abundant the
data, the higher the degree and order to which the coefficients of the model can
confidently be computed. Thus for any given model it is possible to deduce the
distance from the computation points beyond which the model alone can be
regarded as representing the long and medium wavelengths of the gravity field. The
application of Stokes integral can therefore be limited to within this distance i,
the so-called integration cap size, the area within this sphcrical cap o, being
covered by an intensive Iocal lerreslnal gravity survey. It is evident that this

results in a duction in both data requirements and
v.ompulauondl effort, but nevertheless we need to determine the error that is
committed by ing that the ial model actually ref s the gravity

field in the zone exterior to the cap, and to find some means of minimising it.
Calling this error 8N, then, making use of the third expression in equation (8)

R
= ‘,—Wjﬂ_”nsw/mga,..do ®

where o —a, is the region exterior to the cap. By a procedure originally due to
Molodcnsky [5] the Stokes kernel in equation (7) can be modified in such a way as
to ding to a least-sq s criterion, the effect of neglecting this
term, but it has been found that a development of this method, due to Meissl [4],
which forces the Stokes kernel to zero at the cap boundary, reduces the truncation
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errors, using an elegant and matt
modification of Stokes function is given by
") = SO = S()- (10)
The general form of Meissl's and other kernel modifications is in fact
considerably more complex than this, but justification for the adoption of this
form was provided by a comprehensive analysis [1].
Thus, finally, the equation for the geoid height becomes

ly simple dificati The Meissl

NNt | 7 bt an

The practical implementation of Stokes integral requires a number of
preliminary steps. Firstly, since the gravity field is not known as a continuous
function but as discrete values, the integral must be expressed in a form suitable
for numerical integration i.e. as a summation. Also, to facilitate the computation
process it is convenient to sort the gravity anomalies into small blocks, with
meridians and parallels as sides and approximately square in shape, and to average
the anomalies within them in some way. The wavelength and accuracy of the
resulting geoid heights are clearly a function of the size of the blocks and the
number of observations they contain. The numerical version of equation (11) thus
becomes

R o —
N= N‘;.Il+m;5m’('n»’,m)kAgkAk (12)

where
S™(4f,); = Stokes function with Meissl’s modification at the
centre of the kth block, distance i/,
Ag, = residual mean free air anomaly for the block
A, = area of block in angular units.

DaTa

The data available for this study comprised:
156284 land gravity observations covering England, Scotland and Wales.
11256 land gravity observations over Northern Ireland.
20101 land gravity observations over the Republic of Ireland.
64104 marine gravity observations in the surrounding oceans.
74263 gridded marine gravity observations on a 4 km grid, overlapping to
a certain extent the point values above.
130317 spherical harmonic coefficients of the Ohio State University
geopotential model OSU9IA, to degree and order 360 [8].
Two digital elevation models (DEM) were available:
(i) Southern England and Wales — 200 m resolution.
(i) Northern England and Scotland — | km resolution.
For Ireland and small areas of Britain not covered by (i) and (i) a 2’ x 4’ DEM was
constructed from mean heights of the gravity observations.
The extent of the gravity coverage is shown in Fig. 1.
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COMPUTATION AND RESULTS

The gravity data sets above were filtered to detect gross errors and assembled
into a single uniform ddld set with a standard format. The free-air anomalies were
bi d by applying a second-degree free-air reduction as given in [2], i.e.

. 3
A‘g,,,=%(l+j+m—2/sm ¢)H—ﬁH* (13)
where N . .
/= flattening of the GRS80 ellipsoid
m = w*a/y,, the centrifugal ratio
@ = Earth’s angular velocity
a = Earth’s equatorial radius
¥, = normal gravity at the Equator
¢ = latitude
H = height above the geoid
and a correction for the mass of the atmosphere. The latter consisted of a fifth
degree polynomial fitted to averages of values determined from the U.S. and
COSPAR standard atmospheres [3]. This gave
08, = 0.871—1.0298 x 107*H +5.3105 x 10 °H*
21642 x 10" H? +9.5246 x 107" H'—2.2411 x 10 *H* (14)
where dg,, is in milligals and # is in metres.

The resulting free-air anomalies were then sorted into compartments of 2’ extent
in latitude and 4 in Ionguudc. roughly 4 km square, wnh up lo 20 values per
compartment. Various were luding the
regression method used in [6], averagmg the Bouguer anomalies and then restoring
the topography using the DEM, a surface fitting and interpolation, and a straight
mean of the free-air anomalies. It was considered that there were msufﬁcwm
observations in each compartment for satisf: Yy lication of the
method, while tests with the other three produced closely similar results, so the
straight averaging method was adopted. A topographic correction, to account for
the residual ion of the masses d d onto the geoid by the free-air or
condensation reduction was applied to these mean free-air anomalies as follows [1]

GoR® (. (H'—H)*
LA

og, = (15)
where
G = gravitational constant
p = Earth’s crustal density
R = radius of Earth
H = mean orthometric height of computation point compartment
H’ = mean orthometric height of distant compartment
1 = distance from computation point
A, = area of block in angular units.
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Fig. 1. Gravity coverage of the British Isles.

The digital elevation model was used to calculate this correction.

