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model we consider four parameters. In the latter, we selected two dif-
ferent objective functions leading to uni-modal and bi-modal stationary
distributions.

The techniques presented in this technical note could also aid the
design of novel gene regulatory circuits with desirable properties, or
it could be used in determining how to best combine circuits—each
matrix �� representing a different one.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their thor-
ough and helpful comments. The quality of the technical note was
greatly improved through their significant contribution.

REFERENCES

[1] N. G. Van Kampen, Stochastic Processes in Physics and Chemistry.
Amsterdam, The Netherlands: North Holland, 2007.

[2] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization.
Nashua, NH: Athena Scientific, 1997.

[3] M. Gallivan and R. Murray, “Model reduction and system identification
for master equation control systems,” in Proc. Amer. Control Conf.,
2003, pp. 3561–3566.

[4] D. Gillespie, “A general method for numerically simulating the sto-
chastic time evolution of coupled chemical reactions,” J. Comp. Phys.,
vol. 22, no. 403, pp. 403–434, 1976.

[5] D. Gillespie, “Exact stochastic simulation of coupled chemical reac-
tions,” J. Comp. Phys., vol. 81, no. 25, pp. 2340–2361, 1977.

[6] D. Gillespie, Markov Processes: An Introduction for Physical Scien-
tists. San Diego, CA: Academic Press, 1992.

[7] J. Hespanha and A. Singh, “Stochastic models for chemically reacting
systems using polynomial stochastic hybrid systems,” Int. J. Robust
Control, Special Iss. Control Small Scales, vol. 1, no. 15, pp. 669–689,
2005.

[8] D. G. Luenberger, Optimization by Vector Space Methods (Series in
Decision and Control). New York: Wiley-Interscience, January 25,
1997.

[9] B. Munsky and M. Khammash, “The finite state projection algorithm
for the solution of the chemical master equation,” J. Chem. Phys., vol.
124, no. 4, 2006 [Online]. Available: http://ccdc.mee.ucsb.edu/ pdf/
ccdc-05-0505.pdf

[10] A. Singh and J. Hespanha, “LogNormal moment closures for biochem-
ical reactions,” in Proc. Conf. Decision Control, 2006, pp. 2063–2068.

Computational Method for a Class of Switched
System Optimal Control Problems

Ryan Christopher Loxton, Kok Lay Teo, and Volker Rehbock

Abstract—We consider an optimal control problem with dynamics that
switch between several subsystems of nonlinear differential equations.
Each subsystem is assumed to satisfy a linear growth condition. Further-
more, each subsystem switch is accompanied by an instantaneous change
in the state. These instantaneous changes—called “state jumps”—are
influenced by a set of control parameters that, together with the subsystem
switching times, are decision variables to be selected optimally. We show
that an approximate solution for this optimal control problem can be
computed by solving a sequence of conventional dynamic optimization
problems. Existing optimization techniques can be used to solve each
problem in this sequence. A convergence result is also given to justify this
approach.

Index Terms—Nonlinear differential equations.

I. INTRODUCTION

A novel time-scaling transformation for switched system optimal
control problems is discussed in [1]–[3]. This transformation converts
the original problem—in which the subsystem switching times are de-
cision variables—into a new optimal control problem that is easier to
solve. The new problem is also governed by a switched system, but its
switching times are fixed points, not decision variables. In fact, each
subsystem in the new switched system is active for the same duration
of time. This facilitates accurate numerical integration and ensures the
new problem can be solved using a nonlinear programming algorithm.

The time-scaling transformation introduced in [1]–[3] is only ap-
plicable when the governing switched system does not contain state
jumps. A similar transformation has been developed for systems in
which the state, as well as the dynamics, change instantaneously at the
switching times [4], [5]. Practical examples of such systems include
switched-capacitor dc/dc power converters [6], [7] and bioconversion
reactors [8], [9]. Note that the stability of switched systems has been
investigated in [10]–[12].

To apply the transformation discussed in [4], [5], the optimal
number of switches must be known a priori. This is because the
time-scaling transformation assumes that the number of switches in
the system is fixed and every available switch is applied. Even if two
or more switching times coincide at a single point (and thus combine
to form a single switch), they still correspond to different switching
times in the new switched system obtained via the transformation.
Consequently, whenever multiple switching times coincide, the trans-
formation introduces additional state jumps that do not occur in the
original switched system.

