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Abstract   1 

Influence of low frequency global Sea Surface Temperatures (SSTs) modes on decadal 2 

rainfall over Eastern Africa region is investigated. Fore-knowledge of rainfall distribution at 3 

decadal time scale in specific zones is critical for planning purposes. Both rainfall and SST 4 

data that covers a period of 1950 to 2008 were subjected to a ‘low-pass filter’ in order to 5 

suppress the high frequency oscillations. VARIMAX-Rotated Principal Component Analysis 6 

(RPCA) was employed to delineate the region into decadal rainfall zones while Singular 7 

Value Decomposition (SVD) techniques was used to examine potential linkages of these 8 

zones to various areas of the tropical global oceans. Ten-year distinct decadal signals, 9 

significant at 95% confidence level, are dominant when observed in-situ rainfall time series 10 

are subjected to spectral analysis. The presence of variability at El Niño Southern 11 

Oscillation (ENSO)-related timescales, combined with influences in the 10-12 year and 16-12 

20 year bands were also prevalent. Nine and seven homogeneous decadal rainfall zones for 13 

long rainfall season i.e. March-May (MAM) and the short rainfall season i.e. October-14 

December (OND), respectively, are delineated. The third season of June – August (JJA), 15 

which is mainly experienced in western and Coastal sub-regions had eight homogenous 16 

zones delineated. The forcing of decadal rainfall in the region is linked the equatorial 17 

central Pacific Ocean, the tropical and South Atlantic Oceans, and the Southwest Indian 18 

Ocean. The high variability of these modes highlighted the significant roles of all the global 19 

oceans in forcing decadal rainfall variability over the region.  20 
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1. Introduction  1 

Spatial and temporal variability of rainfall offers considerable challenges for assessing and 2 

understanding climate change and variability over Eastern Africa region. The region is 3 

already witnessing dire consequences of erratic climatic conditions that are likely to be 4 

associated with regional climate change (IPCC 2007). The recurrences of floods and 5 

droughts have been associated with many socio-economic miseries. This is a region with 6 

serious food insecurity and resources-based conflicts. IPCC (2007) report provided clear 7 

evidences of climate change in the region with increased risks of climate extremes. 8 

Unfortunately, the economies and livelihoods of the majority of the countries in the region 9 

still rely on rain dependent systems. Serious food insecurity, famines, and poverty among 10 

other miseries, are prevalent in the region. The rainfall pattern over the region is highly 11 

variable both in space and time because of the complexity of regional climates and the 12 

influence of regional geographic features, such as semi-arid lands, land cover variations, 13 

mountain chains, large lakes, land-sea contrasts, and the sea surface temperature (SST) 14 

changes of the surrounding Indian Ocean. Such diversity influences the distribution and 15 

statistics of rainfall extremes at all scales. This in turn may have a much greater impact on 16 

natural systems and human activities than mean precipitation (Parry et al., 2007).   17 

 18 

Atmospheric motions are dominated by the gradients in temperature and the associated 19 

pressure gradients (Barry and Chorley 1968; Nyakwada 2009). The use of SST gradients 20 

can improve the representation of the driving forces of the general circulation. The SST 21 

gradients influence wind currents and the associated moisture transport (Lindzen and 22 

Nigam 1987).  Some of the SST gradients that have been documented to influence climate 23 

of the region and beyond include the Zonal SST gradients in the Indian Ocean associated 24 

with the Indian Ocean Dipole (IOD) (Saji et al 1999, Webster et al. 1999, Yu and Riennecker 25 

2000, Clark et al 2003, Behera et al 2005, Owiti 2005, Singhrattna et al 2005); the zonal SST 26 

gradient in the Pacific (Bjerkness 1969; Nyakwada 2009) and the zonal and meridional SST 27 

gradients in the Atlantic Ocean (Moura and Shukla 1981; Nobre and Shukla 1996; Wang 28 

2002). The meridional and zonal SST gradients are linked through teleconnections with 29 

large-scale atmospheric circulation such as the Walker and Hadley cells (Wang 2002). The 30 

zonal and meridional SST gradients have a strong signature on the climate of the tropical 31 

areas (Lindzen and Nigam 1987; Ward 1998). In the tropics the zonal gradients are 32 

generally smaller than the meridional gradients but are more important in forcing low level 33 

tropical circulation and convergence than the meridional gradients (Lindzen and Nigam 34 

1987). 35 

 36 

There is particular interest in the coming decade, which represents a key planning horizon 37 

for infrastructure upgrades, insurance, energy policy, and business development. Societal 38 

needs for climate information on decadal time scales is continuing to grow in terms of its 39 

potential value and relevance as a driver in sector decision making. However, such 40 

information is currently lacking in the region. Predictions and observationally-based 41 

analyses for decadal climate variability and change are therefore needed. A large timescale 42 

gap, especially the one that goes from one year to about 20 years, exists in climate 43 

predictions (Reason et al., 2006; Smith et al., 2007; IPCC 2007). Long term scale climate 44 

predictions over East African region has not been done with enough precision to 45 
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adequately carry out assessment of impacts of climate anomalies at the sub-regional level. 1 

For interventions and planning purposes, climate information is required on average over 2 

5 to 10 years. Only recently has this received attention of the scientific community despite 3 

the relevance of this timescale to many societal and developmental applications (see e.g. 4 

Smith et al., 2007; Keenlyside et al., 2008; Pohlmann et al., 2009). These scientific and 5 

technical shortcomings in turn act as a major hurdle that limits the ability to design and 6 

justify investment decisions for the development and design of appropriate adaptation 7 

strategies.  8 

 9 

Knowledge on decadal climate variability is popularly emerging as a new direction in 10 

climate science (CLIVAR Vacs, 2007; Meehl and Hibbard, 2007; Seager et al., 2007; Knutson 11 

and Tuleya, 2004; Meehl et al., 2009), especially in light of increased demand for climate 12 

and climate change information. Numerous assessments of climate information user needs 13 

have identified this timescale as being important to infrastructure planners, water resource 14 

managers, and many others (Meehl et al., 2009; Lee et al., 2006; Keenlyside., 2008). Decadal 15 

prediction lies between seasonal/interannual forecasting and longer term climate change 16 

projections, and further focuses on time-evolving regional climate conditions over the next 17 

10-30 years. Perhaps the most striking finding is the linkage of decadal drought frequency 18 

in the Sahel to SST (Nicholson 2000a; L’Hˆote et al., 2002; Zhang and Delworth, 2006). 19 

Other droughts on decadal-timescale, such as the “dust-bowl” in the Southern United States 20 

of America (USA) in the 1930s have been linked to variations in SST (Worster, 1979; 21 

Woodhouse and Overpeck, 1998; Bark, 1978). Nicholson (2000b) showed rainfall time 22 

series for 1901-1994 of three African regions displaying decadal rainfall variations. In 23 

South Africa, and some neighboring areas, an austral summer rainfall signal at near bi-24 

decadal scales has been known for some time (Tyson and Preston-Whyte, 2000). In the 25 

Pacific/Indian Ocean basins, there are strong signals of decadal variability associated with 26 

the Pacific Decadal Oscillation (PDO) with statistical links to the climate of the surrounding 27 

regions. For example, during the 20th century, El Niño- like phases of the PDO coincided 28 

with decades in which ENSOs impact on Australia was weak, whereas La Niña- like phases 29 

of the PDO coincided with decades in which ENSOs impact on Australia was strong (Power 30 

et al, 1999).  31 

 32 

Over East Africa region, there is substantial evidence for decadal climate variability in the 33 

observed climate system (Nicholson 2000b; Schreck and Semazzi, 2004; Bowden et al., 34 

2004, Muthama et al., 2008; Omondi et al 2009; Omondi et al., 2012a,b). Decadal rainfall 35 

signals in East Africa have been linked to the Pacific Decadal Oscillation (PDO) (CLIVAR 36 

