
The use of NDVI and its derivatives for monitoring

Lake Victoria’s water level and drought conditions.

Abstract

Normalized Difference Vegetation Index (NDVI), which is a measure of

vegetation vigour, and lake water levels respond variably to precipitation

and its deficiency. For a given lake catchment, NDVI may have the ability

to depict localized natural variability in water levels in response to weather

patterns. This information may be used to decipher natural from unnatural

variations of a given lake’s surface. This study evaluates the potential of us-

ing NDVI and its associated derivatives (VCI (vegetation condition index),

SVI (standardised vegetation index), AINDVI (annually integrated NDVI),

green vegetation function (Fg), and NDVIA (NDVI anomaly)) to depict Lake

Victoria’s water levels. Thirty years of monthly mean water levels and a

portion of the Global Inventory Modelling and Mapping Studies (GIMMS)

AVHRR (Advanced Very High Resolution Radiometer) NDVI datasets were

used. Their aggregate data structures and temporal co-variabilities were

analysed using GIS/spatial analysis tools. Locally, NDVI was found to be

more sensitive to drought (i.e., responded more strongly to reduced precipi-

tation) than to water levels. It showed a good ability to depict water levels

one-month in advance, especially in moderate to low precipitation years. SVI

and SWL (standardized water levels) used in association with AINDVI and

AMWLA (annual mean water levels anomaly) readily identified high precip-
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itation years, which are also when NDVI has a low ability to depict water

levels. NDVI also appears to be able to highlight unnatural variations in

water levels. We propose an iterative approach for the better use of NDVI,

which may be useful in developing an early warning mechanisms for the

management of lake Victoria and other Lakes with similar characteristics.

Keywords: NDVI, Lake Victoria, water levels, drought, catchment basin,

Lake variability.

1. Introduction

Lake Victoria, the world’s second largest fresh water lake, is refilled largely

(80%) by direct rainfall (e.g., Awange and Ong’ang’a 2006). Its annual

weather patterns and water use are major factors that significantly affect

its water level (Kull 2006). The extent to which these affect the water level

is still debatable. Kull (2006) suggests that 55% of the fall in water level

occurs because of excessive release through the Owen Falls and Kiira hydro

power dams as opposed to 45% due to drought. In 2003-2006, however, the

lake receded at an alarming rate (Kull 2006, Awange et al. 2008) bringing

to focus the need for the constant monitoring of its water levels.

Lake Victoria is a shared resource with immense importance in sustaining

livelihoods (i.e., agricultural, fisheries, hydropower generation, and freshwa-

ter, see e.g., Awange and Ong’ang’a 2006), not only within its locality (East

Africa), but also as far as the Nile River stretches (see, e.g., Yates 1998).

In light of its immense importance, a multi-faceted approach for monitoring

its surface dynamics is necessary to provide information that would assist

water resources managers and policy makers in making decisions that would
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enhance the sustainable use of the lake’s waters.

Existing water-level monitoring technologies, such as tide gauges and

radar altimetry, are limited to the empirical evaluation of water-surface

changes. Tide gauges, for example, are limited in their spatial coverage

and their in-situ use requires solving the problem of accessibility to both the

observation sites as well as the data, which are often only available to gov-

ernment authorities (Charon and Brad 2004). To overcome these setbacks,

satellite altimetry methods (see e.g., Birkett 1995; Becker et al. 2010), which

are semi-realtime and less precise than the gauges, are being adopted (e.g.,

Charon and Reynolds 2005). The tide gauges, however, do not provide any

other relevant proxy data, such as that provided by satellite imagery. Im-

agery can, for example, provide a time series of various measures of vegetation

vigour, such as the main interest of this work, the Normalized Difference Veg-

etation Index (NDVI; Tucker 1979) for the extended evaluation of a lake’s

surface dynamics in relation to its catchment’s response to weather and cli-

mate patterns.

In an environment where there is an increasing uncertainty in the prospect

for adequate rainfall, the use of NDVI should be viewed as an attempt to

provide input to developing enhanced water management systems that incor-

porate other observables such as drought indices, to adequately forecast the

dynamics of a lake’s surface. Drought, a condition of precipitation deficiency,

has a direct negative impact on all useable water sources (McKee et al. 1993).

NDVI variables should quantify and/or decipher a lake’s surface dynamics

as affected by local weather/drought patterns from anthropogenic water use,

while also accounting for weather patterns in a given lake’s catchment (see
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e.g., Mendicino and Versace 2007; Subash and Mohan 2011).

NDVI has traditionally been used for vegetation cover modelling (see,

e.g., Privette et al., 1995) and was extended, for example, to epidemiologi-

cal studies where, in the work of Hay et al., (1998), it was used to predict

malaria seasons in Kenya. NDVI has also been shown to provide a good

overview of the prevailing plant water stress as a function of the prevailing

weather conditions (Hatfield, et al. 2004; Gontia and Tiwari 2010). This

relationship is already being exploited by the Famine Early Warning Sys-

tems Network (FEWS NET 2011) to monitor crops and range lands in semi

arid sub-Saharan Africa. It is also a known covariate with other environ-

mental variables, such as surface cover and rainfall, especially in semi arid

regions (Nicholson 2001a). In a recent study, Chen et. al., (2011) showed

the potential use of NDVI to identify critical soil-loss prone areas in Xiangxi

watershed, the river basin nearest to the Three Gorges Dam.