In practice, excessive switching between subsystems can adversely
affect the overall system. For example, in a switched-capacitor
dc/dc power converter, each subsystem represents a different circuit
topology, and although changing the topology helps to regulate the
output voltage, it also induces a voltage leak in the capacitors. Hence,
it is usually not optimal to apply every available switch; the optimal
solution may involve “deleting” switches by merging two or more
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switching times to form a single switch. In this case, the optimal
switching times coincide, and the transformation developed in [4], [5]
cannot preserve the true effect of switching on the system. The aim
of this technical note is to develop a new technique that is capable of
handling this case.

II. PROBLEM FORMULATION

Let � � � be a given terminal time and define

� ��� � � � ���� � ��� � � �� � � � � �� �

where �� � and ���� � . Additionally, define

� ��� � � � �
�
� � �� � �

�
� � � � �� � � � � �

where, for each � � �� � � � � �, ��� and ��� are given constants such that
��� 	 ��� .

Now, let 	��� � ���
 � ��� and consider the following switched system:

��	

 � �
�	�	

� ���
� 
 � 	����� ��
� � � �� � � � � �� � (1)

and

�
�� �
 ���� (2a)

�	��� 
�
�	��� 
�����	�	��� 
� ���
��
 ����� � � � � ��� ����	�� 	 ��

(2b)

Here, �	

 � � is the state at time 
; �� � � is a given initial state;
and �

� � � � � �� � and ���� � � � � �� � are continuously
differentiable functions. Furthermore, ��� is a vector of control parame-
ters and ��, � � �� � � � � �, are switching times.

The state starts from �
� at time 
 � � and evolves smoothly ac-

cording to (1) until the first positive switching time is reached. It then
jumps to a new point, which is given by (2b). Starting from this new
point, the state again evolves smoothly until the next switching time is
reached, and so on for the remainder of the time horizon. The solution
of (1)–(2) obtained in this way is denoted by �	�	��� � ���
. We define an
optimal control problem as follows.

Problem 1: Choose 	��� � ���
 � ��� to minimize the objective func-
tion


	��� � ���


���

���

�

�


�	�	
	��� � ���
� ���
�


where 
� �
� � � �� are continuously differentiable functions.

We assume that the subsystems in (1) satisfy the following linear
growth condition: there exists a positive constant � such that for each
� � �� � � � � � � �:

�� �	�� ���
� � �	� � ���
� 	�� ���
 � � � �� (3)

This assumption1 ensures that the system does not blow up in finite
time, so that Problem 1 is well-defined.

III. EQUIVALENT PROBLEM

Since the state in Problem 1 depends on the switching times, it is
difficult to integrate (1)–(2) numerically. In this section, we will derive
a more tractable equivalent problem. To begin, let

� ��� � ��� � �� � �� �� � � � �� ���� � � �

1In this technical note, � � � denotes the Euclidean norm.

For each ��� � �, define a function �	�	���
 � ��� �� ���� by

�	�	���

���
	��

�	 � ������	�� 
��
� if � � ��� �� �
�

�� if � � �� �

where 
�� denotes the floor function. Clearly

�	�	���
 �

�

	��

�	 � � � �� � � � � �� �� (4)

It is tedious, but not difficult, to verify the following additional proper-
ties for �	�	���
:

a) �	�	���
 � �, �	� � �	���
 � � , and �	�	���
 � ��� � � for all
� � ��� � � ��;

b) For each � � �� � � � � ���,�	�	���
 is strictly increasing on ����� ��
if and only if �� � �;

c) For each � � �� � � � � �� �, �	�	���
 is constant on ��� �� �� if and
only if �� � �;

d) �	�	���
 is a continuous function.
Since �	�	���
 is non-decreasing on each closed subinterval ����� ��, it is
non-decreasing on the entire interval ��� ����. Hence, for every ��� � �

�	�� �	���
 � �	�	���
� � � �� � � � � �� �

which implies that

���	���
 ��	�	���
� � � � � �	�	���
�
 � �� (5)

In other words, the components of ���	���
 are valid switching times for
Problem 1. In fact2

� � ����	���
 � ��� � ��� (6)

This shows that valid switching times for Problem 1 are generated by
a corresponding vector in �. By property (a) and (6), we can define a
new state variable as follows:

��	�	���� ���
 �	�	�	���
	���	���
� ���
� � � ��� �� ��� (7)

To derive a new optimal control problem, we must determine the dy-
namic behavior of ��	�	���� ���
 on the new time horizon ��� ����. Clearly

��	�	���
 � ��� � � 	�� �� �
� � � �� � � � � �� �� (8)

Properties (a)–(d) and (1)–(2), (7)–(8) can be used to show that

���	�
 � ���
�	��	�
� ���
� � � 	�� �� �
� � � �� � � � � �� � (9)

and, for each � � �� � � � � �

�
�� �
 � � �� (10a)

��	��
� ��	��
����
�	��	��
� ���
� �
 �	�� �	���
	�	�	���
	� (10b)

��	��
� ��������� (10c)

where for simplicity we have written ����	�	���� ���
 as ����	�
. We define a new
optimal control problem as follows.

