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Abstract 

This article examines the dynamic relationship between renewable and non-renewable energy 

consumption and industrial output and GDP growth in OECD countries using data over the 

period of 1980-2011. The panel cointegration technique allowing structural breaks is used for 

empirical investigation. The results show that there is a long-term equilibrium relationship 

among non-renewable and renewable energy sources, industrial output and economic 

growth. The panel causality analyses show bidirectional causality between industrial output 

and both renewable and non-renewable energy consumption in the short and long run. 

However, there is evidence of bidirectional short-run relationship between GDP growth and 

non-renewable energy consumption while unidirectional causality between GDP growth and 

renewable energy consumption. These results indicate that OECD economies still remain 

energy-dependent for their industrial output as well as overall economic growth. However, 

expansion of renewable energy sources is a viable solution for addressing energy security 

and climate change issues, and gradually substituting renewable to non-renewable energy 

sources could enhance a sustainable energy economy. 

Keywords: Cobb-Douglas production function; Renewable energy consumption; Non-

renewable energy consumption; Real GDP; Industrial output.  
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RENEWABLE AND NON-RENEWABLE ENERGY CONSUMPTION 

AND ECONOMIC ACTIVITIES: FURTHER EVIDENCE FROM OECD 

COUNTRIES 

 

1. Introduction 

Energy is a fundamental driver of output growth in OECD (Organization of Economic 

Cooperation and Development) countries. The average output growth remains at 

approximately 1.2% per annum, whereas energy consumption jumped from 197 quadrillion 

Btu in 1990 to 254 quadrillion Btu in 2010 (EIA, 2013) in these economies. The vast majority 

of this energy is generated from conventional sources, especially oil, coal, and gas. However, 

given concerns about climate change and global warming and political and social pressure to 

curb carbon dioxide gas emissions, OECD economies have demonstrated growing interest in 

renewable energy sources to both secure the energy supply and diversify the energy mix. This 

interest has been supported by various government policies, such as tax benefits, rebates, 

feed-in tariffs, and markets for renewable energy. As a result, the total investment in 

renewable energy has amounted to more than 1 trillion US dollars in OECD economies since 

2002, and renewable energy represents approximately 20% of the total energy supply in these 

economies (IEA, 2012). 

In any economy, both renewable and nonrenewable energy use are strongly connected 

to the level of economic activity and economic growth. However, among the various sectors 

of the economy, the industrial sector dominates economic activities in OECD economies, 

consuming the largest portion of energy and producing a significant amount of carbon 

dioxide emissions. A number of studies have investigated these relationships between energy 

consumption, pollutant emissions, and economic growth. However, their findings are rather 

diverse, and there is a lack of consensus among economists. Most previous studies are 

aggregated analyses in which total energy consumption, pollutant emissions, and economic 

growth are evaluated. Exceptions to this approach are the studies of Apergis and Payne 

(2011, 2012) and Tugcu et al. (2012), who provide disaggregated analyses and contribute 

substantially to the literature. However, no study thus far has investigated the link between 

renewable and nonrenewable energy consumption and industrial output. Given the 

dominance of the industrial sector in the economic activities of the OECD economies, it is 

important to identify the links between renewable and nonrenewable energy consumption that 
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are responsible for the dynamic industrial output growth as well as the steady economic 

growth of these mature economies. 

This paper aims to analyze the relationship between renewable and non-renewable 

energy consumption and GDP growth in 29 OECD countries over the period of 1990-2012. It 

also seeks to contribute to the literature on the dynamic nexus between renewable and non-

renewable energy consumption and industrial output of these matured economies. We use the 

Common Correlated Effects Mean Group (CCEMG) estimator, proposed by Pesaran (2006) 

to examine long run relationship between dependent and independent variables. Following 

Liao et al. (2010) and Arbex and Perobelli (2010) we utilize a production function framework 

accounting for renewable and non-renewable energy consumption in addition to usual inputs: 

capital and labour. We also test for structural breaks in the data and examine the possibility of 

cross-sectional dependence (CSD) by following Carrion-i-Silvestre et al. (2005) and Pesaran 

(2004) respectively. The empirical results show that both renewable and non-renewable 

energy positively impacts GDP and industrial output. We also find the possibility of 

substitution of renewable energy for non-renewable energy. Using the Pooled Mean Group 

(PMG) model of Pesaran et al (1999) after time demeaning of variables to control for CSD, 

we find evidence of a bidirectional short-run relationship between GDP growth and non-

renewable energy consumption while unidirectional causality between GDP growth and 

renewable energy consumption. The later finding is contradictory with those of Apergis and 

Payne (2011a) who find unidirectional causality from GDP to renewable energy use. We also 

find bidirectional causality between industrial output and renewable and non-renewable 

energy consumption. 

The remainder of the paper is organized as follows. Section 2 presents a review of the 

existing literature. The methodology is described in Section 3, followed by the empirical 

results in Section 4. Lastly, conclusions and policy implications are provided in Section 5. 

2. Review of the Existing Literature 

An impressive body of literature developed on the causal link between energy consumption, 

economic growth, and pollutant emissions after the seminal work by Kraft and Kraft (1978). 

There is no theoretical guide from the neoclassical school on the direction of this relationship, 

and the findings from the empirical literature are mixed. Some studies find that energy 

consumption leads to economic growth (growth hypothesis). These studies include 

Chontanawat et al. (2008), Narayan and Smyth (2008), Apergis and Payne (2009), Bowden 

and Payne (2009), Apergis and Payne (2010), and Yildirim and Aslan (2012). In a very recent 



5 

 

paper, Apergis and Tang (2013) investigate the validity of the energy-led growth hypothesis 

using a different model specification and different stages of economic development for 85 

selected countries. Overall, these authors find a systematic pattern, although the causality 

results for different countries are mixed. In particular, their results provide support for the 

energy-led growth hypothesis comparing less-developed or low-income countries to 

developed countries. 

Another group of empirical studies demonstrates a bidirectional causal relationship 

(feedback hypothesis) between these variables. These studies include Apergis and Payne 

(2010a), Belke et al. (2011), Eggoh et al. (2011), Fuinhas and Marques (2012), and Kaplan et 

al. (2011). These authors argue that energy consumption drives economic growth, and 

economic growth contributes to energy consumption and pollutant emissions. However, Lise 

and Montfort (2007) and Huang et al. (2008) find unidirectional causality from economic 

growth to energy consumption (conservation hypothesis), whereas Soytas et al. (2007) does 

not find any causality (neutrality hypothesis) between these variables. 

Recently, a new line of standard research has focused on the link between renewable 

energy consumption and economic growth. For instance, Payne (2011) demonstrated the 

validity of the growth hypothesis; Apergis and Payne (2010c, 2011a), proved the validity of 

the feedback hypothesis; and Menegaki (2011) demonstrated the validity of the neutrality 

hypothesis. Furthermore, Chien and Hu (2007) and Fang (2011) showed that an increase in 

the consumption of renewable energy sources positively contributes to economic growth, 

whereas Sadorsky (2009a) verified that the larger an economy grows, the more renewable 

energy sources are consumed. 