VACS 2007). Several parts of the region experience strong decadal signal during the short 37 

rains of OND season (Schreck and Semazzi, 2004; Bowden et al., 2004; Omondi et al 2009; 38 

CLIVAR VACS, 2007). Recently, Omondi et al., 2009 provided some evidence of decadal 39 

variability in the interannual patterns of East Africa rainfall. They showed that some 40 

teleconnections were evident between the observed decadal rainfall and SST variability 41 

patterns over parts of the global oceans. They further found correlations between the 42 

rainfall and SSTs but no attempt was made in linking regional homogenous zones to 43 

specific regions of global SSTs. Relatively less attention has been directed at the influence 44 

of low frequency SST signals in forcing decadal rainfall in different sub-regions of East 45 

Africa.  46 
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The focus of the present study therefore, is to extend the work of Omondi et al., 2009 by 1 

delineating the sub-regions of Eastern Africa based on decadal rainfall variability and 2 

investigate how these sub-regions are coupled to low frequency SST signals.  Unlike in 3 

Omondi et al., 2009 where a simple correlation analysis was employed, this study applied the 4 

more sophisticated Singular Value Decomposition (SVD) technique in attempt to link decadal 5 

rainfall to various global basins SSTs. The advantage of adding this step to the analysis is 6 

twofold: 1) It improves the performance of statistical methods with removing highly 7 

correlated observation in each region, which might add unrealistic weights to the zones 8 

with more stations and disturb the leading components towards the maximum variability 9 

of those zones (see e.g., Basalirwa, 1995 ).  2)  It also groups together stations with 10 

common decadal rainfall characteristics into homogeneous zones, which considerably 11 

improves the interpretation of the results. Once the homogeneous regions are identified, 12 

again we investigate both spatial and temporal coupling over a longer period of time 13 

compared the previous work where only temporal variability was considered and over a 14 

relatively shorter period of time.  15 

 16 

This study is organized as follows: A brief discussion of the types of data used in the study 17 

and methods of analysis are present in section 2.  The key results are discussed in section 3, 18 

whereas summary and conclusions are provided in section 4.  19 

2. Data and methods 20 

2.1 Observed climate data 21 

The rain gauge observations network over East Africa is quite sparse. Furthermore, the 22 

available data are also riddled with numerous gaps in both space and time. These 23 

limitations in the quantity and quality of in-situ observations impose substantial 24 

constraints on diagnostic studies of the regional climate (rainfall) variability. The observed 25 

rainfall data used in this study consist of monthly rainfall data (1920-2008) obtained from 26 

the Kenya Meteorological Department (KMD), Tanzania Meteorological Agency (TMA) and 27 

Uganda Meteorological Department (UMD). The in-situ rainfall stations used in this study 28 

are the representative stations for 37 climatological zones used by the three countries in 29 

day-to-day operations (ICPAC 1999). These were earlier computed using PCA analysis and 30 

have been used by many authors in the region. A total of 37, unevenly distributed, gauge 31 

stations over East Africa were available for the analysis.  32 

 33 

The SST data used in this study is from the National Center for Environmental 34 

Prediction/Climate Prediction Center (NCEP/CPC) for the period 1950-2008 which is 35 

distributed under the National Oceanic and Atmospheric Administration (NOAA) / Climate 36 

Diagnostic Center (CDC) Optimum Interpolation (OI) SST Version 2 (OISSTv.2). The data 37 

are on 1.00 x 1.00 grid point resolution and is often known as optimal interpolation (OI) SST 38 

in literature following Reynolds and Smith (1994). The data set is a blend of insitu and 39 

satellite SSTs, but also includes those simulated by sea-ice cover (Reynolds et al., 2002; 40 

Smith and Reynold, 2002). The data adjustment for biases was done using the method 41 

described by Reynolds (1988) and Reynolds and Marsico (1993). Details of this 42 

methodology can be found in Reynolds and Smith (1994). All SST observed data within 43 
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30oS – 30oN are discarded if the value is less than -2oC or greater than 35oC or if the SST 1 

anomaly lies outside ±3.5 times the climatological standard deviation.  2 

SSTs have long memory and therefore have wide usage in most climate prediction models 3 

(Mutemi, 2003; Owiti, 2005; Smith et al., 2007; Smith et al., 2008; Nyakwada, 2009).  4 

Several efforts have been made to improve the quality of SST records due to their value in 5 

climate prediction (Smith and Reynolds, 2004; Smith et al., 2008). Kanamitsu et al., (2002); 6 

Smith and Reynolds, (2002, 2004) and Smith et al., (2008) among other authors, have 7 

discussed the details of these data.  It is important to note that SST data to the south of 300S 8 

may not be of good quality as indicated in the study of Weare (1977) and hence the present 9 

study was restricted between 300S and 300N of the tropical global Oceans.  10 

 11 

We briefly highlight the methodology employed in analysis for the study in the section that 12 

follows. However, in establishing the relationship between rainfall and temperature, a 13 

common window for both data sets is set as 1950-2008. Both data sets were low-pass 14 

filtered using a nine-term binomial coefficient filter or ten years moving average to remove 15 

all fluctuations equal to and less than 10 years. It is also noteworthy that when any time 16 

series is subjected to nine point Gaussian probability curve, four years of data are 17 

truncated from both ends of the series. The graphical presentations these series include the 18 

plotting of the bar charts anomalies obtained when long-term mean decadal rainfall is 19 

subtracted from the filtered record and the ensuing series detrended.   20 

2.2 Spectral Analysis Method 21 

Spectral analysis is a technique for examining the hidden periodicities (cycles or 22 

oscillations) of any time series at certain frequencies. The objective of spectral analysis is to 23 

determine the actual distribution of frequencies in a signal. Spectral analysis has been used 24 

by many authors to examine cyclic variations (e.g. Bloomfield 1976; Wilks 1995, 2006; 25 

Muhati et al., 2007).  26 

 27 

In statistical signal processing, the spectral density, power spectral density (PSD), or 28 

energy spectral density (ESD), is a positive real function of a frequency variable associated 29 

with a stationary stochastic process, or a deterministic function of time. The power spectral 30 

density of a signal can be estimated by a periodogram. A spectral plot refers to a smoothed 31 

version of the periodogram performed to reduce the effect of measurement noise. Raw 32 

periodogram is not a good spectral estimate because of spectral bias and the fact that the 33 

variance at a given frequency does not decrease as the number of samples used in the 34 

computation increases. The variance problem can be reduced by smoothing the 35 

periodogram. Various techniques to reduce spectral bias and variance are the subject of 36 

spectral estimation. The purpose of estimating the spectral density is to detect any 37 

periodicities in the data, by observing peaks at the frequencies corresponding to these 38 

periodicities.  39 

 40 

The spectral analysis density function )(wh  can be expressed as a Fourier transform of 41 

autocovariance function )(rR . Thus  42 
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Where f 2 is the angular frequency and f is the frequency and 1i . In the 1 

normalized power spectrum )(|  , the autocovariance is replaced by autocorrelation, and 2 

takes form  3 


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ri
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


…………………………………………………………….………………………..… (1b) 4 

In order to obtain consistent estimates of )(|  , smoothing functions )(r are used. The 5 

smoothed spectral density function, )(|
1

 may be expressed as )(|(r)|£)(|
1

 . Where 6 

)(r the smoothing is weights or lag windows (Muhati et al., 2007). Examples of lag 7 

windows that are used to smooth the power spectrum are: Truncated Periodogram, 8 

Bartlett, Daniel, Tukey Humming, Tukey Hunning, Parsen and Barklett–Priestley windows 9 

(Bloomfield 1976, Wilks 1995). The most commonly used windows are the Parsen and 10 