Problem 2: Choose 	���� ���
 � ��� to minimize the objective func-
tion

�
	���� ���
 
	���	���
� ���
 �

���

���

�

���

��
�	��	�	���� ���
� ���
���

2It follows immediately from (5) that ��������� � ��� � �� � �. To prove
the opposite inclusion, let ��� � � and put � � � and � � � � � for
� � �� � � � � �	
. Then ��� � � and �������� � � � � � 
� � � � � �. Consequently,
we have ��� � ��������.
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Remark 1: Problems 1 and 2 are equivalent. To see this, suppose
that ������ ����� � ��� is optimal for Problem 2 and let ���� � ���� � ���
be arbitrary. Then by (6), there exists a ��� � � such that ��� � ��������.
Hence, since ������ ����� is optimal for Problem 2

������������ ����� � �������� ����� � ������� ����

������������ ���� � ����� � ����

which shows that ����������� ����� � ��� is optimal for Problem 1. Sim-
ilarly, if ������ ����� � ��� is optimal for Problem 1, then there exists a
���� � � such that ���� � ��������� and ������ ����� is optimal for Problem 2.

Remark 2: Let ����� ���� � � � � be such that �������� � 	 for some
� � ��� 	 	 	 � 
�. Then we have �������� � ��
 
 ������, so (4) implies
that �� � �, � � � 
 �� 	 	 	 � 
 
 �. Hence

������� ���� �

�

���

�

���

�������������� ����� ����
��

In this case, the objective function value does not depend on ��������� ����,
� � ��� 

 �
, and therefore the condition �������� � 	 in (10b) can be
omitted. Using properties (b)-(c), the state jump conditions (10) can be
expressed more concisely as follows:

�
�� �� � � �� (11a)

������ �
������ 
 ��������

��������� ����� �� � � ��� 	 	 	 � 
�

(11b)

where ���� � and ���� � whenever � � �.
Remark 3: The switched system for Problem 2 is (9), (11), which

has switching times at the fixed points � � �, � � �� 	 	 	 � 
, and is
therefore easier to integrate numerically than (1)–(2).

Remark 4: Let (���� ���� � ���, where �� � � and ���� � � for some
� � ��� 	 	 	 � 

 ��. Then in view of (4)–(5), the new switching times
� � �� � and � � � correspond to the same point ��������� � ������� in
the original time horizon. For this reason, a jump is applied to ���	����� ����
at � � ��� but not at � � �; see (10b)–(10c) or (11b). In contrast, if the
technique from [4], [5] is used to transform Problem 1, then separate
jumps will be applied at both � � � � � and � � �. In this case,
��	���������� ���� experiences a “double jump” at � � ��������� � �������.
Such “double jumps” do not reflect the original system described in
Section II.

IV. APPROXIMATE PROBLEMS

Since the state jump conditions (11) contain a discontinuous func-
tion, Problem 2 cannot be solved using conventional optimization
methods. To overcome this, we approximate (11) by

�
�� �� � � �� (12a)

������ �
������ 
 ���������

��������� ����� �� � � ��� 	 	 	 � 
�(12b)

where � � � and

�����
� �

�
�� 
 �

�
��� if � � � � ��

�� if � � ��

Note that �� is continuously differentiable and ����� � ���� when-
ever � �� ��� ��. Let ����	����� ���� denote the solution of (9), (12) corre-
sponding to ����� ���� � �� � and � � �. Furthermore, define

�������� ����

���

���

�

���

�������
�������� ����� ����
��

For given parameters � � � and � � �, consider the following opti-
mization problem.

Problem 3: Choose ����� ���� � � � � to minimize the objective
function

���������� ���� �������� ���� 
 �

�

���

������ ��� ������� �

Unlike �, the continuous function �� can assume values in (0,1).
Hence, the new state jump conditions (12) are not always an accurate
approximation of (11). The last term in ����� is used to penalize “frac-
tional jumps”, so that (12) is a good reflection of (11) at the optimal so-
lution of Problem 3. It is also evident that ���
� pointwise on �����
as ��
 �. We thus expect that Problem 3 is a good approximation of
Problem 2 when � is small and � is large. This observation is made rig-
orous in the next section.

