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ABSTRACT

The squirt-flow wave attenuation mechanism is imple-
mented in Biot’s theory of poroelasticity in the form of
differential equations. All the stiffnesses involved in the
stress-strain relation become complex and frequency depen-
dent, which can exactly be expressed in terms of kernels
based on the Zener mechanical model. In the time domain,
this approach implies time convolutions, which are circum-
vented by introducing memory variables. The differential
equations are consistent with Gassmann’s and Mavko-Jizba
equations at low and high frequencies, respectively. All the
coefficients in the poro-viscoelastic differential equations
have a clear physical meaning and can be obtained or esti-
mated from independent measurements. The key additional
parameters are the dry-rock bulk modulus at a confining
pressure where all the compliant pores are closed, i.e., a
hypothetical rock without the soft porosity, the grain-contact
aspect ratio and the compliant porosity. We recasted the
wave equation in the particle-velocity/stress formulation
and solved it by using a time-splitting technique and the
Fourier pseudospectral method to compute the spatial deri-
vatives. The algorithm can be used to obtain synthetic wave
fields in inhomogeneous media.

INTRODUCTION

The theory of poroelasticity is widely used today in many geo-
physical applications. The most versatile approach was developed
by Biot in the 1950s (Biot, 1962; Carcione, 2007; Chapter 7), who
obtained the dynamical equations for wave propagation in a fully
saturated medium. The theory assumes that the anelastic effects
arise from viscous interaction between the fluid and the solid,
and predicts two P-waves and one S-wave. Basically, the fast

P-wave has solid and fluid motions in phase, and the slow (Biot)
P-wave has out of phase motions. At low frequencies, the slow wave
becomes diffusive because the fluid viscosity effects dominate over
the inertial effects. At high frequencies, the inertial effects are pre-
dominant and the Biot mode may behave as a wave under certain
conditions, which depend on the amount of clay and permeability
(Klimentos, 1988).
Although Biot’s theory is widely used to model the behavior of

porous media, it is known to underestimate attenuation of fast
P- and S-waves. The only attenuation mechanism obtained from
the dispersion equation of Biot’s theory is the so-called global flow,
that is, wavelength-scale equilibration between the peaks and
troughs of the wave. For typical rocks, the characteristic frequency
of this mechanism is on the order of tens of kHz or higher. Another
mechanism that can be modeled using Biot’s theory is associated
with mesoscopic flow between areas of different compliance within
the rock (White et al., 1976; Gurevich and Lopatnikov, 1995; Pride
et al., 2004; Müller et al., 2010). The word “mesoscopic” refers to
the size of inhomogeneities being much larger than the typical grain
size but much smaller than the wavelength of the pulse. For
instance, if there are mesoscopic patches of gas in a brine-saturated
sandstone, diffusion of pore fluid between the patches dissipates the
energy through conversion into the diffusive slow mode (White,
1975; Norris, 1993; Johnson, 2001; Toms et al., 2006). The meso-
scopic flow mechanism can be modeled using Biot’s equations of
poroelasticity with spatially varying coefficients (e.g., Rubino et al.,
2007; Masson and Pride, 2007). However, in field-scale seismic nu-
merical modeling it is often more efficient to approximate the cor-
responding relaxation peak with a Zener (1948) viscoelastic model
(e.g., Carcione et al., 2006).
Another important loss mechanism at high frequencies is the

so-called “squirt flow,” by which there is flow from fluid-filled
microcracks (grain contacts) to the pore space and vice versa
(Mavko and Nur, 1975; O’Connell and Budiansky, 1977; Jones,
1986). Biot (1962) was the first to discuss this mechanism and pro-
pose a viscoelastic mechanical model to describe it. Quoting Biot:
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“When two elastic bodies are in contact and are surrounded by a
viscous fluid, a force applied in a direction normal to the area of
contact will tend to squeeze the flow away from this area. Because
of fluid viscosity, the fluid will not move away instantaneously. A
time delay, which is exemplified by the equivalent spring dashpot
model of Figure 4, will be involved.” Using Biot’s notation, this
model is given by

κ� ¼ κ0 þ
κ1r

iωþ r
; (1)

where κ� is the (drained) compressibility, κ0, κ1, and r are constants,
and ω is the angular frequency. It can easily be shown that this
model corresponds to a dry-rock bulk modulus K ¼ 1∕κ� given
by a Zener model (e.g., Carcione, 2007) with relaxation times
τϵ ¼ 1∕r and τσ ¼ 1∕½rð1þ κ1∕κ0Þ�, and relaxed modulus
MR ¼ 1∕ðκ0 þ κ1Þ.
The problem resides in finding a suitable squirt-flow model, in

which the Zener parameters can be entirely estimated from the
microstructural properties of the rock. Such a model has recently
been proposed by Gurevich, et al., (2009, 2010). To include the
squirt mechanism in a poroelastic numerical algorithm, one needs
to replace the coefficients of the equations of poroelasticity with
time-domain integro-differential operators corresponding to the
solution of a dispersion equation of that mechanism. The problem
is that most mathematical models of squirt flow are very compli-
cated and corresponding dispersion equations often contain special
functions of frequency that do not lend themselves to explicit
representation in time domain (Murphy, 1986; Chapman et al.,
2002; Pride et al., 2004). However, Gurevich et al. (2010) propose
a simple squirt-flow model in which the dispersion equation corre-
sponds directly with the Zener viscoelastic model. This is important
because this model can be expressed in the time domain by using
memory variables (Carcione, 1998; Carcione and Helle, 1999;
Arntsen and Carcione, 2001; Carcione et al., 2006; Carcione, 2007).
The expression for the peak frequency of the relaxation mecha-

nism is similar to the usual expression (e.g., Jones, 1986), except
that in the present model, the bulk modulus of the rock is replaced
by a combination of bulk and shear moduli. For liquid-saturated
rocks the attenuation and dispersion curves are symmetric about
the characteristic frequency in a log-log scale, consistent with the
Zener model. The dissipation factor is proportional and inversely
proportional to the frequency at the low- and high-frequency ranges,
respectively, and the magnitude of attenuation and dispersion is
directly related to the variation of the dry-rock bulk modulus with
pressure. All these features are characteristic of the double-porosity
model of Pride et al. (2004), but the present model is based on a
different theoretical approach and is much simpler to implement.
The parameters can be measured or estimated from measurements
of ultrasonic velocities and strains versus confining pressure on dry
samples. The workflow for estimation of these parameters is de-
scribed in Gurevich et al. (2010). One assumption in this workflow
is that all compliant pores are closed at the upper limit of the pres-
sure range of the measurements and hence ultrasonic velocities
become independent of pressure. Therefore, there is no squirt at
these pressures and the saturated and dry velocities should approxi-
mately satisfy Gassmann’s (or Biot) equations.
The experimental validation of the model requires a comparison

of its predictions against measurements of fluid saturated velocities
and attenuation factors versus frequency and pressure. The

predicted frequency dependency is a consequence of using soft
porosity with a single aspect ratio. Many experimental studies show
a smoother variation of the quality factor with frequency, or even a
constant value. In the context of squirt-flow models, such frequency
dependency can be explained by assuming a broad distribution of
aspect ratios (O’Connell and Budiansky, 1977). This is also invoked
to explain the exponential stress dependency of elastic moduli.
However, an analysis based on the theory of Shapiro (2003) sug-
gests that such stress dependencies can be explained by a combina-
tion of only two aspect ratios: one for stiff pores and one for soft
pores (Pervukhina et al., 2010).
In summary, the novelty of this model consists in the following:

(1) It is exactly consistent with Gassmann’s theory in the low-
frequency limit, and with Mavko-Jizba unrelaxed moduli in the
high-frequency limit (Mavko and Jizba, 1991). (2) All the param-
eters of the model have a clear physical meaning. There is only one
adjustable parameter: the aspect ratio of compliant pores (grain
contacts). All other parameters can be measured or estimated from
measurements of ultrasonic velocities and strains versus confining
pressure on dry samples (Shapiro, 2003). Since the theory has many
parameters, it is always possible to fit the data by varying the
unknown parameters. It is therefore critical to be able to measure
or estimate independently as many parameters as possible, that is, to
perform a controlled experiment. In this model, we use the gap as-
pect ratio as a free fitting parameter and estimate it as the value that
provides the best fit for stiffness-pressure dependency on saturated
samples. Aworkflow for the estimation of these parameters is given
in Gurevich et al. (2010). (3) The theory can be implemented ex-
actly in the time domain, without the need of time convolutions.
Regarding the present work, its novelty resides in the following:

(a) The squirt-flow wave attenuation mechanism is implemented in
Biot’s theory of poroelasticity in the form of differential equations,
and (b) These equations are solved by using a numerical algorithm
based on memory variables. The wavefield is obtained using a
grid method based on the Fourier differential operator and a
Runge-Kutta time-integration algorithm. Since the presence of
the slow quasi-static mode makes the differential equations stiff,
a time-splitting integration algorithm is used to solve the stiff part
analytically. The modeling is second-order accurate in the time dis-
cretization and has spectral accuracy in the calculation of the spatial
derivatives (Carcione and Quiroga-Goode, 1995; Carcione, 2007).
The algorithm, which allows general material variability, provides
snapshots and time histories of the rock-frame and fluid particle
velocities, and corresponding stress components.

STRESS-STRAIN RELATIONS INCLUDING THE
SQUIRT-FLOW MECHANISM

Stress-strain relations

In the absence of body sources, the time-differentiated stress-
strain relations for an inhomogeneous isotropic poroelastic medium,
according to Biot’s theory are

σ̇ij ¼ 2μGdij þ KGϑδij þ αMφδij;

ṗf ¼ −Mðφþ αϑÞ;

where ϑ ≡ ∇ · v; φ ≡ ∇ · q; dij ≡
1

2
ð∂ivj þ ∂jviÞ −

1

3
δijϑ;(2)

(Biot, 1962; Carcione, 2007). Moreover, σij are the total stress com-
ponents, pf is the phase-averaged pressure fluctuation in the fluid,
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v is the phase-averaged particle-velocity vector of the solid consti-
tuent of the two-phase poroelastic medium, with components vi,
and q is the porosity-weighted relative fluid velocity with respect
to the solid. A dot above a variable denotes time differentiation, ∂i
denotes spatial differentiation with respect to the xi-coordinate, and
δij is the Kronecker delta. The stress-strain relations are written in
the particle-velocity/stress formulation, which is suitable to perform
numerical simulations.
The poroelastic coefficients are the Gassmann bulk and shear

moduli,

KG ¼ Km þ αðKmÞ2MðKmÞ and μG ¼ μm (3)

and

αðKmÞ ¼ 1 −
Km

Ks
and MðKmÞ ¼

Ks

1 − ϕ − Km∕Ks þ ϕKs∕Kf
; (4)

where ϕ is the porosity, Km and μm are the bulk and shear moduli of
the drained matrix, and Ks and Kf are the solid and fluid bulk mod-
uli, respectively (e.g., Carcione, 2007). We explicitly indicate the
functional form of α and M on Km because we shall replace this
modulus by a modified matrix (or frame) complex modulus K,
which includes the squirt-flow mechanism. In the same manner,
μm will be replaced by μ. The new moduli are complex-valued
and frequency dependent.

Squirt-flow model

The squirt-flow model is based on the fact that the pore space of
many rocks has a binary structure: relatively stiff pores, which con-
stitute most of the pore space, and relatively compliant (or soft)
pores, which are responsible for the pressure dependency of the por-
oelastic moduli. When the frequency is higher than the squirt char-
acteristic frequency, the fluid pressure does not have enough time to
equilibrate between stiff and compliant pores during a half-wave
cycle (the so-called unrelaxed state). Then, compliant pores at
the grain contacts are effectively isolated from the stiff pores and
hence, become stiffer with respect to normal (but not tangential)
deformation. To model the frequency dependency of the moduli,
Gurevich et al. (2010) assume the geometrical configuration
proposed by Murphy et al. (1986): a compliant pore forms a disk-
shaped gap between two grains, and its edge opens into a toroidal
stiff pore (Figure 1).
Using this model, the bulk and shear moduli of the saturated rock

at low frequencies are given by Gassmann’s equations,

KG ¼ K þ α2ðKÞMðKÞ and μG ¼ μ; (5)

where K and μ are the bulk and shear moduli of the modified frame
including the unrelaxation due to the presence of the squirt-flow
mechanism, and α and M are given by equation 4 substituting
Km with K. For simplicity, we keep the same notation for the
Gassmann moduli, but now they are complex-valued and frequency
dependent.
Gurevich et al. (2009, 2010) obtained the modified dry moduli in

the following form:

1

K
¼ 1

Kh
þ
��

1

Km
−

1

Kh

�
−1

þ
�

1

K�
f
−

1

Ks

�
−1
ϕ−1
c

�
−1
;

1

μ
¼ 1

μm
−

4

15

�
1

Km
−

1

K

�
; (6)

where Km and μm are the dry-rock bulk and shear moduli at the
confining pressure pc, Kh is the dry-rock bulk modulus at a con-
fining pressure where all the compliant pores are closed, i.e., an
hypothetical rock without the soft porosity, and ϕc is the compliant
porosity. This is so small — nearly 0.001 for most rocks — that the
total porosity ϕ can be assumed to be equal to the stiff porosity. The
key quantity in equations 6 is the effective bulk modulus of the fluid
saturating the soft pores

K�
f ¼ iωη�; (7)

where

η� ¼ 3

2

�
R
h

�
2

η; (8)

is an effective viscosity, η is the fluid shear viscosity, R is the radius
of the crack and h is its thickness (see Figure 1). This equation has
the restriction that the fluid modulus must satisfy

Kf ≫ 8ϕc

�
1

Km
−

1

Kh

�
−1
: (9)

This indicates that this modulus should not be too small, i.e., the
fluid inside the crack must be a liquid.
An exact expression of the effective fluid modulus obtained

by Gurevich et al. (2010), without invoking the condition of
equation 9, is

K�
fexact ¼

�
1 −

2J1ðkRÞ
kRJ0ðkRÞ

�
Kf; k ¼ 2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
3iωη

Kf

s
¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffi
−8K�

f

Kf

s
; (10)

where J0 and J1 are Bessel functions.

Zener model representations

At this stage, all the coefficients involved in the constitutive
equations 2, μG, KG, M, and αM, are real-valued quantities.

Figure 1. Sketch of the squirt-flow model, where two sandstone
grains in contact are shown. The soft pores are the grain contacts
and the stiff pores constitute the main porosity. The quantity R is
the radius of the disk-shaped soft pore (half disk is represented in
the plot).
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To include the squirt-flow loss in Biot’s equations, we replace Km

by K in these coefficients and express them as complex and fre-
quency-dependent functions in the frequency domain, or relaxation
functions in the time domain. We show that these functions can ex-
actly be represented by the Zener mechanical model in all the cases.
This fact allows us to perform numerical simulations in the time
domain.
The Zener modulus has the form

Z ¼ ZðMR; τϵ; τσÞ ¼ MR

�
1þ iωτϵ
1þ iωτσ

�
; (11)

where MR is the relaxed modulus, and τϵ and τσ are relaxation
times. Equation 11 represents a mechanical model (e.g., Carcione,
2007) made of two springs and a dashpot. A quality factor
Q ¼ ReðZÞ∕ImðZÞ can be associated with this modulus, whose dis-
sipation factor 1∕Q is a symmetric relaxation peak as a function of
the logarithm of the frequency. The exact location of the relaxation
peak is

f0 ¼
ω0

2π
; ω0 ¼

1ffiffiffiffiffiffiffiffi
τϵτσ

p : (12)

and the minimum value of the quality factor at the peak is

Q0 ¼ 2½ω0ðτϵ − τσÞ�−1: (13)

The relaxation function ψ associated with the modulus of
equation 11 is such that

Z ¼ Fðψ: Þ; (14)

where F is the time Fourier transform and

ψðtÞ ¼ ψ0

�
τσ
τϵ

��
1þ

�
τϵ
τσ

− 1

�
expð−t∕τσÞ

�
HðtÞ ≡ ψ 0ðtÞHðtÞ; (15)

where ψ0 ¼ MRτϵ∕τσ and H is the Heaviside function.
The Zener equations for the various stiffnesses are then obtained

by using equation 6 and replacing Km with K in equations 3 and 4.
We obtain

K ¼ ZðKm; θϵ; θσÞ;
μG ¼ μ ¼ Zðμm; αϵ; ασÞ;
KG ¼ Z½KGðKmÞ; βϵ; βσ�;
M ¼ Z½MðKmÞ; γϵ; γσ�;

αM ¼ Z½αðKmÞMðKmÞ; δϵ; δσ �; (16)

where

θϵ ¼
η�

Ks
ða − 1Þ; θσ ¼

η�

Ks

�
Km

Kh
a − 1

�
;

αϵ ¼ θϵ; ασ ¼ θϵ −
4μm
15Km

ðθϵ − θσÞ;

βϵ ¼
bθϵ þ θσ
bþ 1

; βσ ¼
cθσ − θϵ
c − 1

;

γϵ ¼ θσ; γσ ¼ βσ;

δϵ ¼
dθσ − θϵ
d − 1

; δσ ¼ βσ; (17)

with

a ¼ ðKs∕ϕcÞð1∕Km − 1∕KhÞ;
b ¼ ðf − 1Þ∕d;
c ¼ dðf þ 1Þ;
d ¼ Ks∕Km;

f ¼ ϕðKs∕Kf − 1Þ; (18)

being dimensionless quantities.
Since Km ≤ Kh, it is θσ ≤ θϵ, and the dispersion is such that the

phase velocity related to modulus K increases with frequency. At
zero frequency, the modified frame modulus is equal to the relaxed
dry-rock modulus, as expected. At high frequencies, the unrelaxed
modulus is Kmðθϵ∕θσÞ ¼ Kmða − 1Þ∕½ðKm∕KhÞa − 1Þ. Because
θσ ≤ θϵ, it is ασ ≤ αϵ, and the shear modulus μ has the same kind
of velocity dispersion.
The peak frequency corresponding to modulus K can be obtained

from equations 8, 12, 17, and 18,

fsf ≈
Ks

3πηa

�
h
R

�
2

; (19)

using the approximations Kh ≈ Km and a ≫ 1. Hence, the peak fre-
quency decreases with increasing viscosity and decreasing aspect
ratio of the crack.
Let us consider the sandstone whose properties are given in

Table 1. Condition 12 is satisfied because 2.25 GPa≫ 0.28 GPa.

Table 1. Water-saturated sandstone.

Grain Bulk modulus, Ks 50 GPa

Density, ρs 2650 kg∕m3

Matrix Porosity, ϕ 0.2

Soft porosity, ϕc 0.0002

Bulk modulus, Km 18 GPa

Bulk modulus, Kh 20 GPa

Shear modulus, μm 12 GPa

Grain-contact aspect ratio, h∕R 0.0008

Permeability, κ 200 mD

Tortuosity, T 2.3

Brine Bulk modulus, Kf 2.25 GPa

Density, ρf 1040 kg∕m3

Viscosity, η 1 cP

1 cp ¼ 10−3 Pa s; 1 mD ≈ 10−15 m2.
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We obtain the parameters indicated in Table 2 for the Zener models.
The behavior of αM is anomalous because δϵ < δσ , but this
fact has no relevance from a physical point of view because the
relevant Q-factor is that related to equation 23 and this is always
positive.

PHASE VELOCITY AND DISSIPATION FACTOR

In the absence of squirt-flow loss, Biot’s theory predicts a relaxa-
tion peak. The associated attenuation mechanism has a macroscopic
nature. It is the wavelength-scale equilibration between the peaks
and troughs of the P-wave. Geertsma and Smit (1961) showed
that the dissipation factor 1∕Q of the fast P-wave, obtained
with equation 23 (see below), can be approximated by that of a
Zener model for Q ≳ 5. They obtain the expressions

Q−1ðωÞ ¼ ωðτϵ − τσÞ
1þ ω2τϵτσ

; τσ ¼
�

vG
vPð∞Þ

�
2

τϵ; τϵ ¼
Xκρ

η
; (20)

where vPð∞Þ is the P-wave phase velocity at the high-frequency
limit (e.g., Carcione, 2007; eq. [7.290]), vG ¼ vPð0Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðKG þ 4μG∕3Þ∕ρ
p

is Gassmann’s velocity, κ is the permeability,
X ¼ ρfT ∕ðρϕÞ − ðρf∕ρÞ2, T is the tortuosity of the pore space,
ρ ¼ ð1 − ϕÞρs þ ϕρf is the bulk density, ρs is the grain density
and ρf is the fluid density.
The location of the Zener relaxation peak is ωB ¼ 1∕ ffiffiffiffiffiffiffiffi

τστϵ
p

.
Then, the peak frequency is fB ¼ ωB∕2π and using equation 20,
we get

fB ¼
�
vPð∞Þ
vG

�
η

2πXκρ
≈

η

2πXκρ
¼ ϕηρ

2πκρfðρT − ϕρfÞ
; (21)

because Biot’s velocity dispersion is rather small. Although Biot’s
loss mechanism can approximately be represented by a Zener
modulus, we model its effects exactly by solving Biot’s equations
explicitly.
The phase velocity and dissipation factor, including the Biot and

squirt-flow mechanisms, are

vP ¼
�
Re

�
1

vc

��
−1
; (22)

and

Q−1 ¼ Imðv2cÞ
Reðv2cÞ

(23)

where vc is the complex velocity (e.g., Carcione, 2007). For shear
waves

vc ¼
ffiffiffiffiffiffi
μG
ρ̄

r
; ρ̄ ¼ ρ − ρ2f∕ρ1 (24)

where

ρ1 ¼
ρfT
ϕ

þ η

iωκ
; (25)

The complex velocity of the P-waves is obtained from the
following second-order equation

ρ̄ρ1v4c þ a1v2c þ a0 ¼ 0; (26)

where

a1 ¼ ð2αρf − ρÞM − ρ1

�
KG þ 4

3
μG

�
;

a0 ¼
�
K þ 4

3
μ

�
M (27)

(e.g., Carcione, eq. [7.287]).
Figure 2 shows the phase velocities and dissipation factors (1∕Q)

of the fast P-wave and S wave. The solid lines in Figure 2a and 2b
correspond to the case including squirt-flow and Biot losses,
whereas the dashed line in 2a represents the velocity dependence
due to Biot losses only (in this case vPð∞Þ∕vG ¼ 1.007). The
two relaxation peaks (squirt-flow and Biot) are indicated in
the P-wave dissipation factor curve (solid line in Figure 2c). The
P-wave peak dissipation factor is approximately equal to 40 at
the sonic frequency band. Figure 3 shows the same physical quan-
tities for the slow P-wave. It can be shown that the squirt-flow
attenuation mechanism contributes with more slow-wave attenua-
tion, e.g., at 100 Hz, its value is three times the value without
squirt-flow loss.

INCORPORATION OF THE SQUIRT-FLOW
MECHANISM INTO TIME-DOMAIN

BIOT’S EQUATIONS

We implement the squirt-flow mechanism in Biot’s poroelastic
wave propagation equations by using the well-known concept of
memory variables (e.g., Day and Minster, 1984; Carcione et al.,
1988). This approach yields a complete, time domain, partial
differential formulation of the governing equations which avoids
calculation of temporal convolutions.
The complex-valued and frequency-dependent stiffnesses μG,

KG, M, and αM, involved in equations 2, transform to time-
dependent relaxation functions in the time domain. The products
between the poroelastic moduli and field variables are then replaced
by time convolutions. In the 3D space/frequency domain, we have
the following:

μGd11; μGd22; μGd33; μGd23; μGd13; μGd12;

KGϑ; αMφ; Mφ; αMϑ; (28)

i.e., 10 products, which lead to 10 memory variables. In the time

Table 2. Zener parameters of the stiffnesses.

Modulus K μG KG M αM

Relaxation time, τϵ (μs) 65 65 62 58.5 55

Relaxation time, τσ (μs) 58.5 64 58 58 58

Peak frequency, f0 (kHZ) 2.58 2.47 2.65 2.73 2.82

Relaxed modulus, MR (GPa) 18 12 22 10 6.5

Minimum Q factor, Q0 19 107 31 260 −39
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domain, each product is replaced by ψ
: � u, where ψ is the associated

relaxation function (see equation 15) and u is the field quantity, e.g.,
d11; d22; : : : , etc. Introducing the memory variable e ¼ ψ

: 0H � u,
the convolution is

ψ
: � u ¼ ψ0uþ e ¼ M∞uþ e; M∞ ¼ ψ0 ¼

�
τϵ
τσ

�
MR;

(29)

where

e
: ¼ ψ0

�
1

τϵ
−

1

τσ

�
u −

e
τσ

¼ 1

τσ
½ðMR −M∞Þu − e�: (30)

We consider the 2D case in the ðx; zÞ-plane. In this case, the for-
mulation leads to seven memory variables, el ¼ 1; : : : ; 7, asso-
ciated with the various terms,

a)

b)

Figure 3. (a) Phase velocity and (b) dissipation factor of the slow
P-wave as a function of frequency.

p

a)

b)

c)
Fast

Figure 2. (a) Phase velocity of the fast P-wave, (b) and S-wave , and
(c) dissipation factors as a function of frequency. The dashed line in
(a) represents the phase velocity without squirt-flow dissipation.
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e1 ↔ μGd11; A1 ¼ μm − μ∞; u1 ¼ d11; τ1 ¼ ασ ;

e2 ↔ μGd33; A2 ¼ μm − μ∞; u2 ¼ d33; τ2 ¼ ασ ;

e3 ↔ μGd13; A3 ¼ μm − μ∞; u3 ¼ d13; τ3 ¼ ασ ;

e4 ↔ KGϑ; A4 ¼ KGðKmÞ − KG∞; u4 ¼ ϑ; τ4 ¼ βσ ;

e5 ↔ αMφ; A5 ¼ αðKmÞMðKmÞ − ðαMÞ∞; u5 ¼ φ; τ5 ¼ δσ ;

e6 ↔ Mφ; A6 ¼ MðKmÞ −M∞; u6 ¼ φ; τ6 ¼ γσ ;

e7 ↔ αMϑ; A7 ¼ αðKmÞMðKmÞ − ðαMÞ∞; u7 ¼ ϑ; τ7 ¼ δσ ; (31)

where

μ∞ ¼ μm
αϵ
ασ

; KG∞ ¼ KGðKmÞ
βϵ
βσ

;

M∞ ¼ MðKmÞ
γϵ
γσ

; ðαMÞ∞ ¼ αðKmÞMðKmÞ
δϵ
δσ

(32)

are unrelaxed moduli, and the Al, ul, and τl are used below.
The 2D poroelastic equations of motion, including the squirt-

flow mechanism, are then

• Biot-Euler’s dynamical equations

∂1σ11 þ ∂3σ13 ¼ ρv̇1 þ ρfq̇1;

∂1σ13 þ ∂3σ33 ¼ ρv̇3 þ ρfq̇3: (33)

• Dynamical Darcy’s law

−∂1pf ¼ ρfv̇1 þmq̇1 þ
η

κ
q1;

−∂3pf ¼ ρfv̇3 þmq̇3 þ
η

κ
q3; (34)

where m ¼ ρfT ∕ϕ.
• Stress-strain relations

σ̇11 ¼ 2ðμ∞d11 þ e1Þ þ KG∞ϑþ e4 þ ðαMÞ∞φþ e5 þ s11;

σ̇33 ¼ 2ðμ∞d33 þ e2Þ þ KG∞ϑþ e4 þ ðαMÞ∞φþ e5 þ s33;

σ̇13 ¼ 2ðμ∞d13 þ e3Þ þ s13;

ṗf ¼ −½M∞φþ e6 þ ðαMÞ∞ϑþ e7� þ sf; (35)

where s denotes time-differentiated body moment sources of
seismic waves.