The application of the free-air reduction, whereby lhe obsened gnvnly is
reduced to the surface of the geoid, is equi to the
onto the surface of the geoid (Helmert’s condensation reduction, [2]). The cf]’ccl
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of this transfer of mass is to alter the Earth’s potential, so that the surface
determined by equation (11) is not exactly the geoid, but a close surface known as
the co-geoid, the separation belween lhese two surfaces being known as the
indirect effect of the d An exp ion for this is given in [11],
for which the discrete version is

N, =—

nGpH* _GpR® ("~ 1) |
6 - T

I3 AR I )
where y is normal gravity and the remaining notation is as for equation (15).

The first term of this expression represents the effect of the infinite Bouguer
plate, while the second term takes into account the short wavelength variations due
to the topography. A digital elevation model is used to determine the correction
for the indirect effect, which is applied directly to the final geoid heights. The rapid
decay in the value of /- in the second term allows summation to be limited to a
radius of 60 km.

A matter of fundamental importance was the determination of the size of the
mtcgrauon cap. Tt needs to be as small as possible in order to minimise the

1labour, but 'y must not be prejudiced on this account, so the
value adopted must be based on analytical criteria rather arbitrary selection. Since
it depends not only on the degree and order of the geopotential model. but also on
the stability of Meiss's modification of the Stokes kernel, this was the subject of
an intensive and complex analysis, together with rigorous testing [1]. An
examination of the coeflicients of the selected geopotential model [8] showed that
from degree 257 onwards the standard errors begin to exceed the magnitude of the
coefficients themselves and therefore it was decided to truncate the model at this
point. Now it is well-known that a geopotential model should be accepted in its
entirety and that in general it is not legitimate to isolate terms from it, since this
will incur aliasing errors, edge effects, ctc. However, while this would be a
significant consideration at the lower degrees, at this end of the spectrum degree
accounts for 98 % of the total geopotential model height, so that any errors on
count are very small, but in any case are taken into account by the second
term of the geoid height evaluation (equation (11)), where the reduced gravity
anomaly is the residue of whatever has not been included in the geopotential
model. In effect, whatever has been removed from the gravity anomaly is
subsequently restored. As a result of this analysis, a optimum cap radius was found
to be 1:951°, and this value was confirmed by an independent method.

The geoid heights were evaluated at the centre of each 2’ latitude x 4’ longitude
compartment in the latitude range 48° to 63° North and longitude range 12°
West to 8° East, a total of 135000 points. Because of the rapid change in Stokes
function for small values of i, the compartment midpoint values are not truly
representative of the mean value and require a correction on that account. The
correction, derived in [9]. takes the form of a factor f{3/,) by which the Stokes
kernel is multiplied

Y (Wt Y
L) ln( 5 _&y) an

where 8y is the distance across the compartment and ,, is the distance to the
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Fig. 2. OSU91A geoid height contours on GRS80 ellipsoid, degree and order 257. Contour interval
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centre of the compartment. For the compartments employed here the factor
ranged from 1:0217 to 1-0003 at the cap boundary.

For the compartment centred on the computation point. where the Stokes
kernel becomes infinite, a special procedure. as given in [2] and [9] was applied.
Denoting the contribution to the geoid height from this innermost compartment

by dn, then
= M/ﬁ. (18)
Y n

The results from the integration cap. including the innermost zone, were added
to the geopotential model heights and indirect effect to produce the final geoid
heights.

The stages in the computation are illustrated in Figs 2, 3 and 4, which show,
respectively, the OSU91A geoid model contours up to degree and order 257, the
component obtained from the integration of the gravity anomalies, and the final

i ic geoid height all on GRS80. The Stokes contribution ranges
from 0-00 to —2:30 metres. For comparison, contours for the complete 360 x 360
OSU91A model are shown in Fig. 5, and it can be seen that the difference from the
257 degree version in Fig. 2 are barely perceptible.

CONCLUSIONS

Although a rigorous error analysis of the Stokes method is difficult and has
never been done, a careful analysis of the possible error sources leads to the
conclusion that the standard error of the absolute geoid height determination is of
the order of +8 cm, although there may be a small residual bias, while for geoid
height differences over distances of up to 100 km it is in the region of 1 ecm. GPS
observations were available at 54 primary triangulation pillars but unfortunately
the orthometric height determination at these points was mainly by tertiary
levelling, while most of the GPS observations were made by single frequency
instruments. Nevertheless 46 of the results lay within +20 cm of the gravimetric
value, evenly balanced about zero. The contours of the GPS geoid heights are
shown in Fig. 6, and considering the small number of points involved, the
agreement with the gravimetric values is remarkably good. Because of the
north-south ori ion of the what does not show up is the tendency
for a progressive northward negative increase in the differences GPS minus
gravimetric, amounting to. —53c¢m at the northernmost poml Whilc the
comparisons are not to provide i
confirmation, this tends to corroborale the findings in [10] that there is a
northward rise in sea-level, and hence the geoid, relative to the levelling, of 53 cm
per degree of latitude.

Thus we may conclude that the new gravimetric geoid of the British Isles has
provided an advance over the first determination through the use of more data and
refined computational techniques to yield a higher resolution and accuracy, with
applications to GPS positioning and levelling, and to geophysics.
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