Since (12) is constructed from smooth functions, the partial deriva-
tives of ����� can be computed using gradient formulae given in [4],
[5]. These formulae depend on the solution of a so-called costate
system, whose value at the terminal time is known. Therefore, the
costate system is integrated in the opposite direction to the state system
(recall that the initial state is given). Hence, given ����� ���� � � � �,
the gradient of the objective function for Problem 3 can be computed
via the following algorithm: i) Solve the state system (9), (12) forward
in time; ii) Solve the costate system backwards in time; iii) Evaluate
the gradient formulae. This procedure can be applied in conjunction
with a gradient-based global optimization technique, such as the filled
function method [13], to solve Problem 3. Alternatively, if 
 and � are
not too large, then Problem 3 can be solved by repeatedly applying a
local optimization technique with different starting points.

It is important to note that ����� is non-convex in general. In fact,
since ����� contains a penalty term that approximates a discontinuous
function, Problem 3 will usually have many local solutions. Accord-
ingly, it is imperative that a global search strategy, such as those sug-
gested above, is used to solve Problem 3.

V. CONVERGENCE RESULTS

In the previous section, we introduced a class of approximate prob-
lems for Problem 2 and discussed how each problem in this class can
be solved using existing optimization methods. In this section, we will
establish an important convergence result that links the solutions of the
approximate problems with the solution of Problem 2.

Lemma 1: There exists a function � � ������
����� of order
������ such that whenever ����� ���� � � and ��� � �

��������� ����� ��������� ���� � ���� ���� � ���� �

Proof: First, inequality (3) and Gronwall’s Lemma can be used
to show that the state and costate functions (see the gradient formulae
in [4], [5]) are equibounded on the interval ��� 
 
 �
 with respect to
� � � and ����� ���� � �� �. Furthermore, it is not difficult to see that

�������� � ������ �
�

����
� � � ��

The function � is constructed by invoking Taylor’s Theorem and ap-
plying the above results to the gradient formulae in [4], [5].

For the remainder of this section, let ���������� ��������� � ���, where
� � � and � � �, denote an optimal solution of Problem 3. Addition-
ally, define

�� ��� ��
	

�
� 
 �

 ��
�

Theorem 1: For each � � ��� ���, there exists a corresponding �� � �
such that if � � ��, then

������� �
����

�
�� ������� � ��

����

�
� � � �� 	 	 	 � 
� (13)
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Proof: Let �������� ������� � � � � denote the minimum of ��� on
� � �. Then

����������� ������� � ������������� ���������� � � ��

Adding a penalty term to both sides of this inequality gives

����������� ������� � �

�

���

����
�����
� ���� ����

�����
� ��

� �	������������� ����������

Hence, since ���������� ��������� is optimal for Problem 3

����������� ������� � �

�

���

����
�����
� ���� ����

�����
� ��

� �	����	���� 	����� � � � (14)

where 	��� � � and 	�� 
��� � ��, 
 
 �� � � � � � � �. Since

� � �� � 


��� ��

we have

��� 	��� 
 �� 
 
 �� � � � � ��

Thus, the penalty term in �	����	���� 	���� vanishes and inequality (14) be-
comes

����������� ������� � �

�

���

����
�����
� ���� ����

�����
� �� � ����	���� 	�����

This can be rearranged to give

����
�����
� ���� ����

�����
� �� �

����	���� 	����� ����������� �������

�
(15)

for each 
 
 �� � � � � �. Since �������� ������� is the minimum of ���, the
right-hand side of (15) is non-negative. Hence, by choosing a suffi-
ciently large value for �, we can make the penalty term on the left-hand
side arbitrarily small. This forces ������� to either zero or exceed �.