• Memory-variable equations

ėl ¼
1

τl
ðAlul − elÞ; l ¼ 1; : : : ; 7; (36)

where the ul are defined in equation 31.

To recast these equations in the particle-velocity/stress formula-
tion, they have to be complemented with the rate of strain/particle-
velocity equations,

d11 ¼
1

3
ð2∂1v1 − ∂3v3Þ; d33 ¼

1

3
ð2∂3v3 − ∂1v1Þ;

d13 ¼
1

2
ð∂1v3 þ ∂3v1Þ; ϑ ¼ ∂1v1 þ ∂3v3;

φ ¼ ∂1q1 þ ∂3q3:

(37)

Equations 33–37 contain 15 dependent variables and 16 indepen-
dent material parameters. The analogous 3D counts are 23 and 16,
respectively.

NUMERICAL METHOD

A time-splitting method and a fourth-order Runge-Kutta algo-
rithm are used to solve the differential equations 33, 34, 35, and
36 (Carcione and Quiroga-Goode, 1995; Carcione, 1998, 2007;
Carcione et al., 2010). These equations of motion can be recast
as v̇ ¼ M · vþ s, where v is the vector of unknown variables,
M is the evolution matrix and s is the source vector. Assume con-
stant material properties and a plane-wave kernel of the form
expðik · x − iωctÞ, wherein k is the real wavenumber vector, x is
the position vector and ωc is a complex frequency. Substitution
of the plane-wave kernel into the equation of motion yields an ei-
genvalue equation for the eigenvalues λ ¼ −iωc. The presence of
the slow P-wave implies very large negative eigenvalues. Let us de-
note the discrete time by t ¼ ndt, where dt is the time step, and n is
a nonnegative integer. Stability of the Runge-Kutta scheme requires
dtjλmaxj < 2.79, where λmax is the largest eigenvalue (Jain, 1984,
p. 71). Regarding the Biot loss mechanism, this problem is circum-
vented by splitting the equations and solving the stiff part analyti-
cally. The poroelastic equations can be partitioned into a stiff part
and a nonstiff part, such that the evolution operator, involved in
the solution of the equation of motion, can be expressed as
expðMtÞ ¼ expðMr þMsÞt, where r indicates the regular (nonstiff)
matrix and s the stiff matrix. The stiff part can be solved analytically
and the nonstiff part with the Runge-Kutta method (Carcione and
Quiroga-Goode, 1995). Strang’s scheme (Jain, 1984) can be shown
to be equivalent to the splitting of the evolution operator for
solving the poroelastic equations. It remains to consider the
eigenvalues corresponding to the Zener mechanisms. These eigen-
values are approximately bounded by the minimum value of −1∕θσ
(Tal-Ezer et al, 1990). Hence, the time step must satisfy dt ≤
2.79θσ , beside the classical stability relation dt ≲ 0.4dx∕vpm, where
dx is the maximum grid size and vpm is the maximum fast-P-wave
phase velocity.
The spatial derivatives are calculated with the Fourier method,

based on uniform, rectangular cells, by using the fast Fourier trans-
form (FFT) (e.g., Carcione, 2007). The Fourier pseudospectral
method has spectral accuracy for band-limited signals. Then, the
results are not affected by spatial numerical dispersion. Because
we use Fourier basis functions to compute the spatial derivatives,
equations 33, 34, 35, and 36 satisfy periodic boundary conditions
at the edges of the numerical mesh. To avoid wraparound,
absorbing strips are implemented at the boundaries of the numerical
mesh.

EXAMPLES

We consider the medium defined by Tables 1 and 2, where the
grain bulk modulus corresponds to a mixture of quartz and calcite,
mainly quartz. The medium is discretized with a mesh of 231 × 231
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points and a grid spacing of 5 cm. A point seismic energy source
imparts compressional and shear motion to the poroelastic medium
(s11 ¼ s33 ¼ sf ¼ s13), with the time variation of a Ricker wavelet
with peak frequency fp. The wavefield is computed with a time step
of 5 μs, which corresponds to the stability limit. Figure 4a and 4b
compare σ33 snapshots for fp ¼ 3 kHz and fp ¼ 10 kHz, respec-
tively. Strong velocity dispersion can be observed in agreement with
the predictions in Figure 2a and 2b. The slow wave is evident at the
source location in Figure 4a, whereas it is not visible in Figure 4b.
The attenuation factor is approximately proportional to the
frequency times the dissipation factor. Therefore, the higher the
frequency the higher the attenuation for a nearly constant quality
factor. The calculations indicate that the attenuation factor is six
times higher at 10 khz. Figure 5 shows microseismograms of the
v3-component at 4.95 m from a point compressional source
(s11 ¼ s33 ¼ ϕsf , s13 ¼ 0) (i.e., no shear motion) applied to the
solid and fluid phases. The peak frequency is fp ¼ 3 kHz and

a)

b)

Figure 4. Snapshot at 1.3 ms of the stress component σ33 for source
peak frequencies of (a) 3 kHz and (b) 10 kHz.

Figure 5. Particle-velocity component v3 at ðx; zÞ ¼ ð3.5; 3.5Þ m
from the source location, with and without the squirt-flow loss me-
chanism (solid and dashed lines, respectively). The fluid is brine.

a)

b)

Figure 6. (a) Phase velocity of the fast P-wave and (b) dissipation
factors as a function of frequency, corresponding to brine and oil.
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the signal observed in the trace is the P-wave, with the dashed line
corresponding to the case without the squirt-flow mechanism. As
can be seen, the signal with squirt-flow dissipation arrives earlier,
in agreement with Figure 2a.
In the next example, we consider the same matrix but saturated

with oil (Kf ¼ 2.16 GPa, ρ ¼ 890 kg∕m3, and η ¼ 240 cP).
Figure 6 compares the velocity and dissipation factors for brine
and oil saturation. As can be seen, for increasing viscosity the
squirt-flow peak moves to the lower frequencies unlike the Biot
peak, whose shift is toward the high frequencies. The situation is
such that the oil-saturated medium absorbs negligible P-wave
energy at the sonic band. The same happens with the S-wave.
Figure 7 shows v3 microseismograms from a fluid source with
3 kHz peak frequency. The attenuation is small and slight velocity
dispersion can be observed as shown in Figure 6a.
If we consider more compressible fluids for which the approx-

imation 9 is not valid, we observe the behavior shown in Figure 8,
where the P-wave phase velocities and dissipation factors of light oil
and gas are displayed. The solid and dash-dotted lines correspond
to the exact case, using equation 10. Light oil has Kf ¼ 0.57 GPa,
ρ ¼ 700 kg∕m3 and η ¼ 10 cP, and gas has Kf ¼ 0.0022 GPa,
ρ ¼ 10.8 kg∕m3, and η ¼ 0.001 cP. For the considered soft poros-
ity, equation 7 is a good approximation for light oil whereas it fails
for gas, but in this case, the medium is practically lossless because
Q is above 700. If we consider a depth of 3.5 km, the gas bulk
modulus is of the order of 0.01 GPa. In this case, the minimum
quality factor is nearly 200. Thus, in these cases, we can safely
use Biot’s equations with zero viscosity in gas-saturated regions.
The same remarks hold for the S-wave. However, if the bulk mod-
ulus of the fluid is of the order of 0.1 GPa, the minimum quality
factor is less than 100 and the approximation becomes less accurate.

CONCLUSIONS

We have designed a space-time domain numerical modeling
method to solve the differential equations corresponding to Biot’s
theory of wave propagation including the squirt-flow loss mechan-
ism. The theory contains one adjustable parameter: aspect ratio of
compliant pores (grain contacts). All other parameters can be mea-
sured or estimated from measurements of ultrasonic velocities and
strains versus differential pressure on dry samples, such as the
dry-rock bulk modulus at high confining pressures. The memory-
variable approach, used in viscoelasticity as a phenomenological
model of attenuation and velocity dispersion, allows us to obtain
an exact time-domain fully differential formulation of the equations
of motion when the pores are saturated by a liquid. The formulation
requires 10 memory variables in 3D space and seven in 2D space. In
the presence of gas, we may safely assume lossless propagation, and
we can set the fluid viscosity equal to zero to model wave propaga-
tion in a gas-saturated medium.
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Figure 7. Particle-velocity component v3 at ðx; zÞ ¼ ð3.5; 3.5Þ m
from the source location, with and without the squirt-flow loss
mechanism (solid and dashed lines, respectively). The fluid is oil.

a)

b)

Figure 8. (a) Phase velocity of the fast P-wave and (b) dissipation
factors as a function of frequency, corresponding to light oil and gas.
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