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Abstract— Data integration of multiple heterogeneous data-
sets from multidimensional petroleum digital ecosystems is an 
effective way, for extracting information and adding value to 
knowledge domain from multiple producing onshore and off-
shore basins. At present, data from multiple basins are scat-
tered and unusable for data integration, because of scale and 
format differences. Ontology based warehousing and mining 
modeling are recommended for resolving the issues of scaling 
and formatting of multidimensional datasets, in which case, 
seismic and well-domain datasets are described. Issues, such 
as semantics among different data dimensions and their asso-
ciated attributes are also addressed by Ontology modeling. 
Intelligent relationships are built among several petroleum 
system domains (structure, reservoir, source and seal, for ex-
ample) at global scale and facilitated the integration process 
among multiple dimensions in a data warehouse environment. 
For this purpose, integrated workflows are designed for cap-
turing and modeling unknown relationships among petroleum 
system data attributes in interpretable knowledge domains. 
This study is an effective approach in mining and interpreting 
data views drawn from warehoused exploration and produc-
tion metadata, with special reference to Arabian onshore and 
offshore basins 
 

Index Terms— data integration, multidimensional data, pe-
troleum digital ecosystems, Arabian Gulf Basin 

I. INTRODUCTION 

In many petroleum industries, data are exponentially 
growing; with the results data integration is increasingly 
tedious and complex. These heterogeneous data are handled 
both technologically and methodologically ([1] and [2]), in 
which solutions are offered in terms of storage capacity, 
processing power and access speed. In methodological 
front, ontology, indexing, views, data mining and temporal 
database organizations. Combination of both technological 
and methodological approaches is led to data warehousing 
approach, in which complex heterogeneous databases are 
handled, including data integration, data structuring and 
data mining. Ontology based multidimensional data ware-
housing approach is apparently new concept for petroleum 
industries and they have an interesting application and 
commission. Authors concentrate more on methodological 
solutions, which definitely facilitate future technological 
drives and investments in petroleum industries. Follow-up 
studies, future scopes and implementations, are recom-
mended. 

A. Ontology Conceptualization 

Ontology is a specification of a conceptualization [1] 
and [6]. Ontology is set of definitions that obey the concep-
tualizations and relations, derived among set of dimensions. 
Practically, an ontological commitment is an agreement to 

use a vocabulary in a way consistent with respect to the en-
tities or dimensions described within integrated workflows 
and knowledge from different known or unknown domains, 
still under use. We have described different dimensions that 
commit to ontologies. Ontologies are designed that can 
share knowledge within and among these dimensions, de-
scribed in different workflows, which undergo integration 
process. In the context of knowledge sharing also, the term 
of ontology implies a specification of conceptualization. In 
our case, ontology is description of the concepts and rela-
tionships that may exist within dimensions or community of 
dimensions. This definition is consistent with the usage of 
ontology as a set of concepts or definitions, more general 
and at places with more specifications. Ontology has sig-
nificant properties for knowledge sharing among intelligent 
dimensions, for example, semantics independent of reader 
and context. Authors attempt to use this concept within in-
tegrated workflow scenarios of a sedimentary basin. 

B. Ontologies as a specification mechanism supporting 
integrated workflows 

A sedimentary basin of formally represented knowledge, 
at times is based on a conceptualization. Several workflows 
from multi disciplines, such as geology, geophysics, geo-
chemistry, rock physics, and reservoir engineering [8] pos-
sess different domains of knowledge contributing to the 
process of integration. These dimensions are integrated for 
extracting knowledge based on conceptualizations and con-
ceptualizations. Similar analogy is made for extracting 
knowledge from integrated petroleum systems through con-
ceptualizations and contextualization. These entities or di-
mensions are assumed to exist in some area of interest and 
the relationships that hold among them. A conceptualiza-
tion is an abstract, simplified view of the world that wishes 
to be represented for some purpose. Every knowledge base, 
knowledge-based system, or knowledge-level agent is 
committed to some conceptualization, explicitly or implic-
itly. A dimension in an integrated workflow commits to on-
tology, if observable actions are consistent with the defini-
tions of the ontology. The idea of ontological commitment 
is based on knowledge level perspective, which is again de-
scription of knowledge of a dimension that is independent 
of the symbol level representation used internally by the 
dimension. Knowledge is attributed to dimensions in inte-
grated workflows by observing their actions, a dimension in 
the workflow “knows” something if it acts as if it has had 
information and is acting rationally to achieve the purpose 
of integrated workflows. In client/server based systems, 
knowledge of a dimension needs to be understood, in which 
client interacts with dimensions through logical assertions 
and queries. This has overall impact on the integrated work-
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flow, handled by server based systems. A commitment to 
common ontology in an integrated workflow is a guarantee 
of consistency; including its completeness (no model or in-
tegrated workflow is complete or full-proof, with respect to 
queries and assertions using vocabulary defined in the on-
tology.  

Ontologies in our present application scenarios are 
equated with taxonomic hierarchies of classes, class defini-
tions, class conceptualizations of relationships described 
among multiple dimensions. To specify conceptualizations, 
business rules and axiom constraints need to be committed 
during contextual interpretations of the conceptualizations. 

C. Concept of an ecosystem supporting integrated work-
flows 

In the context of an integrated workflow, the concept of 
an ecosystem is benefited with several multi disciplinary 
entities or dimensions participation in the integration proc-
ess through conceptualized relationships (in other words 
through symbiotic relations, positive sum relationships). It 
is a term that originated from biology, and refers to self-
sustaining systems. It is complex community of large size 
multiple dimensions and its environment functioning as an 
ecological unit. More realistically, it is a term of volume of 
attributes gathered from multiple sources (both geographi-
cal and periodic) all in one place. Similar analogy is applied 
in a broader sense of large size sedimentary basin (local 
scale), with multiple petroleum systems with several hun-
dreds of attributes, is connected to other large size basins 
elsewhere, on a global scale.  

Each dimension in an integrated work flow, works in a 
unique knowledge domain, but when it starts connecting 
with other domains, several other conceptualized dimen-
sions may be evolved and emerged, depending on the con-
text or user knowledge and perception. In the context of 
knowledge sharing among several dimensions, in our case, 
surface seismic dimension shares knowledge with sub-
surface dimension, similarly, the petrophysics dimension 
shares knowledge with surface seismic dimensions. Each 
dimension not only lives with it but also survives with other 
neighboring dimensions. The knowledge that is hidden 
within dimensions is in turn inter-related with dimensions 
of broader (global) petroleum systems and again sedimen-
tary basins in nearby basins that are described previously 
with ontology descriptions. The relationships among these 
dimensions are not only symbiotic, but also they benefit 
from each other´s participation. This process continues till 
all the knowledge extracted from all the dimensions reaches 
a stage that the life cycle of the designed workflow.  

As it applies to any business, an ecosystem, in case of 
petroleum system, can be viewed as a system where the re-
lationships established across different structures and reser-
voirs among several petroleum systems in a basin, can be-
come mutually beneficial, self-sustaining and (somewhat) 
closed. This is clearly the case for Silicon Valley with the 
entrepreneurial industry, the venture capital industry needed 
to fund the entrepreneurial industry, and Stanford Univer-
sity, supplying the human capital needed to develop innova-
tive/creative ideas and technologies. The goal of this eco-
system is to generate entrepreneurial ventures. Once an 
ecosystem is established, and is able to take first-mover ad-
vantage, it becomes very difficult for other regions to emu-

late. The region exhibits network effects and is able to es-
tablish lock-in since the switching costs associated with 
moving to another region are prohibitive. The collective 
costs of many moving out of the region (i.e. if another re-
gion tried to incentivize a large move) would be prohibi-
tive. Thus current members have a clear incentive to re-
main, and new would-be entrepreneurs, venture capitalists 
and students interested in this industry have a significant 
incentive to relocate to this region.  

An array of ideas from computer science, information 
technology, statistics and management science is being ap-
plied for organizing these data. Petroleum explorers and 
analysts hypothesize petroleum systems on geographic and 
magnitude basis. With the pursuit of acquiring more knowl-
edge on oil/gas producing basins, authors propose existing 
data mining techniques for exploring data patterns. Several 
data mining tools are available to explore data patterns and 
extract knowledge  

Design of an integrated information system in the oil and 
gas industry depends on individual design of conceptual 
schemas of oil and gas industry’s operational units “enti-
ties/objects/dimensions”. This is an ontology based data 
conceptualization. Integration of schemas belonging to 
various operational sub-systems is a requirement for an oil 
and gas industry to accomplish the legality and validity of 
data. Intelligent and expert data systems ([3], [7] and [9]) 
are used in geophysical exploration and prospecting. Broad 
Issues relevant to computer applications in exploration in-
dustry have been discussed, demonstrating their applicabil-
ity and feasibility.  

Data warehouse is more popularly designed, using mul-
tidimensional metadata conceptualization, with hierarchical 
and relational data structuring. Each composite data dimen-
sion refers to a conceptual schema, such as seismic-time 
(acquired and defined), geological-depth (already existing, 
inherent dimension) and velocity (conceptualized dimen-
sion) are composite data dimensions. The conceptual 
schema communicates with an integrated system encom-
passing a multilevel data warehouse system.  

Sub-schemas may also be views that can be integrated in 
an oil and gas company to achieve a complete multidimen-
sional conceptual schema (intelligent enough for extracting 
knowledge of petroleum systems). This type of fine-grained 
data structuring is more effective for knowledge mining 
from users’ perspective. 

II. ISSUES AND OBJECTIVES OF CURRENT RESEARCH 

1. Improve: knowledge extraction from conceptualized 
data (an example, patterns), having known seismic times 
and geological depths in a total petroleum system and 
faster data access and better user (geologists and geo-
physicists) queries 

2. Establish: better connectivity among different petroleum 
fields and systems, through intelligent and logical con-
ceptualization (example, time-depth-velocity relation-
ships and their attributes) 

3. Data mapping and modeling: Ontology representation 
and in hierarchical and relational structures. 

4. Present Scenarios: our approach is new and cost effec-
tive; these are 21st century IT applications in petroleum 
industries that can help analyse and address issues of 
data management and also EHS (Environment, Health 
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and Safety management) 
5. Future scopes: These technologies can be adapted ana-

lyzing on any heterogeneous data organizations. Present 
data mining studies have scope in implementing petro-
leum eco systems 

6. To develop Ontology-base warehouse modelling- facili-
tating an intelligent storage and easy understanding of 
heterogeneous data; building basin knowledge and ef-
fective data access using data-mining algorithms 

7. To develop a domain-specific data schemas (to improve 
knowledge of a structure/reservoir attributes that narrate 
classified petroleum systems in a basin) 

8. To design and develop simple logical data schemas 
warehousing and storing large volumes of data  

9. To access user specified data and attend user queries in 
a shortest response time based on data mining logic 

10. Having known knowledge of intelligent petroleum sys-
tems, data management issues are aimed at understand-
ing relationships among attributes of multiple dimen-
sions, such as structure, reservoir, production data pat-
terns that facilitated from conceptualized interpretations 
of workflows and petroleum systems. More popularly, 
dimensions are conceptualized in place of entities in a 
warehouse design scenario. 

11. Understanding the connectivity among multiple dimen-
sions through cluster mining techniques   

12. To interpret time-depth data (translating seismic domain 
knowledge into depth domain) for building knowledge 
of seismic data patterns and thus an interpretable geo-
logical (structural as well as reservoir) data model 

13. Development of large size conceptual and intelligent 
seismic data models for implementation in petroleum 
exploration industries. 

Other basic research objectives broadly are: 
To develop ontology – a framework facilitating easy 

understanding, mapping and modelling of complex petro-
leum data dimensions and build initial knowledge-structure 
that leads to development of data warehouse models 

Data warehouse objectives - to design and develop 
logical data schemas for storing large volume of time-
depth-velocity data for large number of seismic horizons 
interpreted for modelling Metadata to link up with data 
mining stage  

Data mining objectives - to access and perceive user 
specific data in a shortest response time based on data min-
ing logic and computational or data-mining algorithms in-
cluding statistical techniques 

Knowledge extraction - Understanding geological-
geophysical-petrophysical connectivity (relationships) sur-
rounding petroleum fields 

A. Petroleum data analysis objectives 

1. To interpret explored data for knowledge discovery 
from petroleum fields and systems, building knowl-
edge among other several associated systems; to 
measure property attributes through logical data de-
sign or structuring 

2. To distribute and deliver the data to several petroleum 
industries through interfaces/agents for easy retrieval 
and in required formats (XML technology proposed) 

3. Carry on interpretation from field (drilled-well level, 
more fine-grained structure) level to basin level, using 

structure, reservoir, production contour data patterns 
4. Analyse similar property data dimensions such that 

complexity of information hidden under large size pe-
troleum systems and its complexity eased. 

B. Definitions 

1. Ontology: specification of conceptualization, a formal, 
computer-based linguistic approximation of a shared 
conceptualization ([5] and [6]), building relationships 
among several dimensions of petroleum and geomor-
phic systems, geographically located  

2. Data Warehouse: subject oriented, integrated, time-
variant, non-updatable collection of data used in sup-
port of management decision-making processes and 
business intelligence [3].  

3. Data Mining: in a broad sense is a process of knowl-
edge discovery from data warehouse [9].  

4. Petroleum System – an information system 
5. Ontology based Multidimensional Metadata: data that 

describe about data. Metadata describe how and when 
and by whom, a particular set of data (such as, seismic 
time, geological depth and velocity, geological, geo-
physical, geochemical, reservoir engineering and pro-
duction engineering) was collected, and how these 
data are logically structured. Metadata is essential for 
understanding information stored in a data warehouse 
and has become increasingly important in XML-based 
Web applications. 

C. Data Types 

1. Hierarchical, relational and networking 
2. Temporal and space-varying data types 
3. Non-geometric, geometric to non-geometric and 

fully geometric spatial dimensions (enti-
ties/dimensions/objects) 

D. Data Warehousing 

1. Data management – because of volume of data, 
2. Data integration – because of multi-dimensions 

having multiple attributes, properties and scales 
3. Data communication and connectivity – because of 

poorly perceived knowledge between enti-
ties/dimensions 

4. So many oil/gas wells, so many oil/gas fields, so 
many systems and so many basins – because of so 
many hierarchies 

E. Data Mining and Knowledge Interpretation 

1. Attributes classified from different heterogeneous 
– multiple data dimensions, are explored from 
multiple petroleum systems – each petroleum sys-
tem is an information system 

2. All data classifications interpreted from multiple 
dimensions are made interconnected and interre-
lated through data integration and interoperability  

3. Data classification as identified and interpreted as 
per data characteristics and property gets affected, 
if there is any affect on other classification  

4. Current research investigates this phenomenon 
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Fig. 1: Time-depth relationships for interpreted horizons, building concep-

tualized velocity dimension attributes 
Volumes of petroleum exploration and production data, 

geological, geophysical and geochemical datasets are rou-
tinely acquired. Based on the evaluation of these explora-
tion data, drilling and production are other data, subse-
quently built based on the exploration data. Authors con-
centrate more specifically, the exploration datasets such as, 
seismic, well-log, petrophysical, and the connectivity 
among these entities or dimensions through integrated 
workflow strategies. Interestingly, Seismic horizons 
(Figs.1-2) interpreted comprise of   seismic data, consisting 
of several wavelets with crests and troughs with positive 
and negative peak data. These data are critically analyzed in 
the seismic, well-log and also petrophysical data and inte-
grated using typical workflows. This workflow is broadly 
written in ontology model, in which several dimensions are 
described building relationships through fact data tables. 
These facts are data instances from several dimensions, ei-
ther generic or conceptualized. 
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Fig. 2: Horizon domain ontologies with relationships among time, depth 

and velocity dimensions 

III. METHODOLOGY 

A. Why use this methodology 

Most of the data used and handled in integrated work-
flows are heterogeneous. Keeping in view, the volumes and 
sizes of horizon-structure-reservoir-production datasets in 
petroleum bearing sedimentary basin in unmanageable way, 
it is imperative to use warehouse and mining approaches, in 
which these data are ontologically conceptualized in multi-
ple dimensions, so that these valuable data are more intelli-
gently stored and accessibility of domain knowledge is easy 
during data mining stage. Data integration, sharing of 
knowledge and interoperability are significant issues that 
can be addressed more robustly by data warehousing and 
mining approaches. Several ontology models, deduced in 
Figs 3, 5-6, do make up of data structuring and also data 
integration process. 
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Fig. 3: Seismic Exploration Data Dimensions and their facts 

Another interesting phenomenon is to design and de-
velop domain knowledge of seismic horizons (in a ware-
house modeling) that undergo data mining and interpreta-
tion stage. As narrated in Fig. 4, there are several peaks and 
troughs in the seismic wavelets for each and every horizon 
that needs to be analysed and interpreted.  

Trace1 Dimension Trace2 Dimension Trace3 Dimension

Pick Dimension

 
Fig. 4a: Seismic wavelets  (for different trace attributes) and their polarity 
pick dimensions, an example showing peak (dark) and trough (white) di-

mension relationships, for describing horizon ontology 
Trace1 Dimension Trace2 Dimension Trace3 Dimension Trace4 Dimension Trace5 Dimension Trace6 Dimension

 
Fig. 4b: Peak and trough dimension relationships that describe horizons 

(for different geological structures, reservoirs and ages) and also establish 
horizon relationships 
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Fig. 5: An integrated data schema, narrating relationships among several 

sub-sets and their respective sub-schemas 
Magnitude, size and dimension (both time and space 

varying dimensions) of these peaks and troughs of these 
seismic wavelets are controlling the integrity of the rela-
tionship structure-reservoir-petrophysical structure and 
their properties. When there is change in shapes and dimen-
sions of these peaks and troughs, in a set of seismic wave-
lets, there is corresponding change in the properties of these 
dimensions. Authors make an attempt to analyse the con-
nectivity of local level seismic wavelet to broader group of 
seismic wavelets of a set of horizons, interpreted in a petro-
leum system. Picking of peak and or trough for a horizon 
and maintaining database for these horizon data is an inter-
preter’s task. As shown in Fig.7, data facts are collected and 
stored in a warehouse model, so that the connectivity 
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among multiple horizons is established. An integrated 
framework is designed incorporating the data warehouse 
and mining tasks. Entities or dimensions deduced in the 
models go through data structuring procedures, as per the 
type of data and whichever logic data accept. Ontology 
supports easy organization of these logical data structuring 
procedures. One of such structuring approaches described 
in Fig.8, is an example of organizing the data in several hi-
erarchies. Other criteria that support compatibility and de-
sign of a warehouse are: 
• For sharing structure-reservoir-production data among 

several fields in a producing basin and among multiple 
petroleum systems 

• Data models are flexible to fast changing geological and 
geophysical data situations in a basin 

• Reusability of composite data models among several 
petroleum fields and systems for knowledge discoveries 

• To model rapidly changing seismic data (because of ve-
locities), because of geological situations, changing data 
structures and models in a warehousing environment, is 
more flexible 

• Conceptualization and contextual designs are significant 
in understanding the integration process. Warehouse de-
sign addresses the issue of data integration process. 
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Fig. 6: Domain ontology model connecting geology-seismic dimensions 
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Fig. 7: An integrated framework for modeling warehouse and mining 
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Fig. 8: A hierarchical data structure for mapping and modeling integrated 

(seismic-well domains integration) heterogeneous datasets 

B. What do these methodologies do: 

For processing and interpreting the data, prior to integra-
tion, core program captures the processed data from several 
modules and then integrates data from multiple fields and 

petroleum systems. During conceptual (ontology) develop-
ment stage, an integrated Metadata, can save enormous 
computing and time resources during data-mining and 
knowledge extraction stage, other merits include: 
1. This approach has flexibility to update scalable data at-

tributes, depending upon the size of the oil-field and ba-
sin; thus meeting local and global geological situations 
(i.e., field to basin level hierarchies) 

2. Our models consist of a package, in which petroleum 
data from different petroleum fields and basins are cap-
tured and intelligently structured through logical data 
organization. 

3. Enormous amount of knowledge is extracted from pro-
ducing petroleum fields in terms of varied attribute di-
mensions and thus assessing an implementation of an 
effective data mining approach, such as cluster mining, 
rule mining and decision-trees 

4. Sink holes investigation, geological storages of CO2, 
areas of H2S, reservoirs polluted by CO2 and guiding 
smart wells and also multi-lateral wells are few typical 
applications to our proposed methodologies. 

C. Significance 

1. Integration and data sharing 
2. Resolving complexity of heterogeneous time-

depth/velocity data presentation – in several multi-
dimensional views 

3. Flexibility in changing data structures based on ge-
ology 

4. Exploration and development risk minimization 
5. Better understanding of data/views with least effort 
6. Flexibility in changing and reusing the time-depth 

data structures quickly, (depending upon the fast 
changing geology situations, including drilling and 
production scenarios; addressing interoperability is-
sues. 

D. Stages of Development 

1. Ontology – Specification, conceptualization and 
contextualization 

2. Data warehousing – data integration 
3. Data mining – classifications, clusters, design of rule 

mining and decision trees; extraction of knowledge 
4. Data visualization – presentation of data views  
5. Data Interpretation: interpretation of presented 

knowledge 
 

The following procedure is followed for designing the 
data warehouse and data mining: 

1. Acquire resources data 
2. Identify dimensions, entities and objects 
3. attributes of petroleum exploration and production 

data 
4. build ontology models using petroleum data enti-

ties/dimensions 
5. structuring and de-structuring of complex relation-

ships among data entities/objects 
6. Identify all the dimensions/entities in relational, 

hierarchical and networked environments; star, 
snowflake and fact constellation schemas 

7. Petroleum ontology; Build ER, UML, Logical 
multi-dimensional & implementation data models 
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8. Develop star, snowflake and fact constellation 
schemas constructing multidimensional logical 
and implementation data models; load data into 
Oracle database program for storing integrated pe-
troleum- metadata in a warehouse environment 

 

The conceptual schema design process is typically an it-
erative process, refinement and integration of views that 
involve: 

1. Decomposition and/or synthesis of dimensions 
2. Redefinition of relationships & relationship types 
3. Redefinition of mapping constraints 
4. Redefinition of high-level abstractions (e.g. con-

ceptualization, generalization or specialization) 
based on semantics and contexts 

5. Rearrangement of attributes among multiple di-
mensions (e.g. structure-reservoir-production di-
mensions and sets of their relationships) 

E. Load the data into Oracle and cluster the data using 
cluster algorithms 

1. Classify each cluster to qualify understanding of each 
dimension  

2. Run SQL queries or other data mining logic – for ac-
cessing required data from warehoused metadata 

3. Interpreting the data views – for extracting shallow, 
multidimensional, hidden and deep knowledge – by 
means of correlations, trends and patterns perceived 
from data mining; build statistical data models for future 
prediction of resources 

4. Extract hidden knowledge for interpreting petroleum 
geology  

5. Knowledge discovery on petroleum systems, especially 
with fast changing geological situations (affecting ve-
locity datasets, exploration phase) saving millions of 
dollars for drilling (drilling phase) hazards and during 
mining stages 

6. IT/Communication technology opportunities must be 
utilized to understand these systems and datasets  

7. To develop forecast models – for predicting knowledge, 
geologically interpretable, but maximise efforts in un-
derstanding petroleum fields and systems, extract 
knowledge from these Metadata systems. 

F. Data Mining and Implementation of Integrated Data 
Schemas (workflows) 

The dimension hierarchy facilitates viewing the multi-
dimensional data in several data cube representations [3] 
and [4]. Conceptually, multidimensional data are viewed as 
lattice of cuboids. An n-dimensional data cube, C [A1, 
A2… An], is a database with n dimensions as A1 A2… and 
An, each of which represents a theme and contains │Ai│, 
number of distinct elements in the dimension Ai. There are 
many data cells in the data cube, in which each cell, C[a1, 
a2, …, an] stores the numeric measures of the data for 
Ai=ai. Thus, a data cell corresponds to an instantiation of 
all dimensions. In the following, C [dip, strike, vertical] is 
the data cube, and a data cell is C [inline, crossline, 
time/depth] stores number of instances and associated 
measures. There are hundreds of in-lines and cross-lines (of 
a typical seismic acquisition campaign) and for each in-line 
and cross-line, could be hundreds of CDP points [8]. For 

each CDP point, C [inline CDP, crossline CDP, 
time/depth], there is unique value of [easting, northing, 
time/depth] value. In the case of horizon or seismic wavelet 
in horizon domain, a typical cell C [easting, northing 
peak/trough] has instance, for a seismic time or depth cube, 
thousands of cells have data cell instances. Each dimension 
has unique set of rows and column instances, having con-
nections among peak and trough data instances. Interest-
ingly, in-line, cross-line dimensions have relationships and 
their properties (either peak or trough or seismic wavelets 
of horizons) are linked through instances of easting and 
northing. As shown in Figs. 9a-9d, several cube representa-
tions are demonstrated, to present the data mining views for 
in-line and cross-lines, in terms of surface map views for 
interpretation. In-line and cross-line data visualizations are 
extracted for interpreting various properties of horizons, 
such as structure (geological structure). Multidimensional 
data models possess summary measure, summary function, 
dimension and dimension hierarchy, the basic conceptual 
components. A measure value is computed for a given cell 
by aggregating the data corresponding to the respective di-
mension-value that sets and defines the cell. The measures 
are categorized into different groups based on the kind of 
aggregate function used. 
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Fig. 9a: Crossline/Inline data dimensions their relationships with seismic 

time or geologic depth dimensions 
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Fig. 9b: An inline dimension with respect to time/depth dimension 
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Fig. 9c: A Cross line dimension with respect to time/depth dimension 

IV. DATA VISUALIZATION AND INTERPRETATION 

Data visualization ([7] and [9]) is important stage for 
creating and representing rich and compelling visualiza-
tions to explain the multiple dimensions and connections 
within broader (global) integrated workflows. Visualiza-
tions affecting the data integration process and each dimen-
sion (within an integrated workflow) contributing to this 
process, have a bearing on the strength and depth of inter-
pretation of visualizations. In the current scenarios, geo-
logical (structure and reservoir), geophysical dimensions 
(their attributes) and petrophysical dimensions and their at-
tributes, used for interpretation, are presented with several 
visualizations. 
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Fig. 9d: Time slice Cube 

Workstation graphics are used for generating visualiza-
tions and their interpretations. As described in the Figs. 11-
12, warehoused data views led to interpret in terms of geo-
logical structures their connectivity among different fields. 
Different horizons are interpreted from volumes of seismic 
data (several wavelets, with peak and trough dimensions). 
Seismic in-lines are plotted with horizons posted on them, 
showing up several seismic peaks and troughs. Geo-spatial 
visualizations are often representative, when easting and 
northing of data properties are drawn, thus understanding 
the connections among data characteristics. As demon-
strated in Fig. 10, all the peaks and troughs dimensions are 
plotted with horizon and structure attributes. The connec-
tivity between seismic (horizons) and well data attributes 
has been made by data integration process. Structure is a 
typical data characteristics, measured for different horizons 
as illustrated in visualizations shown in Figs. 11-12.    

 
Fig. 10: An inline seismic section, showing horizon attributes 

 
Fig. 11: Typical data integration process views 

 
Fig. 12: Several dimensions plotted with structure property instances, ex-
tracted from warehoused metadata, showing connectivity among fields 

V. CONCLUSIONS AND RECOMMENDATIONS 

1. Knowledge discovery on petroleum systems, especially 
with fast changing geological situations (affecting ve-
locity datasets, exploration phase) – saving millions of 
dollars for drilling (drilling phase) hazards and during 
mining stages 

2. IT/Communication technology opportunities must be 
utilized to understand these systems and datasets  

3. To develop forecast models – for predicting knowledge, 
geologically interpretable, but maximise efforts in un-

derstanding petroleum fields and systems, extract 
knowledge from these Metadata systems 

4. Data Warehouse designed, embodies significant pro-
gress on the database integration problem for petro-
leum system ecosystems 

5. A domain-specific (knowledge discovery: exploration 
and production domains; integrated framework devel-
opment) Metadata (firm-up conceptualization) 

6. Logical and implementation data models for warehous-
ing the large volume of petroleum data   

7. Data mining algorithms (for accessing data, interpret 
them for prediction knowledge)  

8. Use of application and its evaluation in petroleum ex-
ploration companies  

VI. FUTURE SCOPE OF WORK 

Implementation of an integrated petroleum metadata 
model consisting of different exploration and production 
data dimensions and attributes, is in progress 

Application of association rule mining among petroleum 
system factors; to build the connectivity among systems of 
different geographic regions; maximise the predictability of 
petroleum production by favourable geology are in pro-
gress. Construction of decision trees, computing classifiers, 
determining the accuracy of classifiers among sets of explo-
ration and production data items are planned. Petroleum 
data clustering – understanding and knowledge building 
among different petroleum systems, is under investigation  

VII. TESTING AND EVALUATION 

Economic measures of ontology-base warehousing in the 
petroleum industries need to be implemented and assessed. 
OLAP Models are to be implemented in multi-disciplinary 
application scenarios.  
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