Theorem 2: If � � ��� ���, � � �, and �������� satisfies (13), then there
exists a ����

��� � � such that

����
��� � �������� � ����� (16)

and

�����
���
� � 
 �������� �� 
 
 �� � � � � �� (17)

Proof: Define

����� 
 � ��� � � � � �� 
 � � ������� �
����

�
(18)

and

����� 
 � ��� � � � � �� 
 �� ����

�
� ������� � � � (19)

Since � � �, the index sets ����� and ����� are disjoint. Let ���� be an
integer in ��� � � � � � � �� such that

������� 
 ���
�������

������� � 


�� �
� �� (20)

It is clear from (20) that ���� �� ����� 	����� . For each 
 
 �� � � � � ���,
define

������

�� if 
 � ����� �

�� if 
 � ����� �

������� � ���� � if 
 
 ���� �

������� � otherwise,
�����

����
���

��� ������� ��
���

������� �

We will show that ����
���

������� � � � � � ���������
� is an element of � satis-

fying (16)–(17). First, it follows from (18)–(19) that:


���� 
 � �����

�
� (21)

Using (18)–(19), (21), we obtain

����
��� � ��������

�


 ����� �

���

�������� ��

�

���

��� ������� ��

�����

proving (16). Next, combining (20) and (21) gives

������ 
 ������� � ����

�



�� �
� �����

�
�




�� �
� ������ (22)

Since � � ��, the inequality ��� ��� � 
���� �� holds. Substituting
this into (22) gives

������ � ��� ���� ����� 
 �� ���� ����� � � (23)

where the last inequality follows from � � �. Equation (17) is a con-
sequence of (13), (23), and the definition of ������ . Finally, we have

���

���

������ 


���

�� ������� � ���� �

���� ��

����

�������




���

���

������� 
 
� (24)

Equations (23) and (24), together with the definition of ������ show that
����
��� � �.
The next theorem is the main result of this section.
Theorem 3: Suppose that ������ ����� � ��� is an optimal solution of

Problem 2. Furthermore, for each � � ��� ���, let � be sufficiently large
so that (13) is satisfied (recall from Theorem 1 that such a � exists) and
let ����

���
be as defined in Theorem 2. Then

�������
���

� ���������� �������� ����� 
 ��
�
���

Proof: Define

	� ���
�����

���� 
 ��� � ��

and let � � ������� 	��. Then for each 
 
 �� � � � � �, either ��� � � or
��� 
 �. Hence

����
�
� � 
 ����� �� 
 
 �� � � � � ��
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This means that (11) coincides with its approximation (12) when
����� ���� � ������ �����. Consequently

��������� ����� � �
��������� ������ � � ��� �� ��

and so3

	������� ����� � 	�������� ����� � 	���������� ������

Similarly, (17) shows that ����
������ � ��������� � �
����
������ � ��������� for

all � � ��� � � ��, and

	��
���
���
� ��������� � 	���
���

���
� ���������� (25)

Now, since the penalty term in 	���� is non-negative and ���������� ���������
is optimal for Problem 3

	������������ ��������� � 	�������������� ���������

� 	���������� ����� � 	������� ������

Consequently,� 	������� ����� � � 	������������ ���������. By using this result
and (25), we obtain

� � 	��
���
���
� ���������� 	������� �����

� 	���
���
���
� ���������� 	������������ ����������

(The lower bound is zero here because ������ ����� is optimal for Problem
2.) Therefore, applying Lemma 1 gives

� � 	��
���
���
� ���������� 	������� ����� � 	�
� 
���

��� � �������� �

Since 	�
� � ����
�, estimate (16) ensures that the right-hand side of
the above inequality is a function of order ��

�

�.

Remark 5: Theorem 3 implies that 	��
���
���
� ����������� 	������� ����� as


�� �, where 
 is chosen so that (13) is satisfied. As a consequence, we
can solve Problem 1 numerically as follows. First, transform Problem
1 into Problem 2 as shown in Section III. Then, choose an initial 
 �
��� 

� and solve Problem 3 for increasing values of 
 � � until (13)
is satisfied (Theorem 1 ensures that Problem 3 only needs to be solved
a finite number of times here). Next, construct 
���

���
from �������� using

the formula given in the proof of Theorem 2, and decrease 
. Repeat
these steps until 
 is sufficiently small; at this stage, �
���

���
� ��������� is

a good approximation of the optimal solution for Problem 2. In view
of Remark 1, we can use �
���

���
� ��������� to construct an approximate

solution for Problem 1.

VI. ILLUSTRATIVE EXAMPLE

Consider the switched-capacitor dc/dc power converter discussed in
[14]. This electrical circuit, which is designed to deliver half of the
input voltage to an attached load, consists of three primary capacitors
and four switches. For each � � �� �� �, let ����� denote the voltage
across the �
� primary capacitor at time �. Let ���� denote the output
voltage at time �. We assume that the dc input is 3.6 V and the load
resistance is �� �.

The function of each capacitor—in particular, whether it stores en-
ergy from the input or delivers energy to the load—is determined by the
switch configuration. Consequently, modifying the switch configura-
tion changