Improving the Murchison Widefield Array Tile Model for Polarimetry

Adrian Sutinjo, Shantanu Padhi, Randall Wayth, Peter Hall and Steven Tingay
Curtin University
1 Turner Avenue
Bentley, Western Australia
Email: adrian.sutinjo@icrar.org

John O’Sullivan
Formerly
CSIRO Centre Astronomy and Space Science (CASS)
Email: josulliv@bigpond.net.au

Emil Lenc
Sydney Institute for Astronomy
School of Physics
The University of Sydney
NSW, Australia
ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)
Sydney, Australia
Email: e.lenc@physics.usyd.edu.au

Abstract—This paper summarizes the progress to date in improving the Murchison Widefield Array’s (MWA) “tile” model for polarimetry. A simple model that accounts for inter-element mutual coupling is presented which explains the false polarization leakage in Stokes Q (“false Q”) seen when the array is scanned away from zenith in the principal planes. On these planes the model predicts current imbalance in the X (E-W) and Y (N-S) dipoles and hence the false Q. More sophisticated models intended to calibrate actual observation data will be briefly discussed.

I. INTRODUCTION

The Murchison Widefield Array (MWA) [1], [2] is one of the precursors to the low frequency Square Kilometer Array (SKA-low) situated in the Murchison Radio-astronomy Observatory (MRO) in the mid-west of Western Australia. The array consists of 128 “tiles” each of which is a regularly spaced 4×4 bow-tie antennas as seen in Fig. 1. A long-standing issue in MWA polarimetry is that calibration gain values for an MWA pointing angle do not transfer to other pointing angles [3] which manifests most prominently as “false Q”. As shown in Fig. 2, this is particularly severe at high frequencies (e.g., > 200 MHz) where Q/I for an unpolarized source may be as high as a couple tens of percent. At lower frequencies around 100-140 MHz, this error is of the order of a few percent.

Here we present a simple model that explains the features of the false Q leakages. We point out that this model is “skeletal” in nature intended to highlight the primary mechanisms for the appearance of false Q. A more sophisticated “calibration-grade” model is under investigation.

II. SIMPLE MODEL

We consider the array in transmission which is well known to be equal to the receive behavior using the principle of reciprocity. At every frequency, the voltage delays and port currents are related via an impedance matrix which in the case of MWA is 32×32 [4] corresponding to 16 “X” and 16 “Y” dipoles.

\[v = (Z + Z_L)i \] (1)

where \(v = [v_1 \ldots v_{16}, v_{17} \ldots v_{32}]^T \) is the known “excitation” voltage vector, \(i = [i_1 \ldots i_{16}, i_{17} \ldots i_{32}]^T \) is the unknown port current vector and \(Z \) describes the inter-port Z parameter coupling matrix [4] and \(Z_L \) is a diagonal matrix containing the LNA input impedances.

The unknown port currents are obtained simply by

\[i = (Z + Z_L)^{-1}v \] (2)

The appearance of false Q is illustrated in Fig. 3 at 200 MHz for MWA pointing to zenith and for \(Az = 0^\circ, El = 54^\circ \). While the current amplitudes are very similar when zenith pointing, the difference in the “X” and “Y” dipole current amplitudes for \(El = 54^\circ \) is in the tens of percent. This imbalance is
rigorous model is likely required for the purpose of calibrating observation data. Such a model may be developed by summing the “embedded element pattern” for the elements calculated by electromagnetic modelling for a unit current excitation of each port. This is under investigation.

IV. CONCLUSION

The appearance of very high “false Q” in the principal planes can be attributed to current imbalance in the X and Y MWA bow-ties. A simple model based on impedance matrix has been shown to be sufficient to replicate the features of the error. We expect improve this model with more rigorous model in the near future.

ACKNOWLEDGMENTS

We acknowledge the Wajarri Yamatji people as the traditional owners of the Murchison Radio Astronomy Observatory site. The MRO is operated by CSIRO, whose assistance we acknowledge. The Centre for All-sky Astrophysics (CAASTRO) is an Australian Research Council Centre of Excellence, funded by grant CE110001020

REFERENCES