In tropical Africa, natural vegetation is generally very sensitive to pre-

cipitation. Camberlin et al. (2007) established that, even with varying mean

annual rainfall amounts, for a third of tropical Africa, inter-annual NDVI

correlates with corresponding inter-annual rainfall. A correlation of r > 0.5

has been observed in semi-arid regions, with generally lower correlations in

areas with mean annual rainfall above 600 mm. However, such correlations

are region dependent. Significant correlations have been observed even in

areas with more than 600 mm mean annual rainfall (Camberlin et al. 2007),

e.g., the Lake Victoria basin. Thus, depending on the location and the spa-

tial extent of the study area, varying correlation patterns should be expected

due to differing precipitation patterns.
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Nicholson et al (1990) used the Global Inventory Modelling and Map-

ping Studies (GIMMS) NDVI dataset (1982-1985) to compare vegetation

response to rainfall in East Africa and the Sahel regions and found that in

these regions, annually integrated NDVI (AINDVI) closely varied spatially

with mean annual rainfall, especially at two-months time lag. The time lag

is important because vegetation does not directly respond to rainfall, but

rather to soil moisture, which is a multi-month integral of rainfall (Nichol-

son et al. 1990). However, NDVI saturates at rainfall thresholds of above

1000 mm due to water logging and below 200 mm where it readily depicts

bare soil. Furthermore, Anyamba et al. (2002) suggest the possibility of

seasonally predicting NDVI using observed rainfall for Africa. This would

require the use of numerous active ground-based weather stations (Verdin

et al., 2005). A recent use of NDVI is exemplified in the work of Kiage

and Walker (2009) who apply NDVI derived from MODIS imagery to inves-

tigate duckweed blooms and other floating vegetation in Lake Maracaibo,

Venezuela. Propastin (2008) applied NDVI to model the link between wet-

land and biomass conditions in the Ili River delta and changes in the Back-

hash Lake water levels, Kazakhstan, and showed that NDVI displayed signif-

icant intra- and inter-annual variability strongly correlated with the Ili River

discharge and Backhash Lake’s water levels.

In this study, the application of NDVI and its derivatives, namely SVI

(standardised vegetation index), AINDVI (annually integrated NDVI), green

vegetation function (Fg), and NDVIA (NDVI anomaly) as proxy datasets

for Lake Victoria’s natural water level variations and therefore their use for

monitoring lake water surface levels is assessed. The assessment is based
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on the assumption that for Lake Victoria, of all possible natural factors,

weather patterns are the major natural factor governing its natural water

level trends (Kull 2006; Awange et al. 2007; Swenson and Wahr 2009).

This is compounded by water releases for hydroelectric power generation,

which have been proposed as having largely contributed to falling water levels

(Kull 2006; Awange et al, 2008). Thus, the possibility of using NDVI to

discern such anthropogenic fall in water level from that due to drought is

also assessed.

Broadly speaking, this study aims at identifying and evaluating the pos-

sibilities of using catchment NDVI as a proxy variable for depicting, as well

as monitoring, lake surface water levels. It seeks to understand the general

relationship between the Lake Victoria catchment NDVI and its water levels

and therefore the applicability of its aggregated NDVI in depicting natural

water level patterns. It is assumed that any functional contributions of the

catchment to the water balance in terms of surface runoff, drainage, land use

or otherwise can only be aggregate. Therefore, for each of the NDVI images,

the focus is on the mean NDVI. To identify and understand such possibili-

ties and associated patterns, spatial-temporal and quantitative variabilities

of Lake Victoria’s catchment (Advanced Very High Resolution Radiometer

(AVHRR) NDVI 1987-2003) and the observed water levels were used.

2. Study Area and Data sources

2.1. Study Area

According to the United States Department of Agriculture (USDA/FAS

2007), Lake Victoria’s water level is known to be extremely sensitive to mod-
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erate changes in rainfall over the lake and its large catchment. This is height-

ened by the fact that it is typically shallow. Thus, its recharge capacity is

very dependent upon its large surface area of approximately 69,000 km2 and

the tributary flows from its catchment, which extends to an area of over

184,000 km2 (Fig. 1).

FIGURE 1

Land use in the catchment is largely agricultural (Fig. 2). It is therefore

prone to low vegetation cover, especially in the dry seasons, while also having

a mixture of dense forest covers. Diverse land cover types exist, ranging from

bare ground, rain-fed and irrigated crops, to urban areas (Fig. 2). On the

Ugandan side of the catchment, the most dominant vegetation cover is rain-

fed shrub crops followed by generally open shrub land. In Kenya, the land

cover is mostly rain-fed herbaceous crops, similar to Tanzania, except that in

the latter, the crops are often punctuated by variable mixtures of savannah

shrubs. A detailed description of the lake basin can be found, e.g., in Awange

and Ong’ang’a (2006).

FIGURE 2

2.2. Data sources

The data used includes daily rainfall observations from the Entebbe mete-

orological station (1990-2005). This station is chosen as being representative

of the other stations within the basin due to the fact that they are within the

same climatic zone (e.g., Awange et al., 2007). The primary datasets are the
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GIMMS AVHRR NDVI (1987-2003), and thirty years of monthly mean water

levels (1976-2005) from the Jinja tide gauge station in Uganda. The NDVI

used is a spatial and temporal subset of an improved continuous AVHRR

calibrated global dataset processed under the GIMMS project. The AVHRR

NDVI data processing and quality is comprehensively discussed by Pinzon et

al, (2004). It has been critiqued by some authors, e.g., Tucker et al. (2005)

cites Chilar et al. (1998) and Gutman (1999) who question the non-surface

uncertainty in AVHRR NDVI data. However, Tucker et al. (2005) argue

that their findings are mainly a result of inappropriate use of the data.

The water levels are observations relative to an established height da-

tum of 1122.86 m above mean sea level, while the lake’s maximum mean

level is 1134.5 m. Observations of water level fluctuations provided by al-

timetry missions are of major importance in monitoring water reservoirs, as

they provide independent information in addition to the traditional in-situ

datasets (Birkett 1995; Cretaux and Birkett 2006). Satellite altimetry water

levels from Topex/Poseidon (T/P) and its follow-on, Jason-1, were incorpo-

rated for the period 1993 to 2009. T/P was the first successful repeat-orbit

altimetry mission and operated in several phases in its original orbit until

September 2002. The spacecraft was in an orbit with an altitude of about

1300 km and provided repeat measurements over a given geographical posi-

tion at approximately 10-day intervals. Technical details of the spacecraft

can be found in Fu et al., (1994) and the references therein. During the

ten years of its operation, T/P provided 369 cycles of precise and accurate

observations of water-level variations with a near global coverage. According

to the pre-launched report of Benada (1997), the sea-level measurements of

8



Table 1: Data source used in this study.

Data Source Period

Daily rainfall Entebbe Meteorological Station, Uganda 1990-2005

AVHRR NDVI GIMMS, University of Maryland 1987-2003

Monthly mean water levels Jinja tide gauge (Uganda) and 1976-2005

Satellite altimetry NASA Physical Oceanography DAAC (PODAAC) 1993-2002

T/P had a precision of 2.4 cm and an accuracy of 14 cm for typical oceanic

conditions, with small geographically correlated errors. Since its launch in

December 7th 2001, Jason-1 has provided sea and lake surface height obser-

vations with the same global coverage and orbital repeatability of 10-days

(Picot et al., 2003).

