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The role of communication technologies in broadacre agriculture in Australia: An 

empirical analysis using panel data 

 

 

 

Abstract 

This paper examines the role of communication technologies (CTs) in Australian broadacre 

agricultural production using data over the period of 1990-2013. Allowing for cross-sectional 

independence in the data, the Pooled Mean Group (PMG) and Augmented Mean Group (AMG) 

techniques are applied to estimate dynamic relationships among variables. The empirical results 

demonstrate that CTs affect agricultural output positively in the long run. The estimated elasticity is 

0.237. This result suggests that government policies that lift investment in telecommunication 

facilities are shown to contribute to an increase of output in Australia’s broadacre agriculture in the 

long run. 
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The role of communication technologies in broadacre agriculture in Australia: An 

empirical analysis using panel data 

 

 

1. Introduction 

Information and communication technologies (ICTs) have been transforming economic 

activities in all sectors, including agriculture. Generally, Australian farmers’ perceptions are 

positive about computers and the Internet, and these communication devices are useful to 

them (Rolfe et al. 2003). These perceptions are consistent with the theory of access to ICTs 

and agricultural growth (Adesina and Zinna 1993). The rapid expansion of ICTs and the 

concomitant proliferation of new communication devices and applications open avenues for 

increasing output in agriculture. The Australian government has been expanding ICTs, by, for 

example, providing high-speed Internet infrastructure facilities for all Australian businesses, 

homes, and schools under the National Broadband Network (NBN) since 2010. The new 

links have improved broadband Internet and mobile telephone facilities in urban and regional 

Australia where agricultural firms have been operating (Lamb 2013). The extended facilities 

increase the use of communication technologies (CTs) in the agriculture sector, thereby 

facilitating knowledge sharing among the farming communities. Thus, farmers are able to 

make informed and efficient decisions in agricultural production. Indeed, the systematic 

dissemination of information contributes to agricultural output. 

Theoretically, farmers can expect two types of benefits from their access to ICTs (World 

Bank 2011). One type of benefit includes reduction in production costs, reduction in 

transaction costs, improvement in market participation, and gains from sales, while the other 

type of benefit entails technological innovation and improvement in agricultural output 

(Rolfe et al. 2003; World Bank 2011). The theoretical relation between the agricultural ICTs 

and yield technologies states that access to CTs, such as radio, mobile telephones, and the 

Internet provides farmers with information regarding the use of appropriate agricultural 

technologies (World Bank 2011). The information is used by the farmers when they have 

(yield-enhancing) technologies, such as organic fertilizer instead of chemical fertilizer, but no 

information on how to use the technology. Access to CTs results in more optimal use of these 

inputs, which consequently improves the output per unit of labor and capital. Other broad 

applications of ICTs in agriculture include pest and weather information management (World 

Bank 2011). Finally, CTs also facilitate the dissemination of information about factor and 

product markets and price information that significantly contribute to agricultural revenue 
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growth. Therefore, it is worth investigating the impact of the expansion of CTs on broadacre 

agriculture in Australia. 

The influence of ICTs on productivity in manufacturing and service sector firms has been 

extensively studied in developed countries (Cardona et al. 2013). However, the role of ICTs 

in agriculture is under-researched globally. This lack of research may be because the 

contribution of ICTs in agriculture is rapidly changing and not well understood. In 

developing countries, particularly in South Asia and Africa, some studies have examined the 

role of expansion and the access to communication technologies (CTs), such as mobile 

telecommunication facilities, in various agricultural activities (Bayes 2001; Silva and 

Dimuthu 2008; Muto and Yamano 2009; Rashid and Islam 2009; Aker 2010; Ali and Kumar 

2011; Ali 2012; Fafchamps and Minten 2012; Aker and Fafchamps 2013; Dey et al. 2013; 

Zanello 2012). These studies find positive influences of the access to mobile telephones on 

agricultural activities, such as decreased transaction and travel costs associated with product 

marketing (Rashid and Islam 2009), increased sales (Muto and Yamano 2009), increased 

participation in the market and surplus food production (Zanello 2012), decreased price 

dispersion (Aker 2010), increased output prices and decreased input costs (Bayes 2001). The 

above studies analyzed the partial effect of CTs, particularly mobile telephones, on 

agricultural crop production in the Asian and African regions; however, at the aggregate 

level, the effects of CTs on agricultural output have yet to be ascertained. 

Some cross-country studies show contrasting relationships between investment in 

information technology (IT) and agricultural productivity. For example, Lio and Liu (2006) 

demonstrate small effects of ICT use on farmers’ productivity in both rich and poor countries. 

In contrast, Dewan and Kraemer (2001) find differences in the returns (measured by gross 

domestic product) from investment in IT between developed and developing countries. 

Although both studies used panel data and Cobb-Douglas type production functions, the 

differences in the measurement of IT perhaps contributed to the contrasting research findings. 

For example, Lio and Liu (2006) use an ICT adoption index at the country level as a measure 

of ICT, whereas Dewan and Kraemer (2001) use investment in IT at the country level as a 

measure of ICT. However, both studies suffer from a number of shortcomings in relation to 

the use of conventional (panel data) estimation techniques, such as a lack of attention to 

potential cross-section (country) correlation for cross-country study. If covariates are 

correlated with the source of interdependence, least square estimators are biased; hence 

estimators are inefficient (Andrews 2005). 
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Despite theoretical and empirical evidence from the developing countries, no reliable study 

examines the relation between ICTs (either information technology (IT) or communication 

technology (CT)) and agricultural output in the developed countries, particularly Australia. 

The absence of such a study may be due to an assumption that as a primary sector of the 

economy, agriculture has no gain from ICTs (Rolfe et al. 2003). It may also be that 

researchers do not yet understand how farmers’ access to the non-traditional factors of 

production, such as ICTs, affects agricultural output. This research aims to extend the 

existing body of literature by adding new evidence based on the dynamic relationship 

between CT expenditure and Australian broadacre agricultural production in the short and 

long terms. We use the Pooled Mean Group (PMG) method of Pesaran et al. (1999) after time 

demeaning of variables to control for cross-sectional dependence (CSD) to achieve the main 

objective of this paper. For robustness of our results, we also use the Augmented Mean 

Group (AMG) method of Bond and Eberhardt (2009) and Eberhardt and Teal (2010) 

accounting for the cross-sectional dependence in panel data. This study is significant because 

agriculture and farming will play an important role in Australia’s digital economic future, 

which will be characterized by an increase in the importance of digital communications 

through the Internet, mobile telephones, and smartphones. 

The rest of this article is structured as follows. Section 2 presents an overview of Australian 

broadacre agriculture, followed by a presentation of the data sources and information on the 

variables in Section 3. Section 4 presents econometric methodologies, followed by an 

analysis of the empirical results in Section 5. Conclusions and policy implications are 

provided in the final section. 

2. Australian Broadacre Agriculture: An Overview 

Australia has a very strong agricultural sector. The National Farmers’ Federation (NFF) 

Annual Review of 2013-14 shows that the gross value of Australian farm production in 2012-

13 was $48 billion, an increase of 3 percent from 2011-12. As of June 2013, this sector 

employed 278,000 people, approximately 3 percent of the total labor force in 2013 (NFF 

2014). However, including the food and fiber industries, this sector provides over 1.6 million 

jobs to the Australian economy. More than 15 percent of Australia’s total value of 

merchandise exports comes from the farm sector. In 2012-13, this sector earned $38 billion, 

approximately 15.5 per cent of Australian merchandise exports (ABS Cat No 5368.0). The 

broadacre sector of Australian agriculture consists of 5 industries: wheat and other crops, 

mixed livestock-crops, sheep, beef, and the sheep-beef industry (DAFF 2012), generating 
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over 85 percent of the country’s gross agricultural output (Khan et al. 2014). Wheat is the 

major crop in broadacre agriculture based on the market value of the total output, and wheat 

exports account for a larger share of total exports (food items only) than any other broadacre 

crop (ABARES 2013), with other large exportable crop items including barley, sorghum, 

rice, cotton, canola, oats, lupins, and sugarcane. Table 1 presents an overview of the total 

agricultural land, total cultivated land, and total agricultural business units in the six 

Australian states and the Northern Territory. 

Table 1: Distribution of agricultural resources by state, 2011-12 

Figure 1: Average agricultural revenue in Australia, 1990-2012 

 
Source: Ministry of Agriculture. Available at http://apps.daff.gov.au/AGSURF/. 

The states vary in their agricultural outputs. Figure 1 presents the interstate differences in 

cash receipts by farms (hereafter agricultural revenue) for the years 1990-2012. It is evident 

from this graph that Western Australian agricultural farms had been receiving more revenue 

than their counterparts in the other states. Physical and economic characteristics, such as 

States Total 

agricultural 

land (million 

hectares) 

Total 

agricultural 

business units 

Total cultivated 

agricultural land 

(million 

hectares) 

Actual use of 

agricultural land 

(in percent) 

1 2 3 4 5 = (4 ÷ 2) × 

100 

New South Wales 60.6 44 000 4.20 6.93 

Northern Territory 55.1 500 n.a. n.a. 

Queensland 137.0 28 200 1.80 1.31 

South Australia 49.7 13 900 2.40 4.82 

Victoria 12.7 32 500 2.10 16.53 

Western Australia 88.4 12 500 5.20 5.88 

Tasmania 1.7 4100 0.087 5.11 

Note: n.a. = ‘Not available’. Data are sourced from the website of the Australian Bureau of Statistics. 
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climate, soil type, water drainage patters, and access to services and facilities, all combine to 

contribute to variation in agricultural farms’ output and revenue within and among states. 

Hooper et al. (2002) suggest that farm size is an important factor in inter-farm differences in 

agricultural income (total revenue minus total costs) in 2000-2001. They also suggest that 

large agricultural farms that have been engaged in cropping gain an advantage from the use 

of technologies. Sheng et al. (2014), however, note that larger firms achieved higher 

productivity not by increasing their scale but by changing production technology. The precise 

nature of the mapping from ICTs to agricultural revenue (outputs) is the subject of the 

following section. 

3. Data sources and preliminary data analysis 

3.1 Data sources 

The data used in this study are mainly drawn from the website of the Department of 

Agriculture, Fisheries and Forestry (DAFF) of the Government of Australia: 

http://apps.daff.gov.au/AGSURF/. The website contains data on Australian broadacre 

agriculture at the state level covering the period 1990-2012, and all financial data are 

expressed in constant 2012 dollars. However, a complete dataset is not available for 

Tasmania and the Northern Territory, hence these regions are excluded from the analysis. 

This study includes five states: New South Wales, Victoria, Queensland, South Australia, and 

Western Australia. We use cross-section and time series data covering the period 1990-2012 

for this study. We have a dataset with N equals 5 and T equals 22 years. The total number of 

observations is 115. 

Our dataset includes the following variables: agricultural revenue (Y), non-ICT capital (K), 

communication technology (CT) capital, expenditure for labor (L), agricultural land rent (Lr) 

and fertilizer (F). Y is the measurement of aggregate revenue, including cash receipts from 

the sale of crops, livestock, livestock products, royalties, rebates, refunds, plant hire, 

contracts, share farming, insurance claims and compensation, and government assistance 

payments. The variable ‘non-ICT’ capital includes physical capital expenditures for 

machinery, equipment, fuel and irrigation facilities. The variable CT measures expenditure 

for farmers’ use of telecommunications, including telephone and Internet. Because this CT 

expenditure also serves as an estimate of real functioning (McGregor and Borooah 1992), this 

variable represents an aggregate measure of the adoption or use of CTs. Because climatic 

conditions influence broadacre agriculture in Australia, we include rainfall (RF) as an 

important input of broadacre agriculture in our analysis. Rainfall data are gathered from the 

http://apps.daff.gov.au/AGSURF/
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Australian Bureau of Meteorology. The period for measuring rainfall is chosen to match the 

growing season in each state (for details, please see Khan et al. 2014). The remaining 

unobserved variables are subsumed in the error term in the production function. 

3.2 Preliminary data analysis 

Locally weighted scatter plot smoothing (LOWESS), a non-parametric regression (local 

mean smoothing), is used to determine the actual functional relationship between the main 

explanatory variable (CT expenditure) and the dependent variable in the dataset without 

imposing any assumption of their functional relationship. Figure 2 presents the LOWESS 

curve. The LOWESS curve shows a positive linear relationship between the two categories of 

variables.  

Figure 2: Scatter plots of agricultural revenue and CT expenditures 

 
Source: authors’ calculations. 

In addition to the LOWESS analysis presented above, a simple correlation analysis is 

presented in Table 2. This correlation analysis confirms that CT expenditures and 

agricultural revenue are correlated positively and significantly in the five Australian states. 

Table 2: Correlation between CT expenditure and agricultural revenue 

NSW Victoria Queensland South Australia Western Australia 

0.607 

(0.002) 

0.477 

(0.021) 

0.651 

(0.000) 

0.539 

(0.008) 

0.782 

(0.000) 

Note: Figures in the parentheses are p values. 

Furthermore, Table 3 presents descriptive statistics of all the variables to be used for 

empirical analysis. The table shows that the actual use of inputs differs substantially among 

the states over the years.  

Table 3: Descriptive statistics 

Variable Description Mean Std. Dev. Min Max 
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New South Wales (NSW) 

logY Log of cash receipts 5.801 0.100 5.557 6.000 

logL Log of wages paid for 

labor 
4.281 0.172 3.916 4.643  

logF Log of expenditures for 

fertilizer 
4.707 0.197 4.150 5.015 

logLr Log of rental payments 

for land    
3.591 0.312 2.933 4.183 

logK Log of payment for 

capital 
4.053 0.172 3.693 4.329 

logCT Log of CT expenditures  3.537 0.084 3.358 3.677 

logRF Log of rainfall 6.260 0.225 5.743 6.703 

Victoria 

logY Log of cash receipts 5.582 0.147 5.160 5.784 

logL Log of wages paid 

for labor                                                                  
3.747 0.227 3.186 4.089 

logF Log of expenditures 

for fertilizer 
4.540 0.212 3.923 4.834 

logLr Log of rental 

payments for land 
3.757 0.236 3.292 4.188 

logK Log of payment for 

capital 
3.549046   0.2374538   3.037426   3.994229   

logCT Log of CT 

expenditures  
3.332 0.143 3.003 3.537 

logRF Log of rainfall 6.180 0.210 5.678 6.528 

Queensland 

logY Log of cash receipts 5.601 0.139 5.390 5.886 

logL Log of wages paid 

for labor 
4.052 0.230 3.593 4.511 

logF Log of expenditures 

for fertilizer 
4.511 0.170 4.118 4.713 

logLr Log of rental 

payments for land    
3.372 0.365 2.496 4.000 

logK Log of payment for 

capital 
2.584 0.546 1.724 3.801 

logCT Log of CT 

expenditures  
3.415 0.108 3.219 3.581 

logRF Log of rainfall 6.441 0.251 5.951 7.036 

South Australia 

logY Log of cash receipts 5.669 0.111 5.394 5.900 
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logL Log of wages paid 

for labor 
3.843 0.238 3.228 4.208 

logF Log of expenditures 

for fertilizer 
4.674 0.161 4.357 4.947 

logLr Log of rental 

payments for land  
4.947 0.520 2.012   4.425 

logK Log of payment for 

capital 
3.135 0.204 2.620 3.410 

logCT Log of CT 

expenditures  
3.395 0.080 3.195 3.525 

logRF Log of rainfall 5.032 0.350 4.295 5.635 

Western Australia 

logY Log of cash receipts 5.961 0.127 5.731 6.204 

logL Log of wages paid 

for labor 
4.358 0.161 4.003 4.694 

logF Log of expenditures 

for fertilizer 
5.119   0.189 4.737 5.455 

logLr Log of rental 

payments for land  
3.937 0.389 3.264 4.670 

logK Log of payment for 

capital 
2.854 0.414 1.857 3.332 

logCT Log of CT 

expenditures  
3.657 0.114 3.391 3.850 

logRF Log of rainfall 5.297 0.329 4.488 5.769 

 

Figure 3 presents the time series plot of growth of agricultural revenue and CT expenditures 

for the years 1990-2012. The figure shows that both series follow each other closely, except 

for three breaks, in 1996, 2003, and 2008. The growth in CT expenditures outpaced the 

growth in agricultural revenue at different points, such as for the years 1994-1995, 1997-

1999, and 2003. In the remaining years, the growth in agricultural revenue outpaced the 

growth of CT expenditures. There were three droughts in Australian agriculture during the 

periods of 1982-83, 1994-95, and 2002-2003, which might be the cause of fluctuations in 

these series. 

Figure 3: Time series plot of growth of agricultural revenue and CT expenditures, 1990-2012 
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Source: Department of Agriculture, Fisheries and Forestry (DAFF) of the Government of Australia: 

http://apps.daff.gov.au/AGSURF/. 

4.  Methodology 

4.1 Theoretical framework 

Aggregate Cobb-Douglas production function have been used widely in the past to examine 

the causal link between ICTs and productivity at the macro level (Cardona et al. 2013). There 

are two measures of productivity measurement in the production literature: a physical 

quantity-based measure and a revenue-based measure (Foster et al. 2008). Both measures 

have strengths and weaknesses. One strand of literature identifies that the physical quantity 

based measure is extremely problematic because the measurement of physical output is 

represented by a single number of collection of heterogeneous objects, such as labor and 

capital, which is factious (Felipe and Fisher 2003). Another strand of literature identifies that 

the revenue-based measure of quantity is misleading because of differential product price 

related to differential product demand in the market (Katayama et al. 2009; Foster et al. 

2008). Despite these weaknesses of both approaches, researchers are of the opinion that both 

physical and revenue measures of output are correlated and one can be used as a proxy for the 

other (Katayama et al. 2009). In an academic exercise, Mairesse and Jaumandreu (2005) 

compared two sets of estimates derived from a production function based on physical 

measure and revenue measures using panel data and thereafter suggest ‘estimating the 

revenue function (using nominal output measure) or the production function (using a real 

output measure) make very little difference’ (p.651). 

Furthermore, because price level change causes the changes in the measurement of revenue, 

some researchers suggest incorporating deflated revenue in the revenue function (Kato 2012). 

-2
0

0
2

0
4

0

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Year

Growh in  revenue Growth in CT expenditures

http://apps.daff.gov.au/AGSURF/
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Another issue is the likely impact of exchange rate fluctuations or of price changes in 

international market on the income of Australian farmers, who export approximately 60 

percent of their production. Australia is a small open economy, so it cannot influence price in 

international market. Movements in exchange rate can affect the cash flows of farms, 

exposed to international trade, as almost 80 percent of Australia’s merchandise trade is 

denominated in foreign currency (Rush et al. 2013); however, because we use revenue as our 

dependent variable, any fluctuation in exchange rate is accommodated in the fluctuation of 

revenues through our input data. As such, we can assume that exchange rate fluctuations do 

not have significant impact on agricultural revenue. Following the suggestion we have used 

deflated agricultural revenue to measure agricultural output. Because we use a revenue-based 

measure of output, product heterogeneity
1
 is not a major concern in our study. 

The variable capital enters into agricultural revenue function through two channels: ICT-

capital and non-ICT capital (otherwise called physical capital). CT-capital includes 

expenditures for CT, and physical capital includes capital such as machinery, equipment, 

irrigation facilities and fuel. A similar approach was used by researchers in the past (for 

details, please see Cardona et al. 2013). We begin with an aggregate production function of 

the following form: 

        (1) 

where Yit is the agricultural revenue of state i in year t; Kit is the non-ICT physical capital, 

including irrigation facilities, of state i in year t; Lt is the labor expenditure of state i in year t 

and Tt is in fact CT that is non-physical capital expenditures of state i in year t. 

The expected relationships between CT expenditure and revenue are as follows. Farmers’ 

expenditure on CTs, such as land telephones, mobile telephones and Internet, determine the 

intensity of use of communication technologies and digital connectivity to the local and 

global knowledge hubs. This connectivity facilitates the use of existing knowledge and 

improved technology (World Bank 2011) and thereby increases agricultural output and 

thereafter sales revenue in the market. This study has used the log-log form of revenue 

function, which makes the estimation of elasticity convenient. This strategy is frequently used 

in empirical research. The log form of Equation (1) is re-written as: 

                                                           
1
 Barkley and Barkley (2013) note: ‘Majority agricultural products are homogenous products: wheat, corn, and 

soybeans are identical across all producers’ (p: 275). In the crop industry, hundreds of firms (crop producers) 

produce thousands of tons of wheat, rice or barley and thereafter sell products in a perfectly competitive product 

market. Thus, by using revenue function, we can overcome any potential problem of heterogeneity. 

   1

itititit TLAKY
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     (2) 

where θ1, θ2 and θ3 measure elasticities of capital, labor and CT expenditure. 

Weather conditions significantly affect Australian agriculture, particularly broadacre 

agriculture (Salim and Islam 2010). To capture the effects of seasonal weather conditions on 

Australia’s agricultural productivity, we augment Equation (2) by adding the variable of 

rainfall (RF) as an important input of broadacre agriculture production. We also add land 

rental (Lr) expenditure as an additional control variable in Equation (2): 

   (3) 

Because we are working with time series data for 5 states, the appropriate expression of 

Equation (3) is: 

  (4) 

Here, the numbers of groups are 𝑖= 5 states and 𝑡 = 1…..23 years.  

4.2 Econometric approach 

Panel heterogeneity is assumed in our study. This heterogeneity arises particularly in cross-

country analyses (Pesaran et al. 1999). Because Australia is a continent where the states are 

very diversified in terms of the distribution of land, weather conditions, and people, the panel 

heterogeneity assumption is justified in the present case. This study presumes that region-

specific or time-specific effects must exist in this situation. If region-specific heterogeneity is 

not captured by the explanatory variables in the model, parameter heterogeneity may result in 

the specified model. In these cases, Pesaran, et al. (1999) suggest two different estimators to 

resolve the bias due to heterogeneous slope in dynamic panels: Pooled Mean Group (PMG) 

and Mean Group (MG) estimators. 

By using the PMG, we can allow for the short-term impacts of the inputs but constrain the 

long-term impacts to be equal. We can address the problem of non-stationarity, which may 

result in spuriously significant estimates in the absence of actual relationships between the 

dependent and independent variables (Kangasniemi et al. 2012). Several studies use this 

techniques in various settings. For example, Kangasniemi et al. (2012) use the PMG to 

estimate the parameter coefficients in studies in which they investigated IT expenditure and 

firm-level productivity issues and migration and national level productivity issues. The 

advantage of the PMG technique is that it can estimate efficiently even in the presence of 

endogeneity (Kangasniemi et al. 2012). The PMG approach is modeled as an autoregressive 

titititit iCTLKY   loglogloglog 321

ituitF

itLritRFitCTitLitKity





log
6

log
5

log
4

log
3

log
2

log
1

log


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distributed lag (ARDL) model. The ARDL (p, q1, q2,….qk) dynamic panel model is specified 

as follows:  

 

      (5) 

where the number of cross-section units i = 1,2,….N; the number of period t = 1,2,….T; Xit is 

a k x 1 vector of explanatory variables; is the k x 1 coefficient vector; are scalars and 

is the cross-section specific effect. For convenience, Equation (5) can be re-parameterized 

as follows: 

    (6) 

where, and 

 

The parameter is the error-correction speed of adjustment term. Rejection of the null of 

 is the evidence of a long-run equilibrium relationship, that is, the variables are co-

integrated. In this case, the parameter value is expected to be significantly negative. The 

vector contains the long-run relationships among the variables. Equation (6) can be 

expressed in terms of our model in Equation (4) as follows: 

  (7) 

where X is the vector of logK, logL, logCT, logF, logLr, and logRF. 

One potential problem with the PMG estimator is its inability to address cross-sectional 

dependence. Because five Australian states are the cross-section units in this study, cross-

sectional dependence will likely be an issue in the estimation process. 

4.3. Test statistics 

4.3.1. Cross-sectional dependence 

A growing concern with panel data model is the likely presence of substantial cross-sectional 

dependence (CSD), which may be caused by the common shocks and unobserved 
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components. If CSD is present in data and is not accommodated in the estimation, the 

estimators will not be consistent and panel estimation may have little advantage over single-

equation estimation (Phillips and Sul 2003). To examine this dependence, we employ the 

CSD test proposed by Pesaran (2004). The Pesaran CSD test employs the correlation-

coefficients between the time-series for each panel member. In our case N = 5, this test will 

give 5×4 = 20 correlations between state i and all other states, for i=1 to N-1. 

4.3.2. Panel unit root test 

Many different types of unit root tests are available in the literature to examine whether all 

variables are integrated with the same order. The most widely used tests are the Levin-Lin 

(LL) test, Im-Pesaran-Shine test (hereafter the IPS test) and Maddala-Wu test; all are first-

generation tests. These tests ignore cross-sectional dependence that “arises from unobserved 

common factors, externalities, regional and macroeconomic linkage, and unaccounted 

residual interdependence” (Bangake and Eggoh 2012 p 10). The second-generation tests are 

Pesaran’s (2007) tests, which represent Cross-sectional Augmented IPS (CIPS) tests and 

allow for cross-sectional dependence heterogeneity in the autoregressive coefficient of the 

Dickey-Fuller regression. Thus, this study uses Maddala and Wu’s test and Pesaran’s Cross-

sectional Dependence IPS (CIPS) statistics to examine the panel unit root tests. 

4.2.3. Co-integration test 

Although the PMG estimator examines the long-run equilibrium relationships among 

variables, we employ an additional co-integration test introduced by Westerlund (2007), 

which is robust when there is cross-sectional dependence. In this cointegration test, four test 

statistics are proposed; two are designed to test the alternative that the panel is cointegrated as 

a whole, while the other two are designed to test the alternative that variables in at least one 

cross-section unit are cointegrated. The former two statistics are referred to as group 

statistics, while the latter two are referred to as panel statistics. The data-generating process 

in this test is assumed to be as follows: 

      (8) 

       (9) 

where t and i represent the time and space dimensions of the data, respectively. In this 

formulation, the vector is modeled as a pure random walk and is modeled as the sum 

of the deterministic term  and a stochastic term . This term is modeled as follows: 

itiiit zty  21 

ititit vxx  1

itx ity

tii 21   itz
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     (10) 

where  and  

Now, substituting Equation (8) into Equation (10) gives the following error correction model 

for : 

   (11) 

where,  and  

In Equation (11) above, the vector defines a long-run equilibrium or cointegrating 

relationship between the variables x and y. However, in the short run, there may be 

disequilibrium, which is corrected by a proportion  each period. Here, is 

called the error correction parameter. If then there is error correction and the variables 

are co-integrated, and if then there is no error correction and the variables are not 

cointegrated. The test statistics are given by
2
: 

Group test statistics: 

  

     (12.a) 

     (12.b) 

Panel statistics:  

    (13.a) 

    (13.b) 

5. Analysis of empirical results 

Before applying the unit root test, we examine whether there is any cross-sectional 

dependence by using Pesaran’s (2004) CSD test. The results (Table A1 in Appendix) indicate 

that the null hypothesis of cross-sectional independence is rejected at the 1 percent 

significance level for all the variables except the non-ICT capital variable, in which case the 

                                                           
2
 For derivation of these statistics, please see Westerlund (2007). 
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null is rejected at the 10 percent level. We therefore must take corrective measures to account 

for cross-sectional dependence in applying the PMG estimator. 

Table 4 reports the unit roots tests results. The null hypothesis is I(1). The choice of lag 

lengths is based on Akaike Information Criteria (AIC). The test results show that Pesaran’s 

test rejects the null of unit root for three variables (logY, logLr and logCT) at level, whereas 

the Maddala and Wu test rejects the null of unit root for five variables (logY, logL, logF, 

logLr, and logCT). The findings indicate that Maddala and Wu’s (1999) test procedure is not 

robust to detect unit roots when common factors influence the underlying process of the test 

(Mohammadi and Parvaresh 2014). The overall findings of the unit root test results indicate 

that most of the variables are I(1) when cross-sectional dependence is taken into account. 

Table 4: Panel unit root tests 

Variable Test statistic at level Test statistic at first difference 

Pesaran test Maddala & Wu 

test 

Pesaran test Maddala & Wu 

test 

logY  -2.992 (0.050)** 26.447 (0.003)* -3.804 (0.000)* 64.701 (0.000)* 

logCT -3.557 (0.001)* 23.049 (0.010)* -3.776 (0.000)* 77.836 (0.000)* 

logL -2.070 (0.718) 21.940 (0.015)** -4.634 (0.000)* 67.165 (0.000)* 

logF -2.681 (0.186) 26.848 (0.003)* -3.695 (0.001)* 61.531 (0.000)* 

logLr -3.989 (0.001)* 22.346 (0.013)** -4.569 (0.000)* 94.264 (0.000)* 

logK 0.708 (0.760)
3
 13.321 (0.206) -3.658 (0.000)* 53.204 (0.000)* 

logRF -1.565 (0.963) 4.503 (0.921) -4.065 (0.000)* 116.850 (0.000)* 

Note: t-statistics is with time trend. * and ** indicate 1% and 5% levels of significance, respectively. 

Next, we examine the possibility of co-integration between the CT expenditures and 

agricultural revenue through Westerlund’s co-integration test (Westerlund 2007). The test is 

carried out under the null hypothesis of no cointegration. For each series, this study has 

chosen an optimal lag and lead lengths, and the Barlett kernel window is set equivalent to 

three according to 4(T/100)
2/9

. Table 5 reports the results. 

 

Table 5: ECM-based panel co-integration test 

Statistic Value Z-value p-value 
Bootstrap p-

value 

Gt -2.504 -3.284 0.001 0.010 

Gα -10.200 -3.146 0.001 0.010 

Pt -5.772 -3.967 0.000 0.000 

Pα -10.157 -7.052 0.000 0.000 

                                                           
3
 This series is unbalanced; therefore, instead of the t statistic, the standardized z statistic is reported. 
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Note: Dependent variable = Y; null hypothesis of the test: no cointegration. 

It is apparent from Table 5 regarding the test results of 𝐺𝑡 and 𝐺𝑎 that the rejection of null 

hypothesis is taken as evidence of cointegration of at least one of the cross-sectional units, 

and regarding Pt and Pα, the rejection of null hypothesis is taken as evidence of cointegration 

of the panel as a whole. The co-integration test statistics imply the existence of a long-run 

equilibrium relationship between the CT expenditure and agricultural revenue. When no error 

correction hypothesis is rejected, it is practically important to determine the speed of 

adjustment in the short run. This determination can be made by calculating the value of , 

the error correction parameter. The estimated value of this error correction parameter is found 

from Equation (13b). The value of is -10.157 (Table 5), and the time period T is 23; 

therefore, the value of is , that is, the speed of adjustment of 

short-term departure toward the long-run equilibrium is 0.442 per year. This finding means 

that 44.2 per cent of the deviation from the long-run relation between CT expenditure and 

agricultural revenue is adjusted each year; that is, it takes slightly more than 2 (two) years to 

restore the equilibrium relation. 

Having found a co-integrating relation between CT expenditure and agricultural revenue, we 

next estimate the model specified in Equation (4) using PMG as proposed by Pesaran (1999). 

To account for cross-section dependence, the variables are transformed by time de-meaning 

the data, in which case a panel model takes the following form: 

     (14a) 

      (14b) 

where and so on. 

The error structure is given by , where ft represents the unobserved factor that 

generates cross-sectional dependence and 
 

is factor loading. In this transformation, 

disturbances are expressed in terms of deviations from time-specific averages; therefore, we 

essentially remove the mean impact of ft. In addition to PMG, we also estimate the model 

with the Augmented Mean Group (AMG) technique proposed by Eberhardt and Bond (2009) 

and Eberhardt and Teal (2010). Both AMG and the Common Correlated Estimator (CCE) of 

Pesaran (2006) account for cross-section dependence; however, unlike CCE, AMG provides 
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an estimate of the common dynamic process that gives rise to cross-sectional dependence. 

The empirical model considered in AMG is as follows: 

       (15a) 

where xit is a vector of observable independent variables, which is modeled as linear 

functions of unobserved common factors (ft) and state-specific factor loadings (gt) as follows: 

   (15b) 

where m = 1,….k;  ; ϵt  and  ϵt (15c) 

The error term uit in Equation (15a) is composed of group-specific fixed effects (αi) and a set 

of common factors (ft) with country-specific factor loadings (λi) as follows: 

       (15d) 

To obtain the AMG estimator, estimation is performed in two stages. In the first stage, the 

model (15a) is estimated by OLS in the first difference with T-1 year dummies as follows: 

      (16a) 

In the second stage, the estimated coefficient of year dummy ( ) is included in each of the N 

state regressions. These individual state regressions may include linear time trend to ‘capture 

omitted idiosyncratic processes which evolve in a linear fashion over time’ (Eberhardt and 

Bond 2009; p.3) as follows: 

     (16b). 

Following Pesaran and Smith’s (1995) Mean Group (MG) approach, the AMG estimates are 

derived as averages of the individual state estimates as follows: 

       (17) 

In what follows, we first examine the long-run relationship between agricultural revenue and 

its determinants as estimated by PMG and AMG and then examine the short-run relations. 

Table 6 reports the PMG (with time de-meaned variables) and AMG estimation results. The 

table shows that the standard errors of AMG (both with and without trend) estimators are 

smaller than those of the PMG estimators. Additionally, the residuals from these three 

estimations are examined for autocorrelation and normality assumptions. Wooldridge’s 

(2002) test for first-order autocorrelation in panel data (Table A2 in Appendix A) indicates 
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that the null hypothesis of ‘no first-order autocorrelation’ is not rejected, that is, the residuals 

of these models are free from autocorrelation. However, the residuals from PMG estimation 

fail to pass the normality assumption. In Figure A1 in Appendix A, a normal distribution is 

superimposed on the kernel density of the residuals. Kernel density graphs of the residuals 

from AMG (with and without trend) almost coincide with the normal distribution, which 

indicates that residual normality cannot be rejected; however, the kernel density graph of the 

PMG residuals differs significantly from the normal distribution graph. This finding indicates 

that the PMG residuals are not normally distributed. From the viewpoint of estimate precision 

and residual normality, one should therefore rely on AMG estimators. Another advantage of 

the AMG estimator is that it provides the numerical value of the common dynamic process, 

which in the present case is approximately 0.90 and highly significant. 

Table 6: Pooled Mean Group (PMG) and Augmented Mean Group (AMG) estimation results 

 PMG AMG (with 

trend) 

AMG (without 

trend) 

logCT 0.238* 

(0.125) 

0.209*** 

(0.077) 

0.197** 

(0.079) 

logL -0.028 

(0.057) 

0.044 

(0.058) 

0.019 

(0.070) 

logF 0.642*** 

(0.085) 

0.571*** 

(0.054) 

0.542*** 

(0.062) 

logLr 0.045 

(0.039) 

0.073*** 

(0.018) 

0.072*** 

(0.024) 

logK -0.031 

(0.024) 

0.012 

(0.026) 

0.015 

(0.028) 

logRF 0.178* 

(0.106) 

0.073** 

(0.037) 

0.072* 

(0.038) 

Error correction 

term 

-0.762*** 

(0.111) 

__ __ 

Trend 
__ 

-0.002 

(0.002) 

__ 

Constant 
__ 

1.828*** 

(0.219) 

2.094*** 

(0.329) 

Common dynamic 

process 

__ 
0.891*** 

(0.236) 

0.901*** 

(0.226) 

Note: Figures in parentheses are standard errors. 

 

Comparing the results in Table 6, we see that all three coefficients of CT expenditure are 

significant and that they are close in value. The PMG coefficient value is slightly higher than 
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those of the AMG coefficients; however, the AMG coefficients are more precise than that of 

PMG for the reason noted above. A 10 percent increase in CT expenditure in the long run 

causes agricultural revenue to increase by approximately 2 percent. The weather variable 

(rainfall) is found to have significant impact on revenue in the long run. A 10 percent 

increase in rainfall would increase agricultural revenue by more than 0.70 percent (AMG) 

and 1.78 percent (PMG) in the long run. In all three estimations, fertilizer has the largest 

impact on revenue in the long run. Among the other variables, the land rental coefficient in 

AMG estimation is found to have a significant impact on revenue in the long run. The error 

correction term in PMG estimation is highly significant and has a negative sign as expected, 

which further confirms Westerlund’s (2007) above results, that is, that the variables are 

cointegrated in the long run. 

One limitation of AMG estimator is that it gives only long-run coefficients; however, we can 

obtain an idea of the short-run impacts of the variables on revenue from the PMG estimation 

results. PMG also gives the state-wise values of the short-run coefficients. Table 7 reports 

these short-run coefficients. 

Table 7: Short-run coefficients (Pooled Mean Group estimation) 

Regressor  

 

(1) 

Average 

coefficient 

(2) 

NSW 

 

(3) 

Victoria 

 

(4) 

Queensland 

 

(5) 

South 

Australia 

(6) 

Western 

Australia 

(7) 

∆logCT -0.039 

(0.060) 

0.069 

(0.148) 

-0.149 

(0.268) 

0.114 

(0.176) 

-0.196 

(0.144) 

-0.036 

(0.194) 

∆logL 0.089*** 

(0.022) 

0.042 

(0.071) 

0.052 

(0.073) 

0.135* 

(0.078) 

0.150*** 

(0.042) 

0.066 

(0.128) 

∆logF 0.064 

(0.085) 

0.158 

(0.110) 

-0.058 

(0.219) 

0.040 

(0.149) 

0.335*** 

(0.103) 

-0.154 

(0.179) 

∆logLr 0.018 

(0.019) 

-0.008 

(0.038) 

0.079 

(0.054) 

0.045 

(0.035) 

-0.023 

(0.023) 

-0.005 

(0.060) 

∆logK 0.043*** 

(0.013) 

0.059 

(0.048) 

0.048 

(0.056) 

0.027 

(0.018) 

0.080** 

(0.034) 

0.004 

(0.033) 

∆logRF -0.043 

(0.068) 

-0.227* 

(0.128) 

0.003 

(0.192) 

0.129 

(0.121) 

0.056 

(0.073) 

-0.176 

(0.121) 

constant -0.005 

(0.017) 

0.035 

(0.024) 

-0.044 

(0.032) 

0.023 

(0.023) 

0.010 

(0.018) 

-0.045 

(0.038) 

Note: Figures in parentheses are standard errors. 

The short-run coefficients from PMG estimation reported in Table 7 (column 1) make it clear 

that CT has no significant impact in the short run. Among the other variables, only payment 

to labor and non-ICT capital have significant (at 1% level) positive impacts on revenue. The 
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state-specific short-run results (columns 2 through 7) provide more or less similar results. In 

none of the cases is CT found to have a significant influence in the short run. These findings 

are not unexpected because CT brings changes in the structure of an economy and its benefit 

is realized in the long run. New technology is not adopted immediately, and agents take time 

to adopt it (Christiansen 2008). It diffuses slowly throughout the economy (David 1990; 

Rogers 1995; and Hall 2004).  

Conclusions and policy implications 

This article aims to examine the effects of CTs on agricultural revenue in Australia in the 

short and long runs during the period of 1990-2012. An aggregate Cobb-Douglas revenue 

function is estimated incorporating the expenditures for traditional factors plus 

telecommunication. Accounting for cross-sectional dependence, the results of cointegration 

tests indicate the existence of a long-run equilibrium relationship between the variables. The 

empirical results show that the long-run elasticities of CT expenditure are significant and 

positive; however, in the short run, CT expenditure does not have any significant influence on 

agricultural revenue. The Pooled Mean Group estimate of long-run elasticity is 0.237, and the 

Augmented Mean Group estimates with and without trend are 0.209 and 0.197, respectively. 

These findings imply that holding other things constant, an increase in CT expenditure by 10 

percent will increase a firm’s revenue earnings by an average of approximately 2 percent in 

the long run. Statistically, zero elasticity of CT expenditure in the short run is not unusual 

because technology takes time to exert its impact. The positive and significant relationship 

between CT expenditure and agricultural revenue in the long run demonstrates that CT 

capital will remain a critical driving force for raising broadacre agricultural output and 

revenue in Australia.  

The empirical findings have some policy implications. If other factors remain the same, the 

ongoing national broadband network expansion to the regional areas will bring about benefits 

for the farming communities in terms of increasing connectivity. Like developing countries, 

Australian farmers will increasingly be connected digitally to the local and global knowledge 

hubs, which will enable the farmers to obtain and use a wide variety of information in 

relation to production technology and production marketing. Thus, Australian farmers’ 

average earnings are expected to rise substantially. However, the impact of communication 

technology requires a ‘critical mass’ before it is felt (Röller and Waverman 2001); therefore, 

the achievement of a critical mass in the regional areas should be a policy priority of the 

government of Australia. Furthermore, an effective regional-specific public policy 
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intervention entailing skill development (for example, training) is required for the farmers so 

that the farmers can acquire necessary skills in using CTs in regional areas along with the 

diffusion of NBN facilities.  



24 
 

References 

Australian Bureau of Statistics (ABS) (2014) International trade in goods and services, ABS 

Cat No 5368.0, Canberra, Australia 

ABARES (2013). Australian Farm Survey Results 2010-11 to 2012-13. Australian Bureau of 

Agricultural and Resource Economics and Science, Canberra. 

Adesina, A.A. and Zinnah, M.M. (1993). Technology characteristics, farmers’ perceptions, 

and adoption decisions: A tobit model application in Sierra Leone, Agricultural 

Economics 9: 297-311. 

Aker, J.C. (2010). Information from markets near and far: Mobile phones and agricultural 

markets in Niger, American Economic Journal: Applied Economics 2, 46-99. 

Aker, J.C. and Fafchamps, M. (2013). Mobile phone coverage and producer markets: 

evidence from West Africa, Stanford University website. 

Ali, A.J. (2012). Factors affecting the adoption of information and communication 

technologies (ICTs) for farming decisions, Journal of Agricultural and Food 

Information 13, 78-96. 

Ali, J. and Kumar, S. (2011). Information and communication technologies (ICTs) and 

farmers' decision-making across the agricultural supply chain, Journal of Agricultural 

and Food Information 13, 78-96. 

Andrews, D.W.K. (2005). Cross-section regression with common shocks, Econometrica 73, 

1551-85. 

Australian Government Productivity Commission (2004). Trends in Australian agriculture. 

Commonwealth of Australia, Canberra. 

Bangake, C. and Eggoh, C. (2012). Pooled mean group estimation on international capital 

mobility in African countires, Research in Economics 66, 7-17. 

Bayes, A. (2001). Infrastructure and rural development: insight from a Grameen Bank village 

phone initiative in Bangladesh, Agricultural Economics 25, 261-272. 

Barkley, A. and P. W. Barkley (2013) Principles of Agricultural Economics, Routledge, 

Oxon, UK and New York, USA. 

Cardona, M., Kretschmer, T. and Strobel, T. (2013). ICT and productivity: conclusions from 

the empirical literature’, Information Economics and Policy 25, 109-125. 

Christiansen, Lone E. (2008) Do technology shocks lead to productivity slowdowns? 

Evidence from panel data. IMF working paper no. 24, International Monetary Fund, 

Washington D.C.  

David, Paul A. (1990). The dynamo and the computer: an historical-perspective on the 

modern productivity paradox, American Economic Review 80, 355–61. 

Departmnt of Agriculture Fisheries and Forestry (DAFF) (2012). Australian Farm Survey 

Results, Canberra: Commonwealth Government of Australia. 

Dewan, S. and Kraemer, K. (2001). Information technology and productivity: evidence from 

country level data, Management Science 464, 548-562. 

Eberhardt, M. and S. Bond (2009). Cross-section dependence in nonstationary panel models: 

a novel estimator. Working Paper 17692, MPRA. 



25 
 

Eberhardt, Markus and Francis Teal (2010) 'Productivity Analysis in Global Manufacturing 

Production', Economics Series Working Papers 515, University of Oxford, 

Department of Economics. 

Fafchamps, M. and Minten, B. (2012). Impact of sms-based agricultural information on 

Indian farmers, The World Bank Economic Review 26, 383-414. 

Felipe, J. and Fisher, F. M. (2003) Aggregation in production functions: what applied 

economists should know? Metroeconomica 54(2 & 3): 208-262. 

Foster, L., Haltiwanger, J. and Syverson, C. (2008) Reallocation, firm turnover, and 

efficiency: Selection on productivity or profitability? American Economic Review 98, 

394-425. 

Hall, Bronwyn (2004). “Innovation and Diffusion,” NBER Working Paper No. 10212, 

National Bureau of Economic Research, Cambridge, USA. 

Hooper, S., Martin, P., Love, G. and Fisher, B. (2002). Farm size and productivity: where are 

the trends taking us?, Australian Commodities 9, 495-500. 

Kangasniemi, M., Mas, M. and Robinson, C. (2012). The economic impact of migration: 

productivity analysis for Spain and the UK, Journal of Productivity Analysis 38, 333-

343. 

Kato, A. (2012). Productivity returns to scale and product differentiation in the retail trade 

industry: an empirical analysis using Japanese firm-level data, Journal of Productivity 

Analysis 38, 345-353. 

Katayama, H., S. Lu, and J. R. Tybout (2009) Firm-level Productivity Studies: Illusions and a 

Solution,.International Journal of Industrial Organization 27(3): 403.413. 

Khan, F., Salim, R. and Bloch, H. (2014) Non-parametric estimates of productivity and 

efficiency change in Australian broadacre agriculture, Australian Journal of 

Agricultural and Resource Economics, 56 (forthcoming). 

Lamb, D. (2013). Game changer: The role of broadband connectivity in Australian frams and 

why we need to get this right ? http://www.grdc.com.au/Research-and-

Development/GRDC-Update-Papers/2013/02/Game-changer-The-role-of-broadband-

connectivity-in-Australian (Accessed July 2014). 

Lio, M. and Liu, M.C. (2006). ICT and agriculture productivity: evidence from cross-section 

data, Agriculture Economics 34, 221-228. 

Maddala, G. and Wu, S. (1999). A comparative study of unit root tests with panel data and a 

new simple test, Oxford Economics and Statistics 631-652. 

Mairesse, J. and Jaumandreu, J. (2005). Panel-data estimates of the production and the 

revenue function: what difference does it make, Scandacian Journal of Economics 4, 

651-672. 

McGregor, P.L. and Borooah, V. (1992). Is low spending or low income as better indication 

of whether or not a household is poor: Some results from the 1985 family expenditure 

survey, Journal of Social Policy 21, 53-69. 

Mohammadi, H. and Parvaresh, S. (2014). Energy consunmption and output: Evidence from 

a panel of 14 oild-exporting countires, Energy Economics 41, 41-46. 

Muto, M. and Yamano T. (2009). Impacts of mobile phone coverage expansion on market 

participation: Panel data evidence from Uganda, World Development 37, 1887-1896. 

http://www.grdc.com.au/Research-and-Development/GRDC-Update-Papers/2013/02/Game-changer-The-role-of-broadband-connectivity-in-Australian
http://www.grdc.com.au/Research-and-Development/GRDC-Update-Papers/2013/02/Game-changer-The-role-of-broadband-connectivity-in-Australian
http://www.grdc.com.au/Research-and-Development/GRDC-Update-Papers/2013/02/Game-changer-The-role-of-broadband-connectivity-in-Australian


26 
 

National Farmers’ Federation (2012). NFF Farm Facts: 2012. National Farmers’ Federation 

Report. Available from URL: http:www.nfa.org.au, [accessed on 31/10/2014]. 

National Farmers’ Federation (2014). Annual Review 2013-14, 

http://www.nff.org.au/publications.html#cat_494 (accessed January 2015). 

Pesaran M.H. (2004). General diagnostic tests for cross section dependence in panels. 

Cambridge Working Papers in Economics No. 435, University of Cambridge, and 

CESifo Working Paper Series No. 1229. 

Pesaran, M.H. (2007) A simple panel unit root test in the presence of cross section 

dependence. Journal Applied Econometrics, 22: 265–312. 

Pesaran, M. H. (2006). Estimation and inference in large heterogenous panels with 

multifactor error structure, Econometrica, 74: 967-1012. 

Pesaran, M., Shin, Y. and Smith, P. (1999). Pooled mean group estimation of dynamic 

heterogeneous panels, Journal of the American Statistical Association 94, 621-634. 

Phillips, P. and D. Sul (2003). Dynamic panel estimation and homogeneity testing under 

cross-section dependence Econometrics Journal 6, 217 – 259. 

Rashid, A.T. and Islam, N. (2009). Mobile phone and development: an analysis of IDRC- 

supported projects, The Journal of Information systems in Developing Countries 36, 

86-136. 

Rogers, Everett M. (1995). Diffusion of Innovations, 4
th

 edition.  Free Press, New York. 

Rolfe, J., Gregor, S. and Menzies, D. (2003). Reasons why farmers in Australia adopt the 

Internet, Electronic Commerce Research and Applications 2, 27-41. 

Röller, L-H. and Waverman, L. (2001). Telecommunications infrasture and economic 

development: a simultaneous approach. American Economic Review, 91 (4), 909-923. 

Rush, Anthony, Dena Sadeghian and Michelle Wright (2013). Foreign currency exposure and 

hedging in Australia. Bulletin, December, Reserve Bank of Australia, 49 – 57. 

Salim, R. and Islam, N. (2010). Exploring the impact of R&D and climate change on 

agricultural productivity growth: the case of Western Australia Australian Journal of 

Agricultural and Resource Economics, 54, 561 – 582.  

Sheng, Y., Zhao, S. Nossal, K. and Zhang, D. (2014) Productivity and farm size in Australian 

agriculture: reinvestigating the returns to scale, Australian Journal of Agricultural 

and Resource Economics, 58: 1-23 (forthcoming). 

Silva, H.D. and Dimuthu, R. (2008). Using ICT to reduce transaction costs in agriculture 

through better communication: a case study from Sri Lanka. (Serial online). Availabel 

at URL: http://www.lirneasia.net/wp-content/uploads/2008/11/transactioncosts.pdf, 

(accessed on 20 Feb 2013). 

Westerlund, J. (2007). Testing for error correction in panel data, Oxford Bulletin of 

Economics and Statistics 69, 709-748. 

Wooldridge, J.M.  2002.  Econometric Analysis of Cross Section and Panel Data.  

Cambridge, MA: MIT Press. 

World Bank (2011). Enhancing productivity on the farm, ICT in Agriculture, The World Bank 

report no 64605: ICT in Agriculture, Argiculture and Rural Development, 

Washington, DC. 

http://www.nff.org.au/publications.html#cat_494
http://www.lirneasia.net/wp-content/uploads/2008/11/transactioncosts.pdf


27 
 

Zanello, G. (20012). Mobile phones and radios: Effects on transactions costs and market 

participation for households in Northern Ghana, Journal of Agricultural Economics 

63, 694-714. 

  



28 
 

Appendix A 

Table A1: Cross-section dependence test 

Variable CSD test stat (p value) Correlation 

logY 8.31 (0.000) 0.548 

logCT 10.24 (0.000) 0.675 

logL 6.91 (0.000) 0.456 

logLr 9.75 (0.000) 0.643 

logI 1.78 (0.075) 0.210 

logF 10.41 (0.000) 0.686 

logRF 9.22 (0.000) 0.621 

 

 

 

Table A2: Wooldridge test for autocorrelation 

 AMG (with trend) AMG (without trend) PMG 

Test statistic 

(p value) 

0.211 

(0.6699) 

0.293 

(0.61730 

0.420 

(0.5522) 

Null hypothesis: no first-order autocorrelation 

 

Figure A1: Kernel density estimates of residual normality 
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