Tukey windows (Jenkins and watts, 1968).  11 
 12 

Significance testing of spectral estimates is performed using methods outlined in Minja 13 

(1984) and Koopmans (1995). The upper and lower bounds of a confidence interval 14 

around each spectral estimate were computed using 
2

distribution. In order to set up 15 

confidence interval, it is necessary to determine the equivalent degrees of freedom (edf) for 16 

the new (smoothed) spectral estimates. Prior to smoothing, each periodogram intensity 17 

estimates has 2 df; after smoothing, the estimated new edf will vary depending upon the 18 

width and shape of the smoothing window. For the Daniell window, the edf is easily 19 

determined: it is just 2M, where M is the total width of the window (the number of 20 

frequencies that are included in the weighted average). Details of the computations of 21 

weights and of the edf for other windows can be obtained from Gottman (1981) and 22 

Koopmans (1995).    23 

For a 98% confidence interval (CL), the critical values of 
2

(for this edf) that cut off the 24 

bottom and top 1% are obtained by table lookup in the 
2

distribution. In the formula that 25 

follows, these are denoted 
2

01.
for the bottom 1% cutoff and 

2

99.
for the top 1% cutoff 26 

critical values of
2

. The spectral estimate for which the CL is set up is denoted by  f
i

s , 27 

where f
i
is the specific frequency and  f

i
s  is the estimated power at that frequency. 28 

Thus the upper and lower bounds of a 98% CL for  f
i

s  are given by as: 29 

Lower bound of     2

99.
. f

i
sedfCL  ………………………………………………………………….. (1c) 30 

Upper bound of     2

01.
. f

i
sedfCL  ………………………………………………….………………. (1d) 31 

The width of the CL varies as a function of the size of  f
i

s , and so if  f
i

s  is plotted on a 32 

linear scale a separate CL must be set up for each spectral estimate.  33 

 34 
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Given that the null hypothesis (“white noise”) implies a uniform distribution of power 1 

across frequencies, a line can drawn on the graph of the power spectrum that corresponds 2 

to this mean level of power (i.e., the mean of all the spectral estimates). To test whether a 3 

specific spectral estimate is statistically significant, one can then examine its CL to see 4 

whether it overlaps this mean. Should it not overlap the mean of the spectrum, then this 5 

spectral estimate might be judged to be significantly higher than expected by chance. 6 

However, this approach to significance testing raises a problem of inflated Type I error 7 

(Bloomfield, 1976). If the analyst specifies a very limited number of frequencies a priori 8 

and tests whether the power at these frequencies significantly exceeds the mean level of 9 

power (that would be expected if the series were white noise), this significance testing 10 

procedure may have acceptably low risk of Type I. When the largest peak in a spectrum is 11 

tested in this manner post hoc, then the actual risk of Type I error will be higher than the 12 

normal  level. 13 

Because the CL approach to significance testing does not control for the inflated risk of 14 

Type I error that arises when many spectral estimates are tested post hoc for significance, 15 

the one may wish to take a more conservative approach may instead apply the Fisher test 16 

to the periodogram as a means of assessing significance of periodicity. Alternatively, one 17 

may wish to set up a CL for 99% or 99.9% to reduce the risk of Type I error. 18 

 19 

In this study, we employ spectral analysis technique to detect periodic or quasi-periodic 20 

fluctuations and if the smoothed rainfall record is dominated with ten years cycle.  21 

2.3 VARIMAX-Rotated Principal Component Analysis (RPCA)  22 

Seasonal rainfall patterns over East Africa are known to be highly variable due to the existence 23 

of complex topography and large inland water bodies (Ogallo, 1988; Indeje, 2000; Mutemi, 24 

2003; Nyakwada, 2009, Anyah and Qiu 2012). To prepare a spatially largest possible area for 25 

coherent rainfall having similar characteristics and associations with regional/global circulation 26 

parameters, homogenous zones are delineated. Spatial averages are more representatives of 27 

the large-scale conditions than are data for individual stations (Nicholson 1986). The use of 28 

normalized regionally averaged series reduce two problems inherent in the analysis of 29 

rainfall in the sub-humid, tropical areas namely; the highly diverse means and variabilities 30 

and the randomness of the convective process reflected in individual station totals (Ogallo, 31 

1988; Indeje, 2000). Reduction of regional data and delineation of homogeneous climate 32 

zones is critical in studying mechanisms associated with these modes of variability. 33 

Regionalization and averaging of rainfall over large but homogeneous regions have the 34 

advantages of reducing meteorological noise in the data as well as minimizing the number 35 

of variables  which describe the regional climate variability (Ogallo, 1988; Indeje, 2000; 36 

Mutemi, 2003; Nyakwada, 2009). To effectively provide a better understanding of the 37 

physical processes responsible for decadal climate variability over the region, we employ 38 

VARIMAX-Rotated PCA (RPCA) technique (Indeje, 2000; Mutemi, 2003; Nyakwada, 2009) 39 

to isolate dominant modes of the decadal rainfall variability and cluster analysis on the 40 

rainfall stations network to group them into homogeneous decadal rainfall zones. The 41 

delineation of homogeneous zones is followed by identifying the stations with the largest 42 

correlation with the Principal Component (PC) time series associated with the first 43 

eigenvector of the decadal rainfall anomaly (Basalirwa 1991, Indeje et al., 2000).  44 

 45 
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In this study, the VARIMAX rotated version of PCA was applied to define dominant modes 1 

of variability of the low passed rainfall and SST series. The VARIMAX rotation is selected to 2 

improve the physical interpretation of the PCA modes and to derive more localized 3 

components (Richman 1986). We therefore employ PCA concept in this study to establish 4 

the dominant modes in both decadal rainfall and SST data. The spatial patterns of the 5 

dominant modes observed in the SST fields are thereafter used in the selection of SSTs 6 

modes from the major global basins for the model development. The use of PCA, however, 7 

requires the identification of the number of factors, which must be included in the 8 

solutions. A detailed discussion on selection rules are documented in e.g., (Kaiser 1958, 9 

Kaiser 1959, Cattel 1966, Wilks 2006).  10 

2.4 Singular Value Decomposition (SVD) 11 

The purpose of Singular Value Decomposition (SVD) is to reduce a dataset containing a 12 

large number of values to a dataset containing significantly fewer values, but which still 13 

contains a large fraction of the variability present in the original data (von Storch and 14 

Navarra, 1995). Often in the rainfall and SST data will exhibit large spatial correlations. SVD 15 

analysis results in a more compact representation of these correlations, especially with 16 

multivariate datasets and can provide insight into spatial and temporal variations exhibited 17 

in the data being analyzed.  18 

 19 

In this study, SVD method aims to relate the two fields by decomposing their joint 20 

covariance matrix into singular values and two sets of paired-orthogonal vectors—one for 21 

each field. The covariance between the expansion coefficients of the leading pattern in each 22 

field is maximized. The singular values give the magnitude of the Squared Covariance 23 

Fraction (SCF) as accounted for by the various singular values (Bretherton et al. 1992; 24 

Wallace et al. 1992). Thus, SVD is a better approach compared to simple correlation 25 

analysis between different components of climate systems.  26 

 27 

 The SVD method is used in this study to further examine the detailed patterns of the 28 

dominant modes of decadal variations in rainfall and their coupling to the global SST 29 

changes. Detailed descriptions of SVD analysis can be found, e.g., in Bretherton et al., 30 

(1992) and von Storch and Navarra (1995). Exploiting the spatial coherence of climate 31 

signals in data series with low signal to noise ratios facilitates their identification (Mann 32 

and Park, 1996) while preserving spatial information and allowing the isolation of signals 33 

that might largely cancel in coarse spatial averaging (e.g., signals which largely involve 34 

dipole and quadrupole patterns). The usage of the SVD method in this study, therefore, is 35 

similar to canonical correlation analysis (CCA) where two sets of orthogonal time series are 36 

produced, along with their corresponding spatial patterns. CCA aims to maximize 37 

correlation between variables, while SVD aims to maximize covariance between variables. 38 

The difference between CCA and SVD is that CCA identifies spatial patterns by maximizing 39 

the temporal correlation between two data fields, whereas SVD maximizes the temporal 40 

covariance between two data fields. Barnston and Smith (1996) provide an in-depth 41 

analysis of CCA and its relation to SVD. 42 

 43 

It should be noted that prior to SVD analysis, the series were subjected to a ‘low- pass filter’ 44 

in order to suppress the high frequency oscillations. The weights used were nine point 45 
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Gaussian probability curve (0.01, 0.05, 0.12, 0.20, 0.24, 0.20, 0.12, 0.05, 0.01). The long 1 

term-mean was subtracted and the time series further de-trended until the records clearly 2 

showed no trends when linear regression technique and the ‘Students t’ test were applied. 3 

When trends in the data exist over time, the first structure often captures them. The 4 

purpose of this analysis is to find spatial and temporal correlations independent of trends 5 

and thus de-trending data before applying the analysis.  6 

3. Results and discussion 7 

3.1 Delineation of East Africa into Climatic Zones based on Decadal Rainfall Variability 8 

Table 1 gives the summary of results obtained from rotated VARIMAX solutions. Using the 9 

Scree test; Kaiser’s criterion and North et al. (1982) sampling errors methods, nine PCA 10 

modes were significant for the MAM season. These accounted for 92% of total March - May 11 

decadal rainfall variance and thus was used for further analyses. Results from the second 12 

rainfall season of OND indicated seven modes accounting for 91.3% are significant. During 13 

the Northern Hemisphere summer of June to August season, most of the region is dry 14 

except the western equatorial and coastal sectors influenced by Lake Victoria and Indian 15 

Ocean respectively. Eight PCA modes accounting of 89.9% were significant during this 16 

season.  17 

Figure 1 show 9, 7 and 8 unique climatologically homogeneous zones delineated for the 18 

MAM, OND and JJA seasons, respectively, using decadal rainfall records for the three 19 

countries of the study region. We group together stations with common characteristics into 20 

homogeneous regions using spatial patterns of the dominant PCA modes. The PCA statistics 21 

(Communality) at each individual zone is therefore used to identify a representative station 22 

for each zone, which is used for further analyses (Gregory, 1975; Ogallo, 1988, 1989; 23 

Basalirwa, 1991; Indeje, 2000; Okoola, 1996; ICPAC, 1999). For example, correlation 24 

between the stations with highest communality in every cluster is computed and this helps 25 

in the mapping of stations into zones. Correlation coefficients values as high as 0.94 are 26 

observed between Dar-es-Salaam International Airport (DIA) and stations within zone 5 27 

during OND season (Figure 1b). To facilitate discussion of the regions, Figure 4 presents 28 

the anomaly of decadal precipitation across some stations in each of the delineated 29 

homogenous regions. Determining the spatial form of these signals was the primary 30 

purpose of the PCA. The 9 significant modes of variability passed both Scree and Kaiser’s 31 

criterion tests but the eigen values were indistinguishable at 95% confidence level using 32 

North et al. (1982) sampling error test.   33 

Figure 2 shows an example of ten years cycle dominant in most rainfall records that were 34 

subjected to spectral analysis. The spectral peaks are significant at 95% confidence level 35 

when both white and red noise hypotheses are tested.  The ten years dominant cycles 36 

demonstrate the dominance of decadal variability in rainfall patterns over East Africa. 37 

There are, however, significant differences in the amplitudes and spectral bands of the 38 

spectral peaks from the various regions, which signified some differences in the impacts of 39 

the decadal variability of various parts of East Africa due to the modification of the complex 40 

regional climate systems. 41 

Figure 3, however, depicts long-term linear trends towards negative values, which are 42 

detectable in most sub-regions.  When linear regression technique and the ‘Students t’ test 43 
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for testing if there is any significance in the trend are applied, there were no statistically 1 

significant trends detected. Results of the study further showed wet and dry decades 2 

recurring with approximately ten years cycle (Figure 4) and sometimes extend over large 3 

areas of the region. 4 

3.2 Linkages between regional decadal rainfall variability patterns and global SSTs 5 

 6 

Table 2 provides the two main summary statistics of the SVD analysis obtained when the 7 

three global basins were separately analyzed with the three rainfall seasons of the region. 8 

These statistics provide a measure of the strength of the relationship between the two 9 

fields. The first statistic, the Squared Covariance Fraction (SCFk), where k is the mode 10 

number, provides the percentage of the total squared covariance between the two fields 11 

explained by the SVD mode, and is proportional to the square of its singular value. This is a 12 

measure of the relative importance of the SVD mode in the relationship between the two 13 

fields. It should be noted that only the first three significant covariability modes of the 14 

squared covariance is shown in Table 2. The second statistic is the correlation coefficient 15 

(rk) between the two time series that represent the temporal variations of the mode in the 16 

two fields. It is a measure of the similarity between the time variations of the patterns of 17 

the two fields, or how strongly the two fields are related to each other with respect to time 18 

(significant at the 5% level) for the first three modes.  19 

 20 

We investigate linkages between smoothed SST and decadal rainfall anomalies using SVD 21 

to establish existence of covariance amongst East Africa rainfall and the specific global 22 

Ocean basin temperatures.  23 

3.2.1 The three Oceans versus MAM modes 24 

Figure 5 shows the spatial and temporal patterns of the first SVD mode of MAM rainfall and 25 

Indian Ocean SST that accounted for 49.9% of the total square covariance. This mode is 26 

characterized by large pool of positive warming over western and northern Indian Ocean 27 

while negative loading are over south-eastern Indian Ocean (Figure 5a). The corresponding 28 

precipitation pattern shows positive loadings over most parts of the region especially 29 

where MAM rains are dominant (Figure 5b). It identifies the warming trend signal in the 30 

SSTs with strong positive loadings throughout the central Indian Ocean. A similar SST 31 

loading pattern has been reported by Smith and Reynolds (2003). The correlation 32 

coefficient of time series of the expansion coefficient of both SST and rainfall fields is 0.73 33 

(Figure 5c).  34 

 35 

This first SVD mode is characterized by some east-west and north-south dipole patterns 36 

that are associated with much rainfall over most parts of the region. Some previous studies 37 

have shown strong positive SST anomalies over western Indian Ocean and negative SST 38 

anomalies off the Indonesia coast  that has been referred to it as the positive Indian Ocean 39 

Dipole (IOD) Mode (Webster et al., 1999; Saji et al., 1999; Yu and Rienecker, 2000; Saji and 40 

Yamagata, 2003a; Black et al., 2003; Black, 2004; Hastenrath and Polzin, 2003, 2004; 41 

Behera et al., 2005; Singhrattna et al., 2005; Owiti, 2005; Tozuka et al., 2007; Meyers et al., 42 

2007; Huang and Shukla 2007, Garciʼa-Garci’a et al., 2011, and Becker et al. 2011). 43 

 44 
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The second SVD mode (SVD-2) that accounted for 14.8% variance has negative coherence 1 

loadings centered on the central equatorial Indian Ocean and positive loading over the 2 

south-western parts of the ocean basin (Figure 6a). This mode is also characterized by 3 

negative loadings over the northern sector while positive loading is confined over the 4 

southern sector of the sub-region (Figure 6b). It also showed stronger decadal trend mode 5 

(correlation coefficient, r = 0.64) in time series of expansion coefficient (Figure 6c) 6 

compared to SVD-1 mode. Such a pattern in the Indian Ocean was observed in Nyakwada 7 

(2009) and has been attributed to the mean seasonal SST pattern over the ocean when the 8 

overhead sun crosses the equator. 9 

 10 

The third mode (SVD-3), which accounted for 9.9% of the variance showed positive 11 

loadings over the entire Indian Ocean with the highest loadings concentrated in the area 12 

between 20ºN and 15ºS (not shown). This pattern is associated with strong positive 13 

loadings for rainfall over the eastern sector and negative loadings over western sector of 14 

the region with strong decadal signal in the time series of expansion coefficients. It is worth 15 

noting that although this mode explains relatively low covariance, it was still able to display 16 

strong decadal variability for the MAM rainfall season (Rao and Yamagata, 2004; Rao and 17 

Behera, 2005; Rao et al., 2007). 18 

 19 

The results from SVD analysis discussed above confirm the complexity of rainfall variability 20 

over East Africa during MAM rainfall season. SVD has however delineated three modes that 21 

could give more insight into the modes of decadal rainfall variability over the region. The 22 

dominance of the modes representing zonal SST variability in the Indian Ocean, which may 23 

be associated with the strong influence of this ocean on the climate of the region has been 24 

indicated and consistent with observation analyses by many other authors including 25 

Okoola (1996); Goddard and Graham (1999); Mutai (2003); Nyakwada (2009) among 26 

others. 27 

 28 

Similarly, the influence of the Atlantic Ocean on MAM decadal rainfall was investigated 29 

using SVD technique. Moisture influx from the ocean is associated with enhanced westerly 30 

circulation that also favours the incursions of moisture from the always wet tropical forests 31 

of Congo, Democratic Republic of Congo (DRC) and other central African countries. The SST 32 

variability in the Atlantic Ocean reaches its maximum in the period January to May (Wu et 33 

al. 2007). The results of the analysis showed SVD-1 mode accounting for about 43% of the 34 

total covariance, and is characterized by a meridional dipole like pattern with negative 35 

loadings over the northern equatorial Atlantic Ocean and positive loadings over the 36 

southern equatorial Atlantic basin (Figure 7a). The rainfall component of this mode 37 

showed a southeastern – northwestern dipole pattern with negative loadings over the 38 

south-eastern sub-sector while positive loading over north-western segment of the region 39 

(Figure 7b). The time series of expansion of SVD coefficients of both rainfall and SST 40 

anomalies has a correlation coefficient of 0.97 (Figure 7c) that also shows some trends and 41 

enhancement of the decadal amplitudes in some years (Figure 7c). 42 

 43 

The SVD-2 mode between MAM rainfall and Atlantic Ocean SST fields explains 23% of the 44 

total covariance (Table 2). Large coherent positive loadings over the equatorial Atlantic 45 

Ocean (Figure 8a) are observed to be in association with large positive loading in most 46 
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parts of the regions where MAM rainfall is significant (Figure 8b). The time series of 1 

expansion coefficients of this mode has a correlation of 0.98 significant at 95% confidence 2 

level. The time series further showed strong decadal variation with strong positive phases 3 

during mid 1960s and early 1980s. 4 

 5 

The third mode for MAM rainfall and Atlantic Ocean SST that explains 12.8% of the total 6 

covariance is occasioned by inter-hemispheric positive loading over the southern Atlantic 7 

Ocean and negative loading over northern hemisphere with centre at (50°W-35°W, 4°S-8 

15°N) of the basin. The regional rainfall variability associated to this mode has positive and 9 

negative loadings in the southern and northern sub-region respectively. This pattern was 10 

observed to be more or less opposite to that of SVD-2 mode in Figure 8b. The time series of 11 

expansion coefficients of this mode has increasing trend in the 1960s and 1970s decades. 12 

Lindzen and Nigam (1987) observed similar pattern in their study and indicated that such 13 

gradients have a stronger influence on the climate in the tropical regions.  This mode 14 

displayed both zonal and meridional SST variability that has been observed to have 15 

significant influence on the rainfall over western Africa (Wasilla, 2007).  16 

 17 

Analysis of MAM rainfall and Pacific Ocean SSTs showed a rather stronger coupling 18 

compared to other basins. This is manifested in the first three modes contributing to about 19 

79% of the decadal rainfall covariance. The SVD-1 mode that contributed  about 38% of the 20 

total covariance is characterized by warming over the eastern and cooling over western 21 

Pacific Ocean, reminiscent of El Niño SST pattern (see e.g., Garciʼa-Garci’a et al., 2011, 22 

Forootan et al., 2012).    SVD-2 Mode for the Pacific contributed to about 25% of the 23 

covariance and is also characterized by strong negative loadings over the eastern and 24 

positive loadings over western equatorial Pacific Ocean. This is the cold phase of La Niña 25 

SST pattern that is associated with deficient seasonal rainfall over most parts of the region 26 

(Ropelewski and Halpert, 1987; Indeje 2000; Mutemi, 2003). Njau (2006) observed that 27 

most of the severe droughts over Kenya were experienced during the MAM rainfall season 28 

preceding El-Niño event. The SVD-3 which contributes about 17% of the total covariance is 29 

characterized by unique negative loadings over the eastern and western with positive 30 

loadings over the central equatorial Pacific Ocean. 31 

 32 

3.2.2 The three Oceans versus OND modes  33 

We now discuss the results obtained when the three global oceans were independently 34 

analyzed with OND decadal rainfall. The results show stronger coupling between the three 35 

oceans and OND decadal rainfall compared to the MAM rainfall.  The three leading SVD-36 

coupled modes explain greater than 80% of the squared covariance compared to 75% for 37 

the MAM rainfall.  Figure 9 shows the heterogeneous correlation patterns for the first mode 38 

in the SVD expansion for the Indian Ocean SST anomaly and OND decadal rainfall from 39 

1954 to 1983 (30 years WMO climatology). Each map represents the correlation between 40 

the expansion coefficients of one field and the grid point anomaly values of the other field. 41 

The heterogeneous pattern for the first SVD mode (Figure 9a) has two prominent features. 42 

The primary characteristic is the warming of the southwestern ocean as indicated by the 43 

positive loadings and cooling in southeastern ocean, mainly south of the equator. Secondly, 44 

this corresponds to negative loading patterns of rainfall over the southern sector and 45 
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positive loading over the northern sector of the region.  Mode-1 explains 65% of the total 1 

coupling covariance which seems to represent the mean seasonal patterns of SST over the 2 

ocean consistent with the studies of Behera et al. (2005), Schreck and Semazzi (2004), 3 

Terray and Dominiak (2005), and Tozuka et al. (2007). The time series of expansion of this 4 

mode showed a decreasing trend with correlation coefficient of 0.87 during the period of 5 

the study. 6 

  7 

The heterogeneous pattern for the second SVD mode has spatial patterns exhibiting large 8 

coherent negative loading over the central equatorial Indian Ocean with small positive 9 

tongue over the Indo-Pacific Oceans (Figure 10a). This signal is generally associated with 10 

negative loading patterns over most parts of the region especially over areas that receive 11 

substantial rainfall during OND season (Figure 10b). This mode shows that the large-scale 12 

cooling of the ocean is associated with dry decades over the region. Harrison and Carson 13 

(2007); Ihara et al., (2008); and Nyakwada (2009) observed similar patterns over the 14 

Ocean in their respective studies. The time series of expansion coefficients of mode-2 has 15 

correlation coefficient of 0.98 with significant decreasing decadal trend since 1960s.  16 

 17 

Figure 11 shows the heterogeneous correlation patterns for the first mode in the SVD 18 

expansion for the Atlantic SST anomaly and OND rainfall (Table 2). The Atlantic Ocean is to 19 

the west of the region of study and moisture influx from the ocean is associated with 20 

enhanced westerly circulation that also favours the incursions of moisture from the always 21 

wet tropical forests of Congo, DRC and other central African countries. The SST variability 22 

in the Atlantic Ocean reaches its maximum in the period January to May (Wu et al. 2007). 23 

The first three SVD modes for Atlantic Ocean SST and October-December seasonal rainfall 24 

accounted for about 84% of the total square covariance. Mode-1 (47.8%) is characterized 25 

by a meridional dipole like pattern with negative loadings over the northern equatorial 26 

Atlantic Ocean and positive loadings over the southern equatorial Atlantic basin (Figure 27 

11a). The OND rainfall component of this mode is characterized by south-eastern – north-28 

western dipole pattern with negative and positive loadings respectively over the sub-sector 29 

(Figure 11b). The time series of expansion of this mode has a correlation coefficient of 0.97 30 

and also shows some enhanced decadal modes (Figure 11c).  31 

 32 

The spatial patterns observed for mode-2 seems to be opposite to that observed for SVD-1 33 

mode for the same basin (Figure not shown). This shows that a change in the 34 

interhemispheric loading patterns in the Ocean causes corresponding change in the spatial 35 

and temporal regional rainfall loading patterns. For instance whenever there is negative 36 

loading in the northern Atlantic Ocean and positive in the south, the regional rainfall 37 

pattern is associated with positive loading in the northern sector and negative loading in 38 

the southern sector and vice versa. Similar changes are also true for the time series 39 

expansion coefficients of the two fields. 40 

 41 

This suggests that the large scale changes in the global basins SSTs have significant 42 

influence on regional decadal climate variability.  This emphasizes the importance of the 43 

ocean currents and the associated SST patterns in the study of climate variability and 44 

prediction. Strong relationship between ocean currents and climate have been established 45 

to be the major influence of regional climates (Valsala and Ikeda, 2007; Cai and Cowan, 46 
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2007; Keller et al., 2007). Whenever there is enhancement of ENSO, this mode has always 1 

been manifested (and it is also linked to the North Atlantic Oscillation (NAO) (Li et al., 2 

2007; Wu et al., 2007). 3 

 4 

The results on coupling between the Pacific Ocean and the October-December rainfall at 5 

decadal time scale over the region is summarized in Table 2 and also spatially shown by 6 

Figure 12a. Although Pacific is the furthest ocean from the region, it has some strong 7 

teleconnections to the East African climate, especially during ENSO and other years with 8 

large SST anomalies (Ogallo and Suleiman, 1987; Ropelewski and Halpert, 1987; Nicholson 9 

and Kim, 1997; Wassila et al., 1999; Wang and Eltahir, 1999; Indeje, 2000; Indeje et al., 10 

2000; Schreck and Semmazzi, 2004; Korecha and Barnston, 2007). Circulation anomalies in 11 

Pacific Ocean have significant influence on Indian and Atlantic Oceans and the surrounding 12 

land areas (Wolter, 1987, Terray and Dominiak, 2005) including East African rainfall.  13 

 14 

The first three modes for the Pacific SST and OND rainfall accounted for about 80% of the 15 

decadal rainfall covariance. The heterogeneous pattern for the first SVD mode that 16 

contributes about 39% of the total covariance mainly reveals the ENSO-like pattern in the 17 

central equatorial Pacific (figure not shown). The impact of this mode is observed to have 18 

similarity to mode-1 of the Indian Ocean on East African rainfall (Figure 5b). This may be 19 

due to close responses of the circulation amongst the three oceans (Burroughs 1999). It has 20 

been shown that ENSO is linked to the Indian Ocean variability through the modulation of 21 

walker circulation (Xie et al., 2002; Saji and Yamagata, 2003b; Krishnamurty and Kirtman, 22 

2003; Kug et al., 2005; Kug and Kang, 2006; Kug et al., 2006).  23 

 24 

The SSTs over the southern Indian Ocean during the December to February have been 25 

observed to influence climate shift in the Indian and Pacific Oceans and thus predictors of 26 

El Niño (Terray and Dominiak, 2005). The SVD-2 Mode of the basin and OND rainfall (28% 27 

of covariance) is characterized by the La Niña-like SST pattern with large negative loadings 28 

over the eastern central equatorial Pacific Ocean and positive loading over the western 29 

equatorial Pacific Ocean (Figure 12a). Such anomaly pattern is associated with negative 30 

loading over the region that causes depressed rainfall in the region (Figure 12b). The time 31 

series exhibits strong decadal variability with a long-term change toward higher values in 32 

1962–70. The relative dry decade of 1960/1970 in the region noted by Omondi (2005) is 33 

reflected in the mode 2 time series. 34 

3.2.3 The three Oceans versus JJA modes 35 

The June-August (JJA) season constitute the third rainy season when western and coastal 36 

parts of the region receive substantial amount of rainfall. Parts of the equatorial sector, 37 

covering northern Tanzania, western and coastal areas generally exhibit a trimodal rainfall 38 

regime centered on MAM, JJA and OND seasons. In Table 2, a summary of results for the 39 

three basins coupling with JJA decadal rainfall are given with the first three leading modes 40 

accounting for about 87% of the covariance. SVD mode-1 is characterized by a zonal dipole 41 

mode with pools of negative and positive loadings observed over the western and eastern 42 

equatorial Indian Ocean (Figure 13a) associated with depressed decadal rainfall over all 43 

parts of the region (Figure 13b). Time series of expansion of the coefficients demonstrates 44 
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strong decadal variations in both time series with expansion coefficient of 0.98 (Figure 1 

13c).  2 

 3 

A rather interesting result presented in Figure 14a for SVD mode-1 when coupling between 4 

the JJA decadal rainfall and Atlantic Ocean accounted for 38.6% of the total covariance. An 5 

inter-hemispheric dipole with positive loading over the southern (0°E-15°E, 30°S-15°S) 6 

and the negative pole in the northern part of the tropical Atlantic Ocean (Figure 14a) with 7 

strong decadal signal in time series of expansion coefficients (significant correlation of 8 

0.99) was delineated (Figure 14c). This pattern can therefore be linked to the possibly 9 

strong JJA decadal rainfall variability over the region (Figure 14b). The second dominant 10 

SVD-2 explains 29.2% of the total JJA rainfall and SST covariance. Its spatial characteristic 11 

is opposite to that of OND rainfall and Atlantic Ocean (Figure 11b) hence not shown in this 12 

study. There are, however, some differences in the magnitudes and spatial spread over 13 

some areas with high positive / negative loadings.  14 

 15 

These results signify the importance of Atlantic Ocean modes on decadal rainfall over East 16 

Africa.  The characteristics of the SVD modes are closely associated with some climate 17 

extremes affecting the region. These could be associated with the implications of these 18 

modes on the circulations, energy, and moisture induced by the ocean, and other inland 19 

rain generating systems. Barnston et al., (1996) demonstrated that the time-space 20 

behaviour of the SST field alone influences the JJA seasonal rainfall over the region both on 21 

interannual and inter-decadal time-scales. Other similar results with JJAS season have been 22 

documented, e.g., by Gissila et al., (2004); Segele and Lamb (2005); Korecha and Barnston 23 

(2007); Zewdu et al (2009) among others. 24 

 25 

The result of SVD mode one for the Pacific Ocean and JJA rainfall fields showed ENSO-like 26 

pattern discussed in the previous section. However, SVD-2 mode is characterized by large 27 

pool of positive SST anomalies over the central equatorial Pacific and negative SST 28 

anomalies in the equatorial western and eastern parts of the basin (Figure 15a). The 29 

corresponding impact of this mode on regional rainfall is positive loading over western 30 

equatorial parts of the region and negative loading over the eastern highlands (Figure 15b). 31 

Major warming events for this mode take place over the Central Pacific Ocean unlike the 32 

eastern/western Pacific of typical El Niño/La Niña evolution. Similar pattern in tropical 33 

Pacific SST variability mode was observed and referred to as trans-Niño index (Trenberth 34 

and Stepaniak, 2001; Trenberth et al., 2002) and later by Ashok et al., (2007) who termed it 35 

‘El Niño Modoki’. Cold SST anomalies (SSTA) are observed on both sides along the equator 36 

(Trenberth and Stepaniak, 2001; Trenberth et al., 2002, Ashok et al., 2007; Meyers et al., 37 

2007; Ashok et al., 2009; Hye-Mi Kim, et al., 2009) and this is associated with enhanced and 38 

depressed rainfall over western and eastern sectors respectively of East Africa region. El 39 

Niño Modoki involves ocean-atmosphere coupling processes, which include a unique 40 

tripolar sea level pressure pattern during the evolution, analogous to the Southern 41 

Oscillation in case of El Niño (Ashok et al., 2007; Meyers et al., 2007; Ashok et al., 2009; 42 

Hye-Mi Kim, et al., 2009). This anomalous warming event is different from conventional El 43 

Niño events but both take place in equatorial Pacific.  44 

 45 
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The results from SVD analyses have therefore demonstrated that although decadal rainfall 1 

variability modes are generally common at all locations, some strong signals were only 2 

restricted to specific areas. These signals were evident for all seasons over the entire 3 

region. It is a fact that some climate extremes experienced over the region such as floods of 4 

the early 1960s, 1997/98 and droughts of 1970s and early 1980s that extended over most 5 

parts of the region had decadal finger prints. The strong coupling between global basins 6 

and decadal rainfall can provide new prediction tools that are important for decadal 7 

rainfall prediction. This again can contribute to the formulation and improvement of 8 

prediction skills in numerical modeling and early warning several lead times ahead. 9 

4. Summary and conclusions 10 

The primary focus of this study was to investigate the dominant spatial and temporal 11 

decadal rainfall variability modes over East Africa region and their linkages to decadal 12 

variability modes of the specific global oceans. The first investigation involved the use of 13 

RPCA and simple correlation analysis approaches to delineate East Africa region into zones 14 

with similar modes of decadal rainfall variability. This analysis was mainly to group 15 

together stations with common decadal rainfall characteristics into homogeneous zones.  16 

The stations highly correlated with each other were identified as representative stations 17 

for every zone used for the analyses in the study. Each observed rainfall record for the 18 

delineated representative station was thereafter subjected to spectral analysis to 19 

demonstrate the dominance of ten years cycles. We applied SVD to evaluate the existence 20 

of covariance amongst regional rainfall and the individual global basins SSTs. VARIMAX-21 

RPCA analysis delineated nine, seven and eight unique climatologically homogeneous zones 22 

for March-May (MAM), October-December (OND) and June – August (JJA) seasons 23 

respectively when smoothed rainfall records are used. It is also evident from our analysis 24 

that ten years cycle was dominant in most rainfall records with significant differences in 25 

the amplitudes and spectral bands of the spectral peaks from the various regions. This 26 

could be a reflection of the complex nature of the regional climate systems that include 27 

complex topography and large water bodies that include Lake Victoria. The results 28 

obtained from the teleconnections of the regional decadal rainfall variability patterns to the 29 

global SSTs using SVD analysis showed that:  30 

 31 

1. Decadal variability of the SSTs in the Pacific, Atlantic and Indian Oceans all have 32 

significant influence on regional decadal rainfall variability.  33 

2. Significant coupling of the SSTs and rainfall fields were observed with high values of 34 

SCF explained by the first three modes for each of the three oceans.  35 

3. Generally, the study revealed that even when decadal variability of one of the oceans 36 

contributed most of the variance of decadal rainfall variability, the roles of the other 37 

two oceans were still very significant. This signifies the close interaction among the 38 

global oceans SSTs and the complex regional scale climate processes. The first three 39 

SVD modes of the basin SSTs and decadal rainfall accounted for over 75% of the 40 

total square covariance for all the seasons, with statistically significant expansion 41 

coefficients of time series of the SVD mode of the two fields’ anomalies. 42 

 43 
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4. The SVD analysis for MAM rainfall season with Indian Ocean SST showed the first 1 

dominant mode accounting for 49.9% of the total square covariance and this was 2 

influenced mainly by the east/west zonal mode over the Indian Ocean.  3 

 4 

5. Results for SVD analysis for OND rainfall season with Pacific Ocean SST showed the 5 

first dominant mode accounting 39.2 % of the total square covariance.  Decadal 6 

rainfall variability for this season was dominantly characterized by decadal 7 

variability modes of the ENSO phenomenon over the equatorial Pacific Ocean.   8 

 9 

6. SVD analysis for the third rainfall season of June – August and the Atlantic Ocean 10 

SST showed the first dominant mode accounting for 38.6% of the total square 11 

covariance.  The key modes of variability that seemed to drive the June –August 12 

rainfall significantly was the inter-hemispheric tropical Atlantic variability with 13 

meridional dipole pattern in the Atlantic Ocean. A unique tripolar mode of 14 

variability observed during this season was characterized by large pool of positive 15 

loading over the central equatorial Pacific and negative loadings in the equatorial 16 

western and eastern parts of the basin. This mode is associated with wet decades 17 

over western parts of the region and dry decades over the eastern sectors of the 18 

region.  19 

 20 

The knowledge of extreme climate variations at decadal timescale gained from this study is 21 

useful for planning and decision making of long term climate risk management strategies 22 

for sustainable socioeconomic development. It can also provide means of using ocean 23 

variability modes to predict future decadal rainfall variability. Availability of timely and 24 

accurate climate information can provide useful tools for forward planning to reduce the 25 

vulnerability and risks of the hydro-meteorological hazards that currently are prevalent in 26 

the region.  This lead time of the early warning is important for the general planning and 27 

management of the disaster risk reduction. 28 

 29 
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Table Captions 1 

Table 1: VARIMAX-RPCA results of homogeneous group of stations extracted by each mode 2 

of the decadal MAM, OND and JJA rainfall 3 

Table 2:  Summary of some statistics from SVD analysis for decadal seasonal rainfall and 4 

the various global Ocean SSTs 5 

 6 

Table 3: Assessment of the skill for regression models 7 

 8 

Figure Captions 9 

Figure 1: Homogeneous climatic zones over East Africa obtained from combined PCA and 10 

simple correlation analyses using March-May (MAM), October-December (OND) and June-11 

August (JJA) decadal rainfall variability. Blue areas in the figure represent water bodies of 12 

Lake Victoria and Turkana) 13 

Figure 2: Spectral analysis of the smoothed March – May seasonal rainfall for zone 8 as 14 

represented by Mbarara 15 

Figure 3: Smoothed March – May rainfall anomalies depicting decadal variability with small 16 

percentages of the variance of the signals that are not statistically significant over Voi in 17 

Kenya 18 

Figure 4: Graphical plots of decadal rainfall variability for some representative stations 19 

over East Africa region during all the three seasons 20 

Figure 5: Spatial patterns of the first SVD mode accounting for 49.9% of the covariance for 21 

(a) Indian Ocean SST, (b) MAM rainfall presented as homogeneous correlation maps (c) 22 

Time series of expansion coefficients (s1) of the first SVD mode for March - May rainfall and 23 

Indian Ocean SST anomalies   24 

Figure 6: Spatial patterns of the second SVD mode accounting for 14.8% of the covariance 25 

for (a) Indian Ocean SST, (b) MAM rainfall presented as homogeneous correlation maps (c) 26 

Time series of expansion coefficients (s2) of the second SVD mode 27 

Figure 7: Spatial patterns of the first SVD mode accounting for 43% of the covariance for 28 

(a) Atlantic Ocean SST, (b) MAM rainfall presented as homogeneous correlation maps (c) 29 

Time series of expansion coefficients (s1) of the first SVD mode  30 

Figure 8: Spatial patterns of the second SVD mode accounting for 23% of the covariance for 31 

(a) Atlantic Ocean SST, (b) MAM rainfall presented as homogeneous correlation maps (c) 32 

Time series of expansion coefficients (s2) of the second SVD mode  33 

Figure 9: Spatial patterns of the first SVD mode accounting for 65% of the covariance for 34 

(a) Indian Ocean SST, (b) OND rainfall presented as homogeneous correlation maps (c) 35 

Time series of expansion coefficients (s1) of the first SVD mode  36 

Figure 10: Spatial patterns of the second SVD mode accounting for 16.5% of the covariance 37 

for (a) Indian Ocean SST, (b) OND rainfall presented as homogeneous correlation maps (c) 38 

Time series of expansion coefficients (s2) of the second SVD mode  39 
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Figure 11: Spatial patterns of the first SVD mode accounting for 47.8% of the covariance for 1 

(a) Atlantic Ocean SST, (b) OND rainfall presented as homogeneous correlation maps (c) 2 

Time series of expansion coefficients (s1) of the first SVD mode  3 

Figure 12: Spatial patterns of the second SVD mode accounting for 28% of the covariance 4 

for (a) Pacific Ocean SST, (b) OND rainfall presented as homogeneous correlation maps (c) 5 

Time series of expansion coefficients (s2) of the second SVD mode  6 

Figure 13: Spatial patterns of the first SVD mode accounting for 61.1% of the covariance for 7 

(a) Indian Ocean SST, (b) JJA rainfall presented as homogeneous correlation maps (c) Time 8 

series of expansion coefficients (s1) of the first SVD mode  9 

Figure 14: Spatial patterns of the first SVD mode accounting for 38.6% of the covariance for 10 

(a) Atlantic Ocean SST, (b) JJA rainfall presented as homogeneous correlation maps (c) 11 

Time series of expansion coefficients (s1) of the first SVD mode  12 

Figure 15: Spatial patterns of the second SVD mode accounting for 20% of the covariance 13 

for (a) Pacific Ocean SST, (b) JJA rainfall presented as homogeneous correlation maps (c) 14 

Time series of expansion coefficients (s2) of the second SVD mode  15 

 16 

 17 
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Table 1 1 

PERIOD FACTOR EIGENVALUE VARIANCE 
EXTRACTED (%) 

CUMULATIVE 
VARIANCE (%) 

 
 
 
 

MAM 
 

1 7.3  19.7 19.7 

2 6.9 18.6 38.3 

3 5.9 15.9 54.2 

4 4.2 11.4 65.6 

5 3.0 8.1 73.7 

6 2.3 6.4 80.1 

7 1.8 5.0 85.1 

8 1.2 3.3 88.4 

9 1.1 2.9 91.3 

 
 
 
 

OND 
 

1 15.87 42.9 42.9 

2 5.25 14.2 57.1 

3 3.87 10.5 67.6 

4 2.67 7.2 74.8 

5 2.40 6.5 81.3 

6 2.32 6.3 87.6 

7 1.38 3.7 91.3 

 
 
 
 

    JJA 

1 7.9 24.1 24.1 

2 5.4 16.5 40.6 

3 4.3 13.0 53.6 

4 3.8 11.5 65.1 

5 3.1 9.5 74.6 

6 2.1 6.3 80.9 

7 1.6 4.9 85.8 

8 1.3 4.0 89.8 

 2 

 3 

 4 
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 Table 2 1 

Season 
 

Oceans 
 

Mode 
(k) 

Square  
Covariance 

fraction  
 (SCF) 

% of total 
 mode  

covariance 

Cumulative 
% 

covariance 

Correlation  
coefficient 

( r ) 

 
 
 
 
MAM 

INDIAN  
 

1 20.5 49.9 49.9 0.73 
2 6.1 14.8 64.7 0.64 
3 4.1 9.9 74.6 0.38 

ATLANTIC  1 16.9 43.4 43.4 0.99 
2 9.0 23.1 66.5 0.98 
3 5.0 12.8 79.3 0.97 

PACIFIC 
  

1 38.6 37.8 37.8 0.99 
2 25.5 25.0 62.8 0.98 
3 17.0 16.7 79.4 0.88 

 
 
 
OND 

INDIAN  
 

1 26.7 65.2 65.2 0.99 
2 6.8 16.5 81.7 0.98 
3 3.6 8.8 90.5 0.94 

ATLANTIC  
 

1 18.7 47.8 47.8 0.97 
2 9.0 23.1 71.0 0.94 
3 4.9 12.5 83.5 0.76 

PACIFIC 
  

1 40.0 39.2 39.2 0.99 
2 28.0 27.5 66.7 0.96 
3 13.8 13.6 80.3 0.94 

 
 
 
 
JJA 

INDIAN  
 

1 25.1 61.1 61.1 0.98 
2 6.9 16.8 78.0 0.96 
3 3.6 8.7 86.6 0.94 

ATLANTIC  
 

1 15.1 38.6 38.6 0.99 
2 11.4 29.2 67.9 0.97 
3 5.5 14.1 82.0 0.88 

PACIFIC  
 

1 43.0 42.1 42.1 0.99 
2 20.4 20.0 62.1 0.97 
3 15.6 15.3 77.4 0.85 

r is the correlation coefficient between the expansion coefficient of SSTs and seasonal rainfall 2 

modes 3 

 4 

 5 

 6 

 7 
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(a) MAM season      (b) OND season 3 

 4 
(c) JJA season 5 

Figure 1 6 
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(a) Indian Ocean SST Mode 1          (b) MAM Rainfall Mode 1  
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 (c) Time series of expansion coefficients (s1) of the first SVD mode  

Figure 5 
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 (a) Indian Ocean SST Mode 2        (b) MAM Rainfall Mode 2 
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 (c) Time series of expansion coefficients (s2) of the second SVD mode  

Figure 6 
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(a) Atlantic Ocean SST Mode 1      (b) MAM Rainfall Mode 1 

 
 (c) Time series of expansion coefficients (s1) of the first SVD mode  

Figure 7 
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(a) Atlantic Ocean SST Mode 2       (b) MAM Rainfall Mode 2 

 
(c) Time series of expansion coefficients (s2) of the second SVD mode 

Figure 8 
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 (a) Indian Ocean SST Mode 1         (b) OND Rainfall Mode 1 

 

 (c) Time series of expansion coefficients (s1) of the first SVD mode 

Figure 9 
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(a) Indian Ocean SST Mode 2                                                                  (b) OND Rainfall Mode 2 

 
(c) Time series of expansion coefficients (s2) of the second SVD mode  

Figure 10 
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(a) Atlantic Ocean SST Mode 1                                                       (b) OND Rainfall Mode 1 

 

 (c) Time series of expansion coefficients (s1) of the first SVD mode 

Figure 11 
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(a) Pacific Ocean SST Mode 2                                            (b) OND Rainfall Mode 2 
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 (c) Time series of expansion coefficients (s1) of the first SVD mode 

Figure 12 
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(a) Indian Ocean SST Mode 1                                              (b) JJA Rainfall Mode 1 

 

 (c) Time series of expansion coefficients (s1) of the first SVD mode  

Figure 13  
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(a) Atlantic Ocean SST Mode 1                   (b) JJA rainfall Mode 1 

 

 (c) Time series of expansion coefficients (s1) of the first SVD mode 

 Figure 14 
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 (a) Pacific SST Mode 2          (b) JJA rainfall Mode 2 

 
(c) Time series of expansion coefficients (s2) of the second SVD mode 

 
Figure 15
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