In order to obtain the lake level heights (LLH) of Lake Victoria dur-

ing the ten years of T/P’s satellite operation (1993 to 2002), we used data

(Merged Geophysical Data Record (MGDR)) provided by the NASA Physical

Oceanography DAAC (PODAAC) at the Jet Propulsion Laboratory, Cali-

fornia Institute of Technology. To cover the remaining period of the study,

we examined the Jason-1 Interim Geophysical Data Record (IGDR) datasets

that are available via the PODAAC website. These satellite altimetry data

provided independent datasets fulfilling the same task as the Jinja tide gauge,

while offering the possibility of comparison (and controlling outliers) with the

tide gauge dataset (see Fig. 3). Table 1 summarizes the data source used in

the study.

FIGURE 3
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3. Methodology

3.1. Using NDVI

NDVI is the ratio of the reflectance difference between the near-infrared

(NIR) and visible (R=red) bands and the sum of the reflectance of these two

bands (e.g., Tucker, 1980). It is expressed as

NDV I = (NIR−R)/(NIR +R). (1)

It is primarily a biophysical measure of vegetation vigour that directly as-

sesses the level of photosynthesis rather than the extend of canopies (Hatfield

et al. 2004), and is a spatially continuous variable. It can be derived from

imagery provided by any satellite sensor that scans in the visible (red) and

near infra-red bands, and is expressed as a normalized ratio ranging from

-1 to +1. NDVI was primarily developed to improve the sensitivity of the

simple ratio SR = NIR/R to vegetation structure and cover. The NDVI is

sensitive to soil reflectance in sparse vegetation, however, it saturates faster

in dense vegetation. In dense cover, the NIR signal increases while the red

signal stagnates (Liang, 2004). On the other hand, the SR saturates slowly

and has a good ability to differentiate soil from vegetation (Baret and Guyot

1991).

The impact of drought is directly observable in the five major useable

water sources; soil moisture, groundwater, snow pack, stream flow, and reser-

voir storage (McKee et al., 1993). NDVI depicts vegetation vigour, which

is an ancillary reflection of precipitation variability, especially in semi arid

regions. It therefore depicts plant water stress, which is a direct function

of drought. This dynamic characteristic of NDVI makes it very useful as a
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drought metric, specifically for agricultural drought monitoring, for example

by identifying when the available amount of water falls below that required

by plants (McVicar and Jupp 1998).

In practice, NDVI as a drought measure is normally used in its linear

transforms, e.g., the green vegetation fraction Fg, as suggested by Gutman

and Ignatov (1998), which is the normalized NDVI given as (Carlson and

Ripley 1997)

Fg = (NDV Ii −NDV Imin)/(NDV Imax −NDV Imin), (2)

where NDV Ii is the NDVI for the individual pixel i from Eqn. (1), NDV Imin

is the NDVI of bare soil and NDV Imax is the NDVI of full vegetation cover.

NDV Imin and NDV Imax are constant global values. This value is used to

monitor the spatial dynamics of greenness, especially in dense vegetation

cover (Liang, 2004). Gutman and Ignatov (1998) suggested values of 0.04

and 0.52, while Carlson and Ripley (1997) suggested 0.2 and 0.7 as the typ-

ical minimum and maximum values, respectively. Furthermore, the Fg has

been extended to model the fractional cover through Fc = F 2
g , that is the

proportion of the ground area covered by the projection of plant leaves and

stems (Hatfield et al., 2004).

The use of Fg is synonymous with the vegetation condition index (VCI)

of Kogan (1997), given by

V CIijk = (NDV Iijk −NDV Ii,min)/(NDV Ii,max −NDV Ii,min), (3)

except that the VCI uses local minimum and maximum NDVI values. The

VCI specifically assesses the temporal variability of the NDVI signal while

minimizing the first-order effects of spatially variable environmental factors
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like climate, soil and, vegetation types and topography (Kogan, 1997). In

Eqn. (3) the NDV Ii,min and NDV Ii,max are the multi-year minimum and

maximum NDVI values, respectively, for NDVI image pixel i, while j and

k represent a given month and year, respectively. NDVI is also commonly

used as the standardized vegetation index (SVI), first proposed by Liu and

Negron-Juarez (2001), i.e.,

SV Iijk = (NDV Iijk −NDV Iij,min)/σNDV Iij, (4)

where σNDV Iij is the standard deviation of NDVI for pixel i in month jThis

is statistically a Z- score of observed NDVI based on multi-year mean NDVI

values and their standard deviations on a chosen accumulation time scale.

Bayarjargal et al. (2006) suggest that this time scale can be weekly, biweekly,

monthly or seasonal as appropriate, depending upon the required precision

and data availability. This is synonymous with the standard precipitation

index of McKee et al. (1993). Also in use is the NDVI anomaly (NDVIA),

the departure of NDVI from its long-term (multi-year) mean for a chosen

accumulation period, expressed as (Anyamba et al., 2001)

NDV IAijk = NDV Iij,mean −NDV Iijk, (5)

where NDV Iijk is the monthly NDVI for pixel i in month j for year k,

NDV Iij,mean is the multi-year average NDVI for pixel i in month j.

3.2. Data Processing

The GIMMS NDVI images have the pixel values (NDVI values) factored

by 10000 to enhance visualization without loss of information, therefore the
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values range between -10000(-1) to 10000 (1). For the Lake Victoria catch-

ment, pixels with NDVI values of less than zero were identified to be wetlands,

marsh lands, beaches, or muddy waters. Such land cover is quite common

within the lake catchment area, since transition zones between the lake and

dry land exist. These bad/low pixels were all masked out, including open

water (-10000), as well as missing values (-2006). This was necessary because

any water to water-logged land cover will tend to have saturated constant

NDVI values whose pixel values will distort the mean. The analyses were re-

stricted to the Lake Victoria catchment basin using a Catchments Area Mask

(CAM), which was digitized from the general outline of the catchment (Fig.

1) and projected onto the NDVI image coordinate systems (Albers Conical

Equal Area). Its area outside the lake, but within the catchment, was ras-

terized at a matching 8 km resolution. GIS map algebra tools were used

(Fig. 4) for masking out the bad pixels from each of the NDVI bimonthly

images (X). Furthermore, using GIS overlay tools, the resulting Images (Y)

were further area masked by the CAM to obtain the required NDVI images

CAM(Y). Since the catchment lies within the equatorial belt and is therefore

sufficiently vegetated, the masking inherently also removes insufficiently veg-

etated pixels, thereby improving the accuracy of NDVI modelling (see e.g.,

Kastens et al., 2005).

FIGURE 4

Within a given month of any year, there were bimonthly images with

approximately the same NDVI statistics, and one could choose either image.

However, in this study, a monthly mean NDVI value was computed from the
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two images to formulate the primary NDVI values used (Fig. 4). This was

done for all studied months. Entire catchment mean NDVI values rather

than the individual pixel values were considered. Even then, within each of

the images, the distributions of NDVI values are approximately normal, thus

suggesting heterogeneous vegetation cover in the catchment, despite the low

spatial resolution (i.e., monthly).

3.3. Analysis Methods

The global and internal structures of the datasets were explored and found

to be useful for designing the NDVI data derivation algorithms, and in de-

veloping assumptions used in the data analysis. Various NDVI/water level

co-variability trends were assessed. NDVI as a predictor variable was anal-

ysed both in its raw form (Eqn. 1) and its transformed forms (drought

metrics, Eqns. 3-5). Correlation analyses were then performed to identify

the extent of the association between the water levels and NDVI. Correlation

coefficient trends were also analysed for the identification of the possible uses

and weaknesses of NDVI in the depiction of natural water variability. Visu-

alization of the quantitative and spatial trends of NDVI, and a refinement of

the identified relationships was achieved using GIS map algebra and overlay

tools.

The data were analysed on the basis of a calendar rather than a vegetative

year, which starts the month following that one with the minimum NDVI.

This is because for the Lake Victoria basin, the driest months can be any

of the months in the two dry seasons, yet a minimum NDVI only occurs in

August in any of the years (see Fig. 6b). For seasonal analysis, the data were

classified over three monthly intervals with the onset of the first dry season
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being December of the preceding year, and ending in February. This is based

on the known local pattern of rainfall in the Victoria Basin as indicated in

Fig. 6a. The seasons are typically: Dec-Feb (dry), Mar-May (very wet), Jun-

Aug (dry) and Sep-Nov (wet). This pattern has been used in many studies,

for example, an analysis of drought severity by Awange et al. (2007).

Exploratory Data Analysis : The water levels tend to be normaly dis-

tributed. To determine years that require further analysis, the severity in

the variability of water levels over annual time scales was depicted using the

percentage of normal (PN) (Eqn. 8). The monthly mean levels (XM) were

averaged to give annual mean levels (XA) for each of the years (Eqn. 6).

These were then used to compute the long-term annual mean (X30=11.38)

for a thirty year period (Eqn. 7). The PN values from Eqn. 8 provide the

ranking of the years in terms of water level drops (Fig. 5). The normal water

level is considered to be X30 with a PN value of 100%. Above this are years

of greater than normal water levels, while below are those reflecting water

stress. Annual and long-term means are given as

XA =
∑

XM/12, (6)

and

X30 =
∑

XA/N, (7)

where N is the number of years considered, in this case 30 years (1976-2005).

Using Eqns. 6 and 7, one obtains the percentage of normal (PN) as

PN = (XA/X30) × 100. (8)

FIGURE 5
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It can be seen from Fig. 5 that the water levels were above or near normal

for most years and consistently so between 1976 and 1984. However, they are

almost consistently below the normal between 1992-2005, except for 1998 and

1999. In the East African region, the El Ñino-Southern Oscillation (ENSO)

rains are known to have started in late October 1997, but intensified during

most of 1998. In early 1999, only moderately high rainfall was experienced as

an extended effect of the ENSO rains. Thus, the observed high water levels

in 1999 appear to be a result of the higher precipitation in 1998. It is then

seen that the water level sharply fell between 2002 and 2005.

The annual variation of these variables for a sample of years (two high

precipitation years 1991, 1999, one normal 2003, and one low 1994) were

compared using their mean monthly values as shown in Fig. 6a, 6b and 6c.

To compare the water level variability with NDVI, PN values for NDVI were

compared with corresponding PN values for water levels for the common

years 1987-2003 (Fig. 6d).

FIGURE 6

Figures 6a and 6b suggest a seasonal response of NDVI to precipitation.

Using the monthly means, the correlation coefficients (r) between NDVI and

precipitation for 1991, 1994 and 2003 with no time lag are 0.39, 0.78 and

0.19, respectively. With rainfall proceeding the NDVI by one-month (i.e.,

one-month NDVI lag), on average, higher values of r were obtained, with r

equal to 0.45, 0.55 and 0.37, respectively. However, with a two-months lag,

this association is almost non existent, with r values of 0.27, 0.07 and 0.03,

respectively. It can also be seen that the 2003 precipitation is much lower
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relative to 1991, 1994 and 1999 (Fig. 6a). The significant drop in r values

for 1994 when considering time lags is due to the relatively much higher

rainfall resulting in an NDVI lag that does not affect the correlation values.

This leads to the proposal that considering time lags is only appropriate for

moderate to drought years.

Hence, as expected, there appears to be a good localized association be-

tween rainfall and NDVI in the Lake Victoria catchment when one considers

a one-month time lag, i.e., when rainfall of the preceding month is compared

with the NDVI of the current month. There is also the possibility of a direct

correspondence between the maximum rainfall and maximum NDVI occur-

rences in any of the years. However, there is a month difference between an

occurrence of minimum rainfall (Sept) and minimum NDVI (Aug). This may

be because NDVI is very sensitive to any slight reduction in rainfall.

Figure 6c shows that within a given year, the lake’s monthly mean water

levels vary slightly, as indicated by the amplitudes. This is in contrast to

the monthly mean NDVI, which shows comparatively larger variations in its

small values (Fig. 6b). The smaller gradients in Fig. 6c compared to the

sharper ones in Fig. 6b are a further indication of the sensitivity of NDVI to

precipitation, as opposed to the delayed response of water levels to surface

run off from the catchment. The water levels are maximum in May-June

following the March-April-May rainfall season (e.g., Awange et al. 2007),

whereas maximum rainfall and NDVI are in April-May. Again, there is no

direct correspondence between the minimum water level, which is generally

between Oct-Dec, and the minimum rainfall or NDVI (Aug-Sept). Overall,

these observations seem to indicate that within a year, NDVI responds faster
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to weather changes than water levels.

The comparison of PN values computed from Eqn. 8 (Fig. 6d) shows that

over annual time scales, NDVI may be less sensitive to weather patterns than

water levels, whose PN trend is more sinusoidal than NDVI. Their sinusoidal

curves appear to be similar in configuration but with opposite gradients.

However, there is almost no association (r=0.11) between the annual mean

NDVI and annual mean water levels. Considering annual mean water levels

lagging annual mean NDVI by one year, there is still a poor correlation (r=-

0.26), which increases to -0.29 for a two year lag. With NDVI lagging the

water levels, there is only a very small association (r= -0.23).

Co-variability trend analyses were then performed, firstly using NDVI in

its primary ‘raw’ form and water levels; and then using the NDVI derived

drought metrics. The metrics are the standardized or normalized NDVI

(Eqn. 4). Data anomalies and temporal differences were also used. The

annually integrated NDVI (AINDVI) trend (i.e., the sum of mean monthly

NDVI in a given year) was derived for use as a proxy indicator of precipitation

patterns. An attempt was made to refine the sensitivity of the NDVI/water

level covariability trend based on a suggested threshold AINDVI.

AINDVI Image Analysis : To interpret the AINDVI spatial trend, sample

AINDVI images for the years 1988, 1992, 1996, 1997, 1998 and 2003, which

are typically representative of the inter-annual precipitation patterns were

extracted. Figure 7a shows the distribution of NDVI for a sample high pre-

cipitation year (1988) and a drought year (1997). Just like the primary source

NDVI images, the distribution of AINDVI within the pixels is typically nor-

mal, reaffirming the heterogeneous vegetation at 8 km spatial resolution. It
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appears to emphasize that due to the low spatial resolution of the GIMMS

NDVI, no large distinct areas of homogenous vegetation cover that would

affect the study results can be identified.

Iterative process: Improving the NDVI /water level sensitivity using the

AINDVI Spatial Pattern: The North-Western and North-Eastern parts of

the lake catchment were found to have higher AINDVI. Considering that the

water level/NDVI relationship is very sensitive to small changes in AINDVI

(precipitation), while ANDVI still tends to have an upper limit for the case

of high correlations, the NDVI images were further masked. The local upper

threshold AINDVI was obtained by comparing the local AINDVI variability

curve with the observed NDVI /water level r values. To improve on the asso-

ciation, image areas with AINDVI higher than the upper threshold, here set

to 6.4, were masked out to provide refined CAM(Y) images (Fig. 7b). With

the exception of 1991, 1996 and 1998 (Fig. 8a), the local upper threshold

AINDVI for obtaining good correlations (r > 0.5) is about 6.46 (see Fig. 8c).

This further masking was based on the 1988 AINDVI image which had the

highest AINDVI in the dataset (see Fig. 8c). It provided a refined CAM as

the catchment area with AINDVI pixel values less than 6.4 and masked the

NDVI pixels that had a high probability of having values greater than the

upper threshold. Repetitive masking of higher outlier AINDVI pixels was

carried out as outlined in Fig. 7c.

FIGURE 7
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4. Results and Discussions

Raw NDVI and water level covariability : The strength of association be-

tween water level and raw NDVI variability was assessed based on temporal

lags. Zero, one and two-months lags were used with NDVI lagging the water

levels (Table 1, Fig. 8a). For a given year, the one-month lag, for exam-

ple, means that the mean NDVI of December was associated with the mean

water level of the following January. Within a year there is generally a low

association between the monthly mean NDVI and the corresponding monthly

mean water levels. However, with NDVI lagging the water levels by one or

two-months, higher correlations were obtained, except for the years 1988 and

1997 for the two-months lag. The year 1988 does not indicate any association

between its NDVI and water level at all, while for 1997, contradictory results

are shown with very low association for the two-months lag, but good associ-

ations for the zero and one-month lags are realized. However, there were two

extreme weather patterns in 1997, with drought occurring throughout much

of the year, with exceptionally high ENSO rainfall from October onwards

(FAO, 1998). The observed low correlations in 1998 appear to be indicative

of the peak of heavy ENSO rains.

The reverse was also tested, i.e., water levels lagging NDVI by one month

(Fig. 8b). The hypothesis was that current rainfall can only be reflected in

NDVI as cumulated moisture over time, but it should be directly observable

in water levels as a summation of direct rainfall over the lake surface and

surface run off. This may be false because relatively low correlations (Fig.

8b) were obtained, especially when compared to those in Fig. 8a.

On average, when the NDVI of the preceding month is associated with
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Table 2: Correlations between NDVI and water levels for the lags of zero, one, and two

months.

Year 0-lag 1-month lag 2-months lag

1987 -0.08

1988 -0.05 -0.25 -0.40

1989 0.52 0.74 0.68

1990 0.18 0.45 0.59

1991 0.07 0.33 0.33

1992 0.18 0.55 0.48

1993 0.63 0.88 0.98

1994 0.44 0.68 0.60

1995 0.28 0.42 0.45

1996 -0.32 0.12 0.45

1997 0.88 0.63 -0.19

1998 -0.01 0.23 0.54

1999 0.54 0.81 0.62

2000 0.65 0.89 0.76

2001 0.57 0.81 0.66

2002 0.50 0.78 0.67

2003 0.37 0.54 0.38
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water levels of the current month (one-month lag), better correlations were

obtained (average r = 0.54) than for a two-months lag (average r = 0.49). In

addition, we calculated long-term monthly means of NDVI and water levels

across the study years. Their correlation analysis appeared to confirm that

one-month lag (r=0.81) is better than no lag (r=0.47 ) or two-months lag

(r=0.73) for modelling the predictability of water levels from NDVI.

Use of AINDVI variability trend : To explain the observed variations in

Fig. 8a, the annually integrated NDVI (AINDVI) was computed as the sum

of the monthly mean NDVI for each of the years (Fig. 8c). Figures 8a and 8c

indicate that with the exception of 1997 (two-months lag), at low AINDVI,

the r values tend to be higher. When the AINDVI was analysed against the

r values of Fig. 8a, good negative correlations were obtained for zero month

(r= -0.59) and one-month lags (r=-0.50), but poor correlation (r =-0.01) for

the two-months lag. The later is possibly diluted by the outlier character of

1997. This observation equally applies when Fig. 8b is compared to Fig. 8c.

The range of variability of AINDVI is quite small (6.1 - 6.6) as indicated

in Fig. 8c, however, this small variation still produces marked differences

in the NDVI/ water level association observed in Fig. 8a. This means that

the use of NDVI in the depiction of water levels for a given year is very

sensitive to the AINDVI and therefore to the annual precipitation. The

good positive correlations at lower precipitation (low AINDVI, e.g., Figs. 8a

and 8c) indicate that both the water levels and NDVI are not only sensitive

to low precipitation, but they respond to it more than to excessive rainfall.

Even then, NDVI responds to a reduction in precipitation much faster than

the water levels. This explains the better correlations at the one-month to
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two-months’ lags.

For higher annual precipitation, there are weaker associations between

NDVI and water levels. A case in point is 1998, owing to the ENSO rains.

Although, this was the case in 1998, one would expect that there was much

more rainfall in 1988, 1989, 1991, 1995, and 1996 as inferred from their higher

AINDVI. However, NDVI saturates at higher precipitation, as seen in 1998.

High NDVI is associated with sufficient soil moisture content rather than

total water in the system which, when in excess, causes water logging and

subsequently stagnation of photosynthetic activity. Therefore, these years

appear to have had optimum moisture rather than excessive rainfall. In

addition, the commissioning of the Kiira dam does not appear to be the

cause of the poor associations in 1996, but rather it is the relatively high

rainfall that was just enough to lead to higher AINDVI values than in 1998.

One would also expect poorer correlations in 1999 than in 1998 as sug-

gested by the higher AINDVI in 1999, but the opposite is observed. This is

because the ENSO rains peaked in 1998, and continued only to the beginning

of 1999. Therefore, there was no NDVI saturation in 1999, but rather the

moisture delivered at the start of the year and the moderate rainfall there-

after appears to have sustained the vegetation vigour throughout most of the

year. Hence, the higher AINDVI values in 1999 (Fig. 8c) than in 1998, while

still producing higher r values (Fig. 8a).

Generally, poor correlations were obtained when water levels were lagged

behind NDVI in the analyses (Fig. 8b). This enhances the argument that

NDVI responds more sensitively to weather patterns than do water levels.

In addition, NDVI responds to cumulative moisture (rainfall) whereas the
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Table 3: Refined correlations following the suggested iterative process (Fig. 7c).

Refined % Change Refined % Change

AINDVI AINDVI AINDVI r r r

1988 6.6 5.62 15 -0.25 -0.34 36

1991 6.39 5.62 12 0.33 0.32 3

1996 6.51 5.54 15 0.12 0.2 67

1998 6.42 5.62 12 0.23 0.37 61

Lake Victoria water level only instantaneously responds to rainfall, with a

time delay in its response to runoff. If the cumulative effect of rainfall in

the specific days were to be reflected in the monthly mean water levels,

the water levels would have good correlations with the NDVI of the next

month(s) (perhaps at even no lag), and also at relatively higher, but non-

NDVI saturating amounts of rainfall (e.g., 1996). This in essence would agree

with the observations of Nicholson et al. (1990), that rainfall (and therefore

water levels) should precede NDVI for better associations. These arguments

seem to explain the outlier characteristics of 1988 and 1996, which show no

saturation in NDVI (Fig. 8c), but also display low correlations (Fig. 8a).

The sensitivity NDVI /water level association to the AINDVI spatial pat-

tern: The AINDVI refined CAM was used on a sample of CAM(Y) NDVI

images for 1988, 1991, 1996 and 1998, which displays a correlation or AINDVI

greater than or equal to the upper threshold AINDVI of 6.4 (e.g., 1991). The

results are shown in Table 3. In essence, to achieve better models for depict-

ing lake water levels from catchment NDVI, we applied the proposed iterative

approach (Fig. 7c).
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FIGURE 8

The variability in the NDVI/water level relationship is well explained

by the AINDVI, which is sensitive to changes in precipitation (AINDVI).

It was found that masking out NDVI pixels with a higher than the thresh-

old AINDVI value improved the ability of NDVI to depict the water levels,

especially in drought conditions. When NDVI pixels with higher than the

suggested threshold AINDVI were masked out, the suggested iterative pro-

cess in Fig. 7c improved the correlations by more than 60% for 1996 and

1998 (Table 3). For example, for 1996 there is a 15% reduction in AINDVI

leading to a 67% improvement in the correlation coefficient. However, there

is no proportionality in the changes. In 1991 and 1998, there was a 12%

reduction in the AINDVI, but the change in r for 1991 is almost negligible,

with a 3% reduction compared to a 61% increase for 1998. This appears to be

because the 1991 AINDVI of 6.39 is only slightly below the 6.4. Even then,

the results for 1991 seem to confirm the existence of a localized threshold

AINDVI.

One month was identified as the most appropriate time frame for lagging

NDVI behind water levels, as shown in Fig. 8a. Therefore, the following

analyses are restricted to further understanding the applicability of the one-

month lag using NDVI drought metrics

Using the standardised vegetation index (SVI): The SVI (Fig. 8d) was

computed using Eqn. 4, assuming a normal distribution of these variables.

The standardisation yields the SVI when the input is NDVI. The correlations

between SVI and water levels were very low and yet the fluctuation was
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high. SVI was not found to be a useful direct predictor of water levels.

However, its correlation with the standardized water levels (SWL) shown

in Fig. 8d to some extent follows the same trend as that of Fig. 8a for

the period 1992-2003. In Fig. 8d, the 1998 coefficient indicated in Fig. 8a

is attenuated relative to those of 1988 and 1996 that have been amplified.

This suggests that the SVI and SWL relationship has the ability to reveal

higher than normal rainfall events. For example, in comparison to Fig. 8a,

1998 and 1999 in Fig. 8d are both attenuated proportionately to excess

rainfall. The ENSO rains that peaked in 1998 continued to the early months

of 1999. Therefore, whereas 1988 and 1996 had lower correlations compared

to 1998 and 1999, they did not have higher than normal rainfall, which is a

requirement for their optimum NDVI. This seems to support the argument

for their relatively higher AINDVI (Fig. 7b). Similarly, abnormal rainfall

patterns, and therefore NDVI patterns, appear to have occurred in the years

1989-1992 and 1997. In Fig. 8a, these have good positive correlations, but

negative correlations in Fig. 8d. This does not happen for the other years,

that similarly show positive correlations in Fig. 8a.

Vegetation condition index (VCI): The aggregated VCI was computed us-

ing Eqn. 9, which is synonymous with Eqn. 3, except that monthly mean

NDVI was used instead of the pixel values, and the multi-year minimum and

maximum NDVI were identified as 0 and 0.999, respectively. These values

signify the existence of both bare soils and extremely vigorous vegetation

cover types in the catchment. For the Lake Victoria catchment, the VCI is

equal to the NDVI (Eqn. 9). Thus, the VCI analyses, results, and inter-

pretations are not different from those of raw NDVI. The aggregated VCI is
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computed as

V CI = NDV I/0.999. (9)

Since the functioning of the VCI is similar to that of the green vege-

tation fraction (Fg) in Eqn. (2), its global minimum and maximum NDVI

values were used to compute two sets of Fg using 0.04 and 0.52 (Gutman

and Ignatov, 1998) and 0.2 and 0.7 (Carlson and Ripley, 1997), respectively.

However, more than 50% of the mean monthly NDVI values are greater than

0.52. Thus, for the Gutman and Ignatov (1998) values, more than 50% of

the obtained Fg values were greater than unity. Within the context of the

fractional cover Fc = F 2
g , these values were unrealistic. However, the Carlson

and Ripley (1997) values fitted the NDVI dataset and provided a correlation

pattern shown in Fig. 9a, which is similar to Fig. 6d. Thus, like the VCI,

the analyses and use of the Fg give results that are also exactly the same as

those of the raw NDVI, with only a scaling effect on the NDVI values.

Use of NDVI Anomaly (NDVIA): The NDVI Anomaly (NDVIA) in Eqn.

(5) was used firstly with the raw water levels and then with similarly com-

puted water level anomalies. In both cases, the NDVIA lagged the water

levels by one-month. The NDVIA has a weak ability to depict the water

levels as indicated by its generally poor and very noisy trend in Fig. 9b.

The analysis of both anomalies resulted in a pattern (Fig. 9c) similar to

that found using the SVI (Fig. 8d) and therefore other relatable patterns

(Fig. 8a). Like the SVI, the NDVIA equally has the ability to attenuate the

NDVI/water level co-variability as affected by higher or lower than expected

rainfall events (Fig. 9c).

In addition, the annual mean water levels anomaly (AMWLA) and annual

27



mean NDVIA (AMNDVIA) were computed as the means of their respective

monthly anomalies for each of the study years. Their variabilities are shown

in Figs. 9d and 9e respectively. Unlike the AMWLA (Fig. 9d), the variability

in AMNDVIA, shown in Fig. 9e, does not explain any of the NDVI and water

level trends.

FIGURE 9

Combined use of anomalies, SVI/SWL co-variability and AINDVI : The

AMWLA inter-annual variability (Fig. 9d) generally followed the correlation

variability in Fig. 8a, especially from 1991 onwards, with some discrepancies,

namely that it only peaked in 1994, whereas in Fig. 8a, the peaks were in

1993 and 2000. Even then, it correctly does so in the years 1991-1997, but

falls short of the same in the other years, for example, 1998-2003, that are

very much attenuated. Like the SVI, the anomaly trend appears to have

the ability to distinguish years with very anomalous water levels, despite a

strong correlation with NDVI. For example, 1998 is a known ENSO year and

it is very well depicted as being more anomalous than 1996, which on the

the other hand shows a lower correlation in Fig. 8a than 1998.

The trend also clearly isolates 1989, 1991, 1998, and 1999 as having higher

than normal water levels. Thus the hypothesis of depicting higher than

normal rainfall events using the SVI/SWL trend indicated for 1989 -1992 and

1997-1999 as earlier suggested may be valid. A typical example is 1997, where

there was drought for most of the year (FAO, 1998), with lower than normal

water levels (Figs. 5 and 9d) and the lowest AINDVI (Fig. 8c). However,

Fig. 8d does not indicate it as being a very dry year. This is because of
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the short occurrence of extremely heavy ENSO rainfall from November 1997.

Thus, this mixture of severe drought and short heavy rains explains why it is

less attenuated in Fig. 8d than 1989-1992, 1998 and 1999, which were much

wetter as inferred from their higher AINDVI values (Fig. 8c).

The importance of the 1997 trend can be stressed by comparing it with

1994. The AINDVI for 1997 is much lower (Fig. 8c) and has on average

higher water levels (Fig. 5) with a lower positive anomaly (Fig. 9d), again

a result of the short but heavy ENSO rains that contributed to its higher

average water level compared to 1994. However, there was long dry spell in

1997 that severely reduced its vegetation vigour (Fig. 8c). This appears to

confirm the fact that NDVI is more sensitive to drought than are the water

levels. If the precipitation in 1997 was sufficiently low throughout the year,

as it appears to have been in 1994 which has a higher AINDVI yet lower

water levels, the 1997 AINDVI would not be very anomalous in contrast to

its water levels (Fig. 6d). This confirms the existence of a mixture of long

severe drought and short extremely heavy rainfall during 1997.

These observations point to the use of the SVI/SWL association in con-

junction with the AINDVI and the AMWLA in isolating years of higher than

expected rainfall, regardless of there being no saturation in NDVI for a given

year, e.g., 1989-1992, and for cases where a year may in fact be classified as

a drought year, e.g., 1997. This also emphasizes the fact that both the water

levels and the NDVI are more sensitive to drought than excessive rainfall.

This is explained by the good association that is indicated for 1997 (Fig. 8a)

in contrast to some of the wetter years, e.g., 1990-1992, 1998 and 1999. These

indicate a lower association between the NDVI and water levels, therefore,
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any effort towards a practical use of NDVI/water level correlations may be

fruitless.

It also seems that the anomaly trend has the ability to highly attenuate

years of possible anthropogenic influence on water level variation (2000- on-

wards). This hypothesis may be true because the years 1992-1997, which are

also known to depart from normal (Fig. 9d), try to maintain their configu-

ration of Fig. 8a and yet the years from 2000 are highly attenuated in Fig.

9d.

Use of differenced image NDVI : Inter-monthly NDVI differences in water

levels and in NDVI were analysed (Fig. 10). The differences in NDVI and in

water levels from month to month were computed for each of the years (note,

the January differences were computed as differences from December of the

preceding year). Their correlations were computed at zero and one-month

lags. These are, on average, reasonably high, but noisy. They appear to

mimic their corresponding patterns in Fig. 8a, especially for the later years,

i.e., 1996 onwards (Fig. 10a).

As shown in Fig. 10a, both lags are very noisy, but on average provide

almost the same good correlations. Their average r values are 0.53 and 0.49

for the zero and one-month lag, respectively. Thus, the observed patterns in

1996 and 1998 can still be explained in terms of higher rainfall as depicted

by the AINDVI (Fig. 8c).

The use of one-month lag in Fig. 10a is well explained by the AINDVI

(r=-0.59). This is unlike the zero lag which, despite having a higher average

r value, has a correlation with AINDVI of -0.46. However, these apparent

higher associations may only be so because 1988 attained positive correlations
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of 0.65 and 0.23 for the zero and one-month lags, respectively (Fig. 10a).

Despite the 1988 (r=-0.25) value, generally, the co-variability of the raw

NDVI and water levels at one-month lag shown in Fig. 8a (average r=0.54)

is still better than from the differences and is still well explained by the

AINDVI (r=-0.50).

Example of regression fits : Regression fits for NDVI lagging water levels

using examples of moderate precipitation years, 1993 and 2000, show a good

linear trend. Similarly, long-term monthly means of the two datasets com-

puted for the full study period show that up to 80% (see the coefficient of

determination R2 values) of the association between the NDVI/water levels

can be explained by simple linear fits (Figs. 10b, 10c and 10d).

FIGURE 10

5. Conclusions

This study used aggregated NDVI values and has demonstrated that for

the Lake Victoria catchment basin:

1. NDVI can be used in depicting the expected natural trends of its water

levels.

2. NDVI can identify suspicious, possibly anthropogenic variations by iso-

lating drought episodes. This is especially so when considering a one-

month temporal lag of water level with respect to NDVI. It appears

to be mostly applicable in normal rainfall and drought years, during

which time NDVI is more sensitive to low precipitation than the water

levels are.
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3. The use of NDVI can be iteratively improved upon by considering the

catchment specific threshold annually integrated NDVI (AINDVI). As a

drought metric, NDVI governs its suggested use by acting as a surrogate

for identifying high rainfall years when it cannot be appropriately used.

It can then be used to decipher abnormal precipitation trends by the

use of the water level and NDVI anomalies, namely the AINDVI, SVI

and AMWLA trends. We thus propose this iterative approach.

These conclusions may be useful for developing early warning mechanisms

for Lake Victoria water management. Indeed, one should foresake using

NDVI in years when the predicted AINDVI is greater than the suggested

local threshold. These are years with plenty of rainfall, hence there would be

no stress on the lake’s waters, and yet, as explained, the NDVI /water level

relationships do not generally hold. These mechanisms may function well in

advance, given that there are possibilities of forecasting NDVI and therefore

AINDVI. However, further analysis is recommended using high resolution

imagery and undertaking analyses using pixel-specific NDVI, rather than

the aggregate catchment NDVI.
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Owenfall/Kiira
HP Dams

Figure 1: The Lake Victoria Catchment Basin with the Owen Falls hydroelectric dam

depicting the position of the Jinja tide gauge station. Source: World Resources Institute

(2006).
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Figure 2: Examples of land use (i.e., cattle farming) and vegetation cover (i.e., shrubs) in

the Lake Victoria catchment area.

42



Figure 3: A comparison of water gauge readings, Jinja station, Uganda (near Lake Victo-

ria’s outlet), and satellite altimetry water levels (Topex/Poseidon and Jason-1)).
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Figure 4: Processing structure chart for the GIMMS NDVI images.

44



Figure 5: Water level departures from normal (100%), 1976-2005 (see Eqn. 8). The

dashed-dotted lines show a polynomial fit to the data. In general, a declining trend is

noticed.
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Figure 6: Variation of monthly means; (a) rainfall (b) NDVI (c) water levels from the tide

gauge data, and (d) a plot of water levels and NDVI departures from normal (PN) for the

period 1987-2003.
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(a) NDVI lagging water levels, zero, one and two months lags.

(d) SVI lagging standardised WL, one month Lag.(c) Interannual Variation of AINDVI in the catchment.
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Figure 8: Correlation Variability; (a) NDVI lagging water levels by zero, one and two-

months, (b) water levels lagging NDVI by one-month (c) interannual variation of AINDVI

in the catchment (with the exception of 1991, 1996 and 1998 (Fig. 8a), the local upper

threshold AINDVI for obtaining good correlations (r > 0.5) is about 6.46), and (d) SVI

lagging standardised WL (water levels), one-month Lag.
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(a) Fg lagging water levels, one month lag.

(e) Variability of annual mean NDVIA.

(c) NDVIA /WL Anomalies

(b) NDVIA /WL.
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Figure 9: Correlation variability; (a) Fg lagging water levels, one-month lag, (b) NDVIA

/WL (water levels), (c) NDVIA /WL Anomalies, (d) variability of AMWLA, and (e)

variability of annual mean NDVIA.
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(a) NDVI differences lagging WL differences, zero and one month lag.

(d) Long term NDVI lagging long term water levels, one month lag.
(c) NDVI lagging water levels, one month lag, 2000.

(b) NDVI lagging water levels, one month lag, 1993.
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Figure 10: Correlation Variability; (a) NDVI differences lagging WL differences at zero

and one-month lag, (b) NDVI lagging water levels at one-month lag for 1993 (c) NDVI

lagging water levels at one-month lag for 2000, and (d) long term NDVI lagging long-term

water levels with a one-month lag.
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