Most recently, another line of standard research has decomposed the effects of energy 

consumption into renewable and non-renewable energy based on economic growth. Very few 

studies have been conducted in this line of research, including Sari and Soytas (2004), Payne 

(2009), Sadorsky (2009b), Apergis et al. (2010), Apergis and Payne (2012), and Tugcu et al. 

(2012). Using time series data over the period of 1946-2006 from the US, Payne (2009) finds 

an absence of Granger causality between renewable and non-renewable energy consumption 

and real GDP and thus supports the neutrality hypothesis. However, analyzing the causal 

relationship between CO2 emissions, nuclear energy consumption, renewable energy 

consumption, and economic growth for a group of 19 developed and developing countries, 

Apergis et al. (2010) finds bidirectional causality between renewable energy consumption 

and economic growth, supporting the feedback hypothesis. Similar findings are obtained by 

Apergis and Payne (2010d) for a panel of 20 OECD countries and by Sadorsky (2009a) for a 



6 

 

panel of 18 emerging countries, in line with the short- and long-run bidirectional causality 

found by Apergis and Payne (2012) for a panel of 80 countries. These findings of 

bidirectional causality between renewable and non-renewable energy consumption and 

economic growth lend support to the feedback hypothesis, implying that renewable and non-

renewable energy consumption and economic growth are interdependent. 

The empirical literature on the relationship between energy consumption and 

economic growth is extensive, and the findings are diverse. However, surveying the existing 

studies on the energy consumption-economic growth nexus, Ozturk (2010) concludes, “There 

is no consensus, neither on the existence nor on the direction of causality between these 

variables in the literature” (P: 347). Therefore, the literature on this issue continues to grow. 

Few studies on OECD countries provide a disaggregated analysis of renewable and non-

renewable energy consumption and economic growth. Therefore, the present study aims to 

contribute to the literature by identifying the impacts of renewable and non-renewable 

sources of energy on the real gross domestic product and on the industrial sector in OECD 

countries. 

3. Methodology  

3.1 Theoretical Framework 

Recent literature concerning economic growth indicates that capital, labor, technological 

progress, and energy are the basic elements of economic growth in developed countries. The 

analytical framework used here is developed by Liao et al (2010) and justified by Arbex and 

Perobelli (2010). Accordingly, this study augments the neoclassical Cobb–Douglas 

production function by incorporating renewable and non-renewable energy consumption in 

addition to capital and labor employment in estimating the long-run relationship between 

variables. Although the mainstream neoclassical growth models do not include energy as a 

factor in the production function that could constrain or enable economic growth the recent 

literature pay attention to this for substitution of other inputs for energy particularly 

renewable energy due to high oil price and the fear of so called ‘peak oil’. Thus, optimum 

adjustment of fuel mix has never been more important than now and the economic 

outcome of decisions regarding energy policy often hinges on substitution between 

energy sources and other factors of production. Hence, accurately estimating and analyzing 

the linkages between renewable and non-renewable energy consumption and industrial output 

as well as GDP growth can provide some information for governments as a basis of setting up 

appropriate policies related to environment such as pollution and energy taxes. 
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 Let the production function be of the following form: 


tttt ELAKY       (1) 

where Yt represents the aggregate output at time t, Kt is capital, Lt is labor, Et is energy, and A 

is the technology parameter. Α, β, and γ measure the elasticities of output with respect to 

capital, labor, and energy, respectively. According to Liao et al. (2010) and Arbex and 

Perobelli (2010), energy is classified into two categories, clean energy (renewable) and non-

clean energy (non-renewable). The production procedure uses both resources as sources of 

energy. Consequently, the above function is adjusted as follows: 

21 
ttttt NRLAKY       (2) 

where Rt is renewable energy and Nt is non-renewable energy. Here, γ1 and γ2 are the 

elasticity of output with respect to renewable and non-renewable energy, respectively. The 

logarithmic form of the production function provides a log-linear form and yields  

tttttt uLnNLnRLnLLnKLnALnY  21  . (3a) 

In the above model, Y, as the dependent variable, represents real gross domestic 

production, and K, L, R, and N, as independent variables, stand for capital, labor, renewable 

energy consumption, and non-renewable energy consumption, respectively. The economic 

explanations of α, β, γ1, and γ2 are the elasticities of output with respect to capital, labor, 

renewable energy, and non-renewable energy, respectively.  

To identify the linkages between various types of energy and industrial production, 

Equation (3) is also estimated using industrial output as the dependent variable as follows:  

tttttt uLnNLnRLnLLnKLnALnIV  21     (3b)  

where LnIVt is industrial value added. In empirical analysis that follows equation (3a)  and 

(3b)  are referred to as Model I and Model II respectively. 

3.2 Econometric Approach 

3.2.1. Unit root: In the empirical analysis, the time series properties of variables must be 

examined to avoid the possibility of spurious regression. In the first step, the integrational 

properties of the series are ascertained. To achieve this goal and to provide an analysis of 

sensitivity and robustness, this study performs three different unit root tests, including 

Breitung (2000), Levin et al. (2002) (LLC), and Im et al. (2003) (IPS). Breitung (2000) 

proposes a t-ratio type test statistic that does not require bias correction factors. It is also a 

test against the homogenous alternative due to its pooled construction. The LLC is based on 

the augmented Dickey-Fuller (ADF) test and assumes homogeneity in the dynamic of the 
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autoregressive (AR) coefficients for all panel members. Specifically, the LLC test assumes 

that each individual unit in the panel shares the same AR(1) coefficient but allows for an 

individual effect, time effects, and, eventually, a time trend. The IPS suggests a new, more 

flexible, and computationally simple unit root testing procedure for panels that allows for 

simultaneous stationary and non-stationary series. Moreover, this test allows for residual 

serial correlation and heterogeneity of the dynamics and error variances across groups. All 

tests discussed here rely on the assumption of cross-sectional independence and treat the 

presence of a unit root, implying non-stationarity as the null hypothesis, and the absence of 

the unit root, or stationarity as the alternative hypothesis. 

3.2.2: Panel cointegration: According to Perron (1989), although different tests are widely 

used to check for stationarity, failure to allow for structural breaks can lead to deceptive 

results. To overcome this problem, a panel stationarity test allowing for multiple structural 

breaks by following Carrion-i-Silvestre et al. (2005) is applied in this study. The procedure 

for this test is based on the panel data version of the Kwiatkowski (1992) univariate test 

developed in Hadri (2000). Some of the features of this test are that, first, it allows for the 

structural changes to shift the mean and/or the trend of the individual time series. Second, 

each individual in the panel can have a different number of breaks located at different dates. 

In the second step, panel cointegration relationships between the variables are tested 

by using the recently introduced test by Westerlund (2007). This test has high power relative 

to commonly used residual-based panel cointegration tests such as Pedroni (2004). Moreover, 

the results of the Westerlund test are sensitive to the choice of lag and lead lengths when the 

time dimension is short (Persyn and Westerlund 2008). A drawback of Pedroni’s test is that it 

does not accommodate structural breaks. Westerlund test allows for multiple structural breaks 

in the data and determines the location of structural breaks endogenously using the Bai and 

Perron (2003) technique, which globally minimizes the sum of squared residuals. 

The panel cointegration test is conducted under two different models:  

Model I: Output (GDP) = f(gross fixed capital formation (K), total labor force (L), renewable 

energy consumption (R), non-renewable energy consumption (N)). 

Model II: Industrial output (IV) = f(gross fixed capital formation (K), total labor force (L), 

renewable energy consumption (R), non-renewable energy consumption (N). 

3.2.3: Long-run estimators: Diagnostic tests reported in Table 1 indicate that Model I suffers 

from the problem of cross-section dependence, heteroskedasticity and serial correlation and 

Model II suffers from heteroskedasticity and serial correlation. When models suffer from 



9 

 

these problems conventional panel estimators (such as fixed or random effects) can result in 

misleading inference and even inconsistent estimators (Phillips and Sul, 2007). Pesaran 

(2006) proposes an estimation method, called Common Correlated Effects (CCE), which 

allows for unobserved factors to be correlated with exogenous regressors and idiosyncratic 

components to be independent across countries. Furthermore, this estimator holds under 

different situations such as serial correlation in errors, unit roots in the variables and possible 

contemporaneous dependence of the observed regressors with the unobserved factors 

(Kapetanios and Pesaran, 2007; Pesaran and Tosetti, 2011). In this step we employ Common 

Correlated Effects Mean Group (CCEMG) estimator, proposed by Pesaran (2006), to 

estimate the long-run estimators that account for cross-sectional dependence. The idea of this 

estimator is to filter the cross-section specific regressors by cross-section averages of 

dependent variable and the observed regressors. In this way cross-section dependence can be 

eliminated as unobserved common factor can well be approximated by the cross-section 

averages. Kapetanios et at (2011) note that CCEMG estimators are consistent even in the 

presence of unit root in the unobserved factors. CCEMG estimator is also robust to local and 

global shocks (Pesaran and Tosetti, 2011).  

3.2.4: Granger causality: To identify the short-run and long-run causality among the 

variables we employ dynamic panel data framework proposed by Pesaran et al (1999), 

commonly known as Pooled Mean Group (PMG) estimation. PMG estimators allow 

intercept, slope coefficients and error variance to vary across cross-section members and thus 

recognize heterogeneity among cross-section units of the panel. PMG estimator is superior to 

its predecessor Mean Group (MG) estimator of Pesaran and Smith (1995). Under slope 

coefficients’ heterogeneity the MG estimator does not take into account that some economic 

conditions tend to be same across cross-section units in the long run. The efficiency gain of 

PMG estimator comes from the assumption of heterogeneous short-run dynamics and the 

constraint that the long-run coefficient to be equal across cross-section units. There are other 

obvious advantages of PMG estimator. It is robust to outliers and the choice of lag orders 

(Pesaran et al, 1999). It is consistent and efficient even in the presence of endogenous and 

non-stationary regressors (Fayad, 2010). Other candidate methodology to estimate dynamic 

panel models are fixed effects, instrumental variables or Generalized Methods of Moments 

(GMM) estimators. However, Pesaran and Smith (1995) show that for panels with larger time 

dimension (T) these estimators can produce inconsistent and very misleading estimates of the 

parameters. GMM is suitable short panels where N>T. In the present paper we have 29 cross-
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section units (N=29) and 32 yearly observations (T=32), that is N<T, therefore we choose to 

employ PMG estimator to analyze short-run and long-run causality among the variables. The 

PMG approach is modelled as an autoregressive distributed lag (ARDL) model. Let the 

ARDL (p,q1, q2,….qk) dynamic panel model is specified as follows:  
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Where the number of cross-section units I = 1,2,….N; from 1 to N; the number of period t = 

1,2,….T. Xit is a k x 1 vector of explanatory variables; it is the k x 1 coefficient vector; ij are 

scalars and i is the cross-section specific effect. For convenience Equation [4] can be re-

parameterized as follows: 
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The parameter i is the error-correction speed of adjustment term. If the null of 0  is 

rejected then there would be evidence of long-run equilibrium relationship, that is, the 

variables are cointegrated. In this case the parameter value is expected to be significantly 

negative. Significant value of this error-correction term can also be taken as the evidence of 

long-run causality running from independent to dependent variable. For short run causality 

from independent to dependent variable we need the null hypothesis of 0/* ij in Equation 

(5) to be rejected (Santana-Gallego et al., 2011). For our purpose we can specify Equation (5) 

in terms of variables in Equation [3a and 3b]. For example, in Equation (3a) LnY is the 

dependent variable and LnA, LnK, LnL, LnR and LnN are independent variables. Now we 

want to examine causal link running from independent to dependent variables, we can re-

write Equation (5) in terms of LnY as follows: 

  










 
1

0

,

/*
1

1

1,

*/

1,

q

j

itijtiij

p

j

tiijititiiit LnYLnYLnY   

Where X is the vector of LnA, LnK, LnL, LnR and LnN. Similarly if we want to examine 

causal link running from LnA, LnK, LnL, LnR and LnY to LnN, then the resulting equation 

will be: 
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In this way we can specify equations for other variables and examine short and long run 

causality among the variables. 

3.3 Data Description 

Annual data for a set of 29 OECD countries covering the period from 1980 to 2012 are 

collected on gross domestic product, industrial output, capital, labor force, and renewable and 

non-renewable energy consumption for a balanced panel with 928 observations for the 

selected OECD countries. The 29 sample countries are Australia, Austria, Belgium, Canada, 

Chile, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, 

South Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, 

Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. 

Due to the unavailability of data, only 29 of the 34 countries that constitute the OECD are 

included in the analysis.  

In this study, real GDP in billions of constant 2000 U.S. dollars using purchasing 

power parities (PPPs) is used as a proxy for economic output. Capital, which is used as an 

input in the production function, refers to already-produced durable goods. Because capital 

stock data are not easy to collect and measure, gross fixed capital formation is usually used as 

a proxy for the growth of capital stock. Particularly, in accordance with the perpetual 

inventory method, assuming a constant depreciation rate indicates that changes in investment 

closely follow changes in the capital stock (Soytas and Sari 2006). Thus, data on real gross 

fixed capital formation in billions of constant 2000 U.S. dollars are used in this study. Data 

on the total labor force in millions as well as industrial value added (as a proxy for industrial 

output) in billions of constant 2000 U.S. dollars are also applied. All data mentioned above 

are obtained from the World Bank (2013). 

According to the Energy Information Administration (2011), non-renewable energy 

sources include coal and coal products, oil, and natural gas. Therefore, in this study, non-

renewable energy consumption is measured as the aggregate of the consumption of all of 

these sources in quadrillion Btu units. Renewable energy consumption in quadrillion Btu 

units is measured as wood, waste, geothermal, wind, photovoltaic, and solar thermal energy 

consumption. All data related to energy consumption are sourced from the U.S. Energy 

Information Administration.  



12 

 

All variables are converted into natural logarithms prior to conducting the analysis so 

that the parameter estimates of the model can be interpreted as elasticity estimates. To test for 

multi-collinearity between the independent variables in each model, the variance inflation 

factors (VIF) for each predictor are calculated (not shown here to save space). The results 

indicate no existence of mult-icollinearity between the independent variables in each of the 

models. 

4. Empirical Results 

With panel data, the most commonly estimated models are fixed effects and random effects 

models. Fixed effects models control for the effects of time-invariant variables with time-

invariant effects. In the fixed effects model, the individual-specific effect is a random 

variable that is allowed to be correlated with the explanatory variables. In the random effects 

model, the individual-specific effect is a random variable that is uncorrelated with the 

explanatory variables. It should be noted that using these methods without controlling for 

diagnostic tests such as cross-sectional dependence, heteroskedasticity, and serial correlation 

can cause bias in the standard errors and produce inefficient results. Pesaran indicates that the 

cross-sectional dependence (CD) test allows for a wide variety of models, including 

heterogeneous dynamic models with multiple breaks and non-stationary dynamic models 

with a small or large time-series dimension (T) and cross-sectional dimension (N). In the 

present study, Pesaran’s (2004) CD test is applied to check for cross-section dependence. 

Table 1: Diagnostic tests for Models I and II 

 FE Estimation RE Estimation 

Model I 

   Cross-Sectional Dependence 

Pesaran (P-value) 0.000*** 0.000*** 

   Heteroskedasticity   

Modified Wald (P-value) 0.000***  

   Serial Correlation   

Wooldridge (P-value) 0.000***  

   
Model II   

   Cross-Sectional Dependence 

Pesaran (P-value) 0.2470 0.4244 

   Heteroskedasticity   

Modified Wald (P-value) 0.000***  

   Serial Correlation   

Wooldridge (P-value) 0.000***  

   
Note: FE and RE denote fixed effects and random effects estimations. *** and * indicate that the P-

value or test statistic is significant at the 1% and 10% levels, respectively. 
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The problem of heteroskedasticity in cross-section data occurs when the variance of 

the unobservable error (disturbance) is not constant. Although heteroskedasticity does not 

affect the parameter estimates, it does bias the variance of the estimated parameters. The 

frequently used tests for heteroskedasticity are the Breusch-Pagan test, or the Lagrange 

Multiplier test, the likelihood ratio test, and the standard Wald test. The weakness of these 

tests is their sensitivity to the normality assumption. Therefore, in this study, a modified 

Wald test is used to check for the presence of panel heteroskedasticity because this test works 

even when the normality assumption is violated. 

Autocorrelation is occasionally called “lagged correlation” or “serial correlation”, 

which refers to the correlation between members of a series of numbers arranged in time. 

Positive autocorrelation can be considered a specific form of “persistence”, a tendency for a 

system to remain in the same state from one observation to the next. Wooldridge (2002) 

derives a flexible test for detecting serial correlation in panel data models. 

Table 2: Panel unit root test without structural breaks for the variables used in Models I 

and II 

Method LnY LnIV LnK LnL LnR LnN 

Breitung       

Level 4.336 

(1.000) 

1.848 

(0.967) 

0.183 

(0.572) 

1.071 

(0.858) 

6.170 

(1.000) 

-1.093 

(0.137) 

First 

difference 

-2.929 

(0.001)*** 

-4.525 

(0.000)*** 

-4.563 

(0.000)*** 

-6.262 

(0.000)*** 

-10.406 

(0.000)*** 

-8.048 

(0.000)*** 

LLC       

Level 13.007 

(1.000) 

-0.523 

(0.300) 

7.691 

(1.000) 

1.162 

(0.877) 

2.525 

(0.994) 

-0.971 

(0.165) 

First 

difference 

-5.711 

(0.000)*** 

-8.444 

(0.000)*** 

-3.274 

(0.000)*** 

-3.791 

(0.000)*** 

-22.953 

(0.000)*** 

-18.642 

(0.000)*** 

IPS       

Level 5.128 

(1.000) 

2.756 

(0.997) 

3.573 

(0.999) 

3.525 

(0.999) 

3.187 

(0.999) 

1.288 

(0.901) 

First 

difference 

-7.832 

(0.000)*** 

-11.469 

(0.000)*** 

-7.119 

(0.000)*** 

-5.780 

(0.000)*** 

-26.069 

(0.000)*** 

-21.815 

(0.000)*** 

Note: Probabilities of the test statistics are presented in parentheses. ***, **, and * indicate that the test 

statistic is significant at 1%, 5%, and 10% level, respectively. The Schwarz Information Criterion (SIC) 

is used to determine the optimal lag length. The nulls for all tests are unit roots, and all regressions 

include an intercept and trend. 

The results of the diagnostic tests are provided at this stage to select an appropriate method 

for estimating the long-run relationship between the variables in the two models. The results 

of the diagnostic tests for the two models are provided in Table 1. Pesaran’s test rejects the 

null hypothesis of cross-sectional independence for Model I under both fixed and random 

effect specifications. However, for Model II the null of cross-sectional independence under 

both fixed and random effect specification are not rejected. The results of heteroskedasticity 
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and serial correlation tests confirm the existence of the problem of heteroskedasticity and 

serial correlation at a 1% level of significance in the models. 

4.1 Panel Unit Root Test 

The results of the unit root tests, including Breitung (2000), Levin et al. (2002) (LLC), and 

Im et al. (2003) (IPS), are presented in Table 2. All of these tests treat the presence of a unit 

root, implying non-stationarity as the null hypothesis, and the absence of the unit root or 

stationarity as the alternative hypothesis. Individual trends and constants are included in the 

tests. The statistics significantly confirm that the level values of all series are non-stationary, 

and the first differences of all variables in all tests are stationary at the 1% level of 

significance. 

Table 3: Panel unit root test with structural breaks for the variables used in Models I 

and II 

Variables Bartlett 

Kernel 

Quadratic 

Kernel 

Critical values 

5% 2.5% 1% 

LnY      

Homogeneous 11.127* 11.265* 11.012 11.893 12.075 

Heterogeneous 

 

11.090** 11.304** 10.208 10.919 11.871 

LnIV      

Homogeneous 18.384** 19.561*** 17.091 17.628 18.631 

Heterogeneous 20.004** 21.431*** 18.562 19.853 20.673 

LnL      

Homogeneous 9.139*** 9.140*** 5.509 5.854 6.006 

Heterogeneous 

 

11.973*** 12.002*** 6.704 7.310 7.656 

LnK      

Homogeneous 7.841*** 7.843*** 7.092 7.806 8.666 

Heterogeneous 

 

8.722** 8.734** 6.695 7.723 8.991 

LnR      

Homogeneous 7.734** 7.611** 6.821 7.010 7.812 

Heterogeneous 

 

6.913*** 6.742*** 5.431 5.912 6.729 

LnN      

Homogeneous 8.893** 8.897** 8.711 8.991 9.123 

Heterogeneous 9.710** 9.783** 9.512 9.703 10.111 

Note: The number of structural breaks is up to five. The long-run variance is estimated using both the 

Bartlett and the quadratic spectral kernel with automatic spectral window bandwidth selection, as in Sul 

et al. (2005). ***, **, and * indicate that the test statistic is significant at the 1%, 2.5%, and 5% levels, 

respectively. 

Table 3 provides the results of the panel stationarity test with structural breaks by 

following Carrion-i-Silvestre et al. (2005). These results indicate that the null hypothesis of 

stationarity is rejected by either the homogeneous and heterogeneous long-run variance for all 

variables at the 5% level and for most of the variables at the 2.5% and 1% levels. Thus, it can 

be concluded that all the variables are non-stationary at their levels even when allowing 
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structural breaks. The country-by-country tests with multiple breaks allowing for a maximum 

of five breaks are calculated by means of Monte Carlo simulations based on 20,000 

replications. The results are provided in Appendix Table 1. There is more than one break in 

different series in all 29 countries. These breaks are typically coincident with various episodic 

events as well as domestic economic and financial deregulations in individual country. For 

example, oil price shocks in the early 1980s, Asian financial crisis in 1998-99, slowdown of 

various big economies such as the US in 2001, US stock market collapse, terrorist attacks in 

New York, Afghanistan and Iraq wars in the 2000s and some big businesses collapsed in the 

mid-2000s and so on. All these events contributed to the structural breaks in various series. 

Overall, the results of the panel unit root tests for all variables used in this study 

confirm that the level values of all series are non-stationary, and all variables are stationary at 

the first difference; that is, all variables are integrated at order one. Consequently, panel 

cointegration tests can be employed to study the long-run equilibrium process. 

4.2 Panel Cointegration Test 

Following Westerlund (2006 and 2007), the cointegration results for Models I and II are 

reported in Tables 4 and 5. The results of Westerlund’s (2007) cointegration test without 

structural breaks (Table 4) for Model I shows that group-α and panel-α test statistics are 

insignificant, while group-τ and panel-τ test statics are significant indicating some signs of 

cointegration. We suspect that this result may be due to existence of cross-sectional 

dependence. To accommodate cross-sectional dependence we apply bootstrap technique and 

the resulting p-values are reported under ‘Bootstrapped p value’ column in Table 5. These p-

values indicate that when cross-sectional dependence is taken into consideration, the 

variables in Model I are found cointegrated. However, the results for Model II, even with 

bootstrapped p-values, indicate that the variables are not cointegrated. Table 5 presents the 

panel cointegration test results with structural breaks. For Model I, the statistic Z(m) cannot 

reject the null hypothesis of cointegration at the 5% and 1% significance levels, and the 

DOLS-based (Dynamic Ordinary Least Squares) statistics cannot reject the null hypothesis, 

even at the 10% significance level. The same results are observed for Model II. These results 

provide some evidence of cointegration in the presence of structural breaks, implying that, 

when structural break is considered, evidence of a long-run equilibrium relationship is found 

between GDP, capital, labor force, and renewable and non-renewable energy consumption in 

selected OECD countries. 
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Table 4: Westerlund cointegration test without structural breaks for Models I and II 

Statistic Value 

 

(1) 

P-value Bootstrapped p 

values Model I 

Group- τ -3.250 0.014** 0.034** 

Group- α -7.835 1.000 0.064* 

Panel- τ -15.226 0.058* 0.030** 

Panel- α -7.521 1.000 0.068* 

Model II 

Group-t -2.467 0.989  0.520 

Group-a -5.950 1.000 0.634 

Panel-t -10.363 1.000 0.606 

Panel-a -5.888 1.000 0.496 

Note: ***, ** and * indicate that the test statistics are significant at  1%, 5% and 10% levels 

respectively. Following Westerlund (2007), the maximum lag length is selected according to 
9/2)100/(4 T . The null hypothesis of the test is “no cointegration”. 

Table 5: Westerlund cointegration test with structural breaks for Models I and II 

 Statistics  Critical Values  

 10% 5% 1% 

Model I 

Z(m) 7.312 7.045 9.211 13.117 

ZDOLS(m) 7.731 10.102 12.429 16.658 

Model II 

Z(m) 8.111 7.843 11.531 13.348 

ZDOLS(m) 9.014 9.332 11.210 14.537 

The null hypothesis of the test is “cointegration”. 

4.3 Long-Run Estimation 

Pesaran’s (2006) long-run CCEMG estimates are reported in Table 6. The estimates are free 

from cross-sectional dependence and time-variant heterogeneity. We present results for both 

models. The results show that in both models all variables are highly significant except the 

coefficient of (log of) labor. The results for Model I show that in the long run, a 1% increase 

in capital, total labor force, renewable energy and non-renewable energy consumption will 

enhance real GDP by 0.254%, 0.817%, 0.101%, and 0.267%, respectively. Comparing the 

coefficients of the independent variables indicates that labor has the largest effect on real 

GDP in the long run. In addition, the elasticities of real GDP with respect to renewable and 

non-renewable energy consumption demonstrate that both types of energy stimulate 

economic growth in OECD countries. However, comparing the magnitudes of their 

coefficients confirms that non-renewable energy is still the dominant type of energy utilized 

in the process of economic growth. A comparison with other studies in which the effects of 

renewable and non-renewable energy consumption on economic growth are simultaneously 
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investigated show that the results obtained here are consistent with those reported by Apergis 

and Payne (2013) for 85 developed and developing countries. However, the results differ 

from those obtained by Apergis and Payne (2011a) and Apergis and Payne (2012), who find a 

positive and significant impact only for non-renewable energy consumption in six Central 

American countries and in 16 emerging countries, respectively. The positive and significant 

relationship between renewable energy consumption and economic growth in the long term is 

also found by Apergis and Payne (2010d) for 20 OECD countries, Apergis and Payne 

(2010c) for 13 Eurasian countries, and Apergis and Payne (2011a) for six Central American 

countries. 

Table 6: CCEMG estimates of Model I and Model II 

Independent variables Model I Model II 

LnK 
0.2545*** 

(0.0360) 

0.4346*** 

(0.0457) 

LnL 
0.8175*** 

(0.1986) 

0.1234 

(0.3109) 

LnR 
0.1018*** 

(0.0190) 

0.0745*** 

(0.0253) 

LnN 
0.2670*** 

(0.0534 

0.2955*** 

(0.0788) 

Intercept 
-2.3919 

(1.4930) 

-0.2221 

(2.3495) 
***, ** and * indicate that the test statistics are significant at 1%, 5% and 10% levels respectively. 

Figures in the parentheses are standard errors. 

Although Model II does not suffer from the cross-sectional dependence, it is not free from the 

problems of heteroskedasticity and serial correlation. We, therefore, also present estimations 

results of Model II. The coefficients of capital, renewable and non-renewable energy 

consumption are positive and statistically significant at the 1% level. However, the 

coefficient of labor force consumption is positive, but not statistically significant. This may 

reflect the fact that industrial sectors in OECD countries are highly automated and less labor 

intensive and hence insignificant coefficient for labor force variable. The findings show that a 

1% increase in capital, renewable and non-renewable energy consumption enhances 

industrial output by 0.434%, 0.074%, and 0.295%, respectively. Comparing the results of 

Model I and II with regard to energy consumption we see that in both cases the elasticity of 

non-renewable energy consumption is greater than the elasticity of renewable energy 

consumption and the elasticity figures are quite close to each other (0.267 vs 0.295). 
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4.4 Panel Granger Causality 

We employ Pooled Mean Group (PMG) estimator proposed by Pesaran et al (1999) to 

capture causal link among the variables in Model I. PMG estimator does not handle the 

problem of cross-sectional dependence. According to the diagnostic tests results in Table 1, 

Model I suffers from cross-sectional dependence problem. To eliminate the problem of cross-

scetional dependence we transform the variables by time demeaning the data in which case a 

panel model takes the following form: 

       tittitit yy ...
  xxit  

     tittitit f ..    

where, 
N

i

itt y
N

y
1

.
and so on. 

In this model error structure is given by ittiit f   ; where ft where ft represents the 

unobserved factor that generates cross-sectional dependence, and i is factor loading. In the 

above transformation disturbances are expressed in terms of deviations from time-specific 

averages and therefore, essentially remove the mean impact of ft. However, this is effective 

unless the factor loadings are mean zero, in which case this procedure is not effective at all 

(Hoyos and Sarafidis, 2006). As we do not have means to verify if the mean factor loading is 

zero we first estimate PMG with each variable as dependent variable variables in Model 1, 

which gives us five estimation results. Then we test the residuals of these equations for cross-

sectional dependence using Pesaran’s (2004) cross-sectional dependence (CD) test. The 

cross-sectional dependence test results reported in Table 7 below indicate that time 

demeaning of variables have significantly reduced cross-sectional dependency. 

Table 7: Cross-sectional dependence for Model I 

Residual when dependent variable 

is: 

CD test p  value Correlation 

LnY -0.57 0.57 -0.006 

LnK -2.01 0.044* -0.023 

LnL 1.13 0.259 0.011 

LnR 1.13 0.26 0.013 

LnN -2.59 0.010** -0.029 
Note: **, and * indicate significant at 5%, and 10% level respectively. 

The above results indicate that the null hypothesis of cross-scetional independence is not 

rejected in three cases. For LnK and LnN equations null is rejected at 10% and 5% levels 

respectively, which cannot be considered highly significant results. Moreover the correlations 
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among the cross-scetional units are also very low. Overall the results suggest that the mean 

factor loading is not zero and hence time demeaning works well in reducing cross-sectional 

dependence significantly. Short-run and long-run causality test results with cross-sectional 

dependence are reported in Table 8.  

Table 8: Long-run and short-run causality – Model I 

Dependent 

variables 

Sources of causation 

 Short-run causation Long-run 

causation 

ΔLnY ΔLnK ΔLnL ΔLnR ΔLnN EC 

ΔLnY  0.1248*** 

(0.0185) 

0.1860* 

(0.0951) 

0.0196*** 

(0.0051) 

0.0476*** 

(0.0162) 

-0.1518*** 

(0.0316) 

ΔLnK 3.4216** 

(1.3864) 

 - 5.7150 

(6.1065) 

-0.0250 

(0.0321) 

-0.4262 

(0.4413) 

0.1512 

(0.3867) 

ΔLnL - 0.0139 

(0.0640) 

- 0.0091 

(0.0160) 

 0.0054 

(0.0063) 

0.0201 

(0.0153) 

-0.1390*** 

(0.0392) 

ΔLnR 0.6985 

(0.6343) 

0.2126 

(0.1393) 

0.6150 

(0.7064) 

 -

1.0539*** 

(0.2899) 

-0.1800*** 

(0.0463) 

 

ΔLnN 0.5280*** 

(0.1827) 

0.0454 

(0.0426) 

-0.3179 

(0.2427) 

-0.0557*** 

(0.0181) 

 -0.3343*** 

(0.0546) 

Figures in parentheses are standard errors. ***, **, and * indicate significant at 1%, 5%, and 10% level 

respectively. 

The results reported in Table 8 show that in LnY equation real gross fixed capital formation 

(GFCF), total labor force, and renewable and non-renewable energy consumption all have a 

positive and significant effect on real GDP. The coefficient of gross fixed capital formation 

and consumption of renewable and non-renewable energy are significant at 1% level, while 

coefficient of labor force is significant at 10%.level. This finding suggests that real gross 

fixed capital formation, total labor force, and renewable and non-renewable energy 

consumption Granger cause economic growth in the short run. The highly significant (at 1% 

level) and correctly signed error correction term of this equation indicates that real GFCF, 

total labor force, and renewable and non-renewable energy consumption also cause real GDP 

in the long run. In second equation, in which real gross fixed capital formation is the 

dependent variable, the impact of real GDP is positive and statistically significant at the 5% 

levels. However, no significant impacts of labour force and renewable and non-renewable 

energy consumption on the real GFCF are found. This result suggests that in the short run 

causality runs from only real GDP to real GFCF. Insignificant and incorrectly signed error 

correction term indicate that no long-run causality exists between gross capital formation and 

the independent variables in this equation. With regard to the third equation, we do not find 

any evidence of causality from any variable to the labor force in the short run; however, 
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negative and significant error correction term indicate that in the long-run causality runs from 

real GDP, real GFCF, and consumption of renewable and non-renewable energy to labour 

force. One possible source of this finding may be use of annual data. Most of the short-run 

changes in unemployment/employment are reflected in monthly or quarterly data. So, use of 

annual data may not capture those dynamics.  

With respect to the fourth equation for renewable energy consumption, the results 

show that only non-renewable energy consumption has negative and highly significant effect 

on renewable energy consumption at 1% level. Negative coefficient implies substitutability 

between renewable and non-renewable energy. These results indicate that in the short run 

causality runs from non-renewable energy consumption to renewable energy consumption. 

Highly significant (at 1% level) error correction term suggests existence of long-run causality 

running from independent variables to renewable energy consumption. For non-renewable 

energy consumption equation, short run causality runs from real GDP and renewable energy 

consumption variables, both at 1% significance level. Similar results are found in non-

renewable energy consumption equation; however, in this case coefficient of real GDP is 

significant at a lower level, i.e. at 1% level. In this equation long-run causality runs from 

independent variables to non-renewable energy consumption as indicated by statistically 

significant error correction term.  

In sum, the empirical results indicate that there is bidirectional causality between real 

GDP and real gross fixed capital formation and between real GDP and non-renewable energy 

consumption and there is unidirectional causality from labor force and renewable energy to 

real GDP. No short-run causal link is found between real GFCF and labour force, renewable 

and non-renewable energy. Also no short-run causality is found between labour force and 

renewable and non-renewable energy. Causality is also found between real gross capital 

formation and renewable energy consumption, and between real gross capital formation and 

non-renewable energy consumption. 

The results of bidirectional causality between real GDP and non-renewable energy 

consumption are consistent with Apergis and Payne (2013), who also investigate the two 

types of energy simultaneously for 85 developed and developing countries. The results of the 

relationship between real GDP and non-renewable energy consumption are similar to the 

findings of Apergis and Payne (2011a) for 16 emerging economies and of Apergis and Payne 

(2012) for six Central American countries. However, the results with respect to the 

relationship between economic growth and renewable energy use contradict with that of 
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Apergis and Payne (2011a) which find unidirectional causality from GDP to renewable 

energy use. 

The finding of bidirectional causality between economic growth and non-renewable 

energy confirms the feedback hypothesis, implying that a high level of economic growth 

leads to high level of consumption of non-renewable energy and vice versa. However, 

governments should substitute renewable energy sources for non-renewable energy sources 

and should encourage more usage of renewables to mitigate pollutant emissions. 

From the above discussion of causality analysis one policy related issue emerges. In 

both renewable and non-renewable equations we find negative relation between these two 

energy consumptions and they are significant at 1% levels; however, the coefficient values 

are dramatically different. A 1% increase in non-renewable energy consumption reduces 

renewable consumption by almost the same magnitude (1.05%), whereas, a 1% increase in 

renewable energy consumption reduces consumption of non-renewable energy by a very 

negligible amount, only 0.056%. This indicates that there is a long way to go to establish 

non-renewable energy as an established and secured source of energy. This finding suggests 

that effective government policy is required to promote the use of renewable energy to 

mitigate the adverse environmental effect of non-renewable energy use.  

Table 9: PMG result of short and long run causality: Model II 

Dependent 

variables 

Sources of causation 

 Short-run causation Long-run 

causation 

ΔLnIV ΔLnK ΔLnL ΔLnR ΔLnN EC 

ΔLnIV  0.3637*** 

(0.0354) 

0.2717* 

(0.1621) 

0.0307** 

(0.0143) 

0.1397*** 

(0.0447) 

-0.1563*** 

(0.0413) 

ΔLnK 0.9566*** 

(0.1588) 

 0.5646* 

(0.3431) 

-0.0074 

(0.0306) 

-0.0774 

(0.0514) 

-0.2432*** 

(0.0487) 

ΔLnL 0.0017 

(0.0326) 

-0.0072 

(0.0184) 

 -0.0036 

(0.0064) 

-0.0019 

(0.0154) 

-0.1016*** 

(0.0301) 

ΔLnR 1.1165** 

(0.4395) 

-0.2366 

(0.1887) 

-0.6133 

(0.9536) 

 -0.935*** 

(0.2950) 

-0.3984*** 

(0.0726) 

ΔLnN 0.2970*** 

(0.0804) 

0.0530 

(0.0459) 

-0.2766 

(0.2754) 

-0.0594*** 

(0.0228) 

 -0.2795*** 

(0.0443) 

Standard errors are presented in parentheses. ***, **, and * indicate that the test statistic is significant at the 

1%, 5%, and 10% level, respectively. The optimal lag length for the variables is one, determined by the 

Schwarz Information Criteria. ECT indicates the estimated error correction term. 

Next we estimate Model II. Diagnostic tests in Table 1 indicate that Model II does not suffer 

from cross-sectional dependence problem. We therefore apply PMG estimator without the 

original variables. The results are reported in Table 9. The results of Granger causality 

between the variables in the first equation indicate that real GFCF and non-renewable energy 
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consumption have positive and statistically significant effects at the 1% level, and labor force 

and renewable energy consumption have positive and significant effects on industrial output 

at 5% and 10% levels respectively. The findings suggest that capital, labor force, and both 

renewable and non-renewable energy consumption Granger cause industrial output in the 

short run. Considering the causal relationship between industrial output and the other 

variables in the rest of the equations, the results show that industrial output positively and 

significantly influences gross capital formation, and both renewable and non-renewable 

energy consumption. This result suggests that industrial output Granger causes capital, and 

both renewable and non-renewable energy use in the short run. 

Overall, the results of Model II (Table 9) indicate that there is bidirectional short-run 

causality between industrial output and capital, renewable and non-renewable energy 

consumption. The two-way relationship between industrial output and both types of energy, 

which supports a feedback hypothesis, implies that renewable and non-renewable energy 

consumption mutually influence each other in OECD countries in the short run. Therefore, 

energy conservation in terms of either renewable or non-renewable energy may lead to a 

reduction in industrial production. However, any negative shock in the process of industrial 

output may have a negative impact on energy usage. 

Negative and significant bi-directional causality between renewable and non-

renewable energy consumption indicate that increase in the consumption of one type of 

energy reduces consumption of the other type of energy; however, the associated coefficients 

suggest that this negative impact of one type of energy on the other is asymmetric. A 1% 

increase in the consumption of non-renewable energy reduces consumption of renewable 

energy by 0.935%; whereas, a 1% increase in the consumption of renewable energy reduces 

consumption of non-renewable energy by only 0.059%. Moreover, the coefficient of 

renewable energy (0.0307) in the industrial value added equation indicates that use of non-

renewable energy in the production of industrial output still remains in a very limited scale. 

With respect to the long-run causality relationship between the variables, the error 

correction terms suggest that there is bidirectional causality between industrial output and 

renewable and non-renewable energy consumption in the long run; however, the magnitude 

of disequilibrium correction is quite low (0.1563), indicating that it takes much longer time to 

get back to equilibrium. In other equations too (except renewable energy equation) the error 

correction terms indicate that restoring long-run equilibrium take quite long period. Only in 

case of renewable energy consumption equation the adjustment is quicker; nearly 40% 

deviation is corrected each year 
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5. Conclusion 

This article aims to investigate the effects of disaggregated energy consumption (renewable 

and non-renewable) on industrial output as well as on economic growth based on a 

neoclassical economic growth model. The simultaneous inclusion of renewable and non-

renewable energy consumption in the model allows us to distinguish the relative influence of 

each type on industrial output and overall economic growth as well as to analyze the 

substitutability between the energy sources as well as other factors of production. Accounting 

for structural breaks and cross-sectional dependence the results of cointegration tests indicate 

the existence of a long-run equilibrium relationship between the variables in both models. 

With respect to the long-run estimation for real GDP (Model I), the coefficients of real gross 

fixed capital formation (capital), total labor force, renewable energy and non-renewable 

energy consumption are positive and significant at the 1% level. The estimates of elasticities 

of real GDP with respect to renewable and non-renewable energy consumption are 0.101 and 

0.267 respectively while those of industrial output are 0.074 and 0.295 respectively. These 

finding indicate that a 1% rise in renewable and non-renewable energy consumption entail a 

0.101% and 0.267% increase in real GDP and 0.074% and 0.295% increase in industrial 

output respectively. These findings demonstrate that both types of energy stimulate economic 

growth in OECD countries, but non-renewable energy remains the main driving force behind 

industrial output and real GDP growth. Given the positive and significant impact of 

renewable energy on industrial output and GDP growth producing and increasing use of 

renewable energy can offer a viable alternative to address climate change issues and ensure 

sustainable economic growth.  

The major causality results show that there is bidirectional causality between real 

GDP and non-renewable energy consumption in both the short and long run. This finding 

confirms the feedback hypothesis, which implies that a high level of economic growth leads 

to a high level of consumption in non-renewable energy and vice versa. However, there is 

unidirectional causality from GDP to renewable energy consumption. This finding implies 

that economic growth increase demand for renewable energy and therefore, the governments 

of these countries should pursue active policies to promote renewable energy for sustainable 

growth. For industrial output model, bidirectional causality is found between industrial output 

and renewable and non-renewable energy suggesting that energy conservation in terms of 

either renewable or non-renewable energy may lead to a reduction in industrial production. 

However, expansion of renewable energy sources can enhance industrial output in these 

mature economies and at the same time reduce their pollutant emission.  
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The evidence of negative and significant bidirectional causal link between renewable 

and non-renewable energy consumption is interesting in the sense that reduction of one type 

of energy entail to increase the other one. This finding indicates the possibility of substitution 

of renewable energy for non-renewable ones both in industrial output and GDP growth 

process. Thus, expanding renewable energy sources can be a viable solution for addressing 

energy security, pollutant emission and climate change issues, and gradually substituting 

renewable to non-renewable energy sources could enhance a sustainable energy economy. 

Hence, governments of these economies should continue to their incentivizing policies, such 

as tax benefits, feed-in tariffs, tax rebates, investment subsidies, and green certificate trading 

to promote the development of a clean and diversified energy economy. 
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Appendix 

Appendix Table 1: Estimated breaks for individual countries 

Countries Variables Number of 

breaks 

Dates of breaks 

1 2 3 4 5 

Australia LnL 2 1983 1997    

 

 

LnGDP 4 1986 1989 1994 2001  

 LnIV 3 1983 1996 2002   

 LnK 2 1984 1994    

 LnR 2 1986 1994    

 LnN 1 1981     

Austria LnL 3 1982 1989 1993   

 

 

LnGDP 4 1982 1992 1998 2002  

 LnIV 2 1982 1992    

 LnK 1 1988     

 LnR 3 1981 1989 1999   

 LnN 2 1983 1998    

Belgium LnL 2 1983 1989    

 LnGDP 3 1988 1996 2002   

 LnIV 2 1983 2003    

 LnK 2 1983 1994    

 LnR 1 1991     

 LnN 2 1988 1999    

Canada LnL 2 1985 1997    

 LnGDP 2 1983 1998    

 LnIV 3 1983 1995 2002   

 LnK 2 1984 1998    

 LnR 3 1986 1997 2001   

 LnN 1 1983     

Chile LnL 2 1987 1996    

 LnGDP 2 1988 1999    

 LnIV 3 1983 1996 2001   

 LnK 2 1980 1990    

 LnR 2 1988 1999    

 LnN 2 1987 1999    

Denmark LnL 2 1987 1995    

 LnGDP 3 1982 1993 2000   

 LnIV 2 1984 1992    

 LnK 1 1988     

 LnR 2 1986 1998    

 LnN 1 1984     

Finland LnL 1 1987     
 LnGDP 3 1985 1997 2002   

 LnIV 2 1983 1994    

 LnK 2 1981 1989    

 LnR 2 1991 2003    

 LnN 1 1990     

France LnL 2 1982 1998    
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Countries Variables Number of 

breaks 

Dates of breaks 

1 2 3 4 5 

 LnGDP 2 1983 1999    

 LnIV 2 1989 2001    

 LnK 2 1988 2002    

 LnR 3 1988 1989 2001   

 LnN 2 1983 1998    

Germany LnL 1 1985     

 LnGDP 4 1984 1994 1998 2002  

 LnIV 2 1985 1997    

 LnK 1 1983     

 LnR 2 1983 1999    

 LnN 2 1984 1991    

Greece LnL 1 1986     

 LnGDP 3 1987 1997 2002   

 LnIV 1 1985     

 LnK 1 1988     

 LnR 2 1983 1998    

 LnN 2 1982 1996    

Hungary LnL 1 1986     

 

 

LnGDP 1 1984     

 LnIV 2 1983 1994    

 LnK 1 1989     

 LnR 3 1982 1997 2001   

 LnN 2 1983 1997    

Iceland LnL 1 1994     

 LnGDP 3 1985 1992 1999   

 LnIV 2 1987 1997    

 LnK 1 1987     

 LnR 2 1983 1992    

 LnN 1 1991     

Ireland LnL 2 1985 1999    

 LnGDP 4 1982 1989 1994 2001  

 LnIV 2 1985 1997    

 LnK 1 1984     

 LnR 2 1981 1987    

 LnN 2 1988 1995    

Italy LnL 1 1991     

 LnGDP 4 1983 1990 1998 2002  

 LnIV 2 1983 1989    

 LnK 1 1984     

 LnR 1 1986     

 LnN 2 1980 1997    

Japan LnL 1 1981     

 LnGDP 2 1984 1998    

 LnIV 3 1986 1995 2002   

 LnK 2 1988 2001    
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Countries Variables Number of 

breaks 

Dates of breaks 

1 2 3 4 5 

 LnR 2 1983 1999    

 LnN 2 1986 2000    

South Korea LnL 2 1985 1991    

 LnGDP 2 1988 2000    

 LnIV 3 1987 1997 2001   

 LnK 2 1987 1994    

 LnR 1 1997     

 LnN 2 1980 1995    

Luxembourg LnL 2 1986 1998    

 LnGDP 3 1981 1989 1998   

 LnIV 2 1987 2001    

 LnK 1 1984     

 LnR 2 1987 1994    

 LnN 1 1982     

Mexico LnL 2 1981 1997    

 LnGDP 2 1991 2002    

 LnIV 2 1995 2001    

 LnK 1 1984     

 LnR 2 1989 1994    

 LnN 2 1989 1997    

Netherlands LnL 3 1984 1988 1992   

 LnGDP 2 1983 1997    

 LnIV 2 1983 1999    

 LnK 2 1993 2000    

 LnR 1 1997     

 LnN 1 1980     

New Zealand LnL 2 1989 1994    

 LnGDP 3 1983 1997 2000   

 LnIV 2 1986 1994 2002   

 LnK 2 1983 1991    

 LnR 2 1981 1986    

 LnN 1 1982     

Norway LnL 2 1984 1991    

 LnGDP 4 1984 1989 1996 2004  

 LnIV 2 1983 1995    

 LnK 1 1997     

 LnR 2 1984 1989    

 LnN 1 1986     

Poland LnL 2 1989 1996    

 LnGDP 3 1982 1989 1994   

 LnIV 4 1985 1989 1992 2001  

 LnK 2 1987 1995    

 LnR 1 1987     

 LnN 2 1984 1998    

Portugal LnL 2 1985 1999    
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Countries Variables Number of 

breaks 

Dates of breaks 

1 2 3 4 5 

 LnGDP 3 1987 1991 2003   

 LnIV 4 1986 1989 1994 2001  

 LnK 1 1982     

 LnR 1 1989     

 LnN 2 1980 1996    

Spain LnL 3 1987 1990 1998   

 LnGDP 2 1989 1993 2001   

 LnIV 2 1984 1998    

 LnK 3 1982 1986 1997   

 LnR 2 1988 1993    

 LnN 2 1983 1989    

Sweden LnL 2 1984 1996    

 LnGDP 4 1982 1987 1994 2003  

 LnIV 2 1983 1998    

 LnK 1 1983     

 LnR 1 1997     

 LnN 1 1984     

Switzerland LnL 3 1987 1991 2002   

 LnGDP 2 1986 1999    

 LnIV 4 1987 1997 2000 2004  

 LnK 2 1986 1991    

 LnR 2 1983 1993    

 LnN 2 1986 1994    

Turkey LnL 2 1989 1997    

 LnGDP 3 1984 1989 1994   

 LnIV 2 1984 2000    

 LnK 2 1986 1989    

 LnR 2 1981 2000    

 LnN 2 1989 1998    

UK LnL 2 1983 1988    

 LnGDP 3 1987 1993 2001   

 LnIV 2 1980 1991    

 LnK 1 1986     

 LnR 1 1989     

 LnN 2 1989 1997    

US LnL 2 1989 1996    

 LnGDP 2 1984 1997    

 LnIV 2 1989 2000    

 LnK 2 1993 1998    

 LnR 2 1987 1996    

 LnN 3 1982 1993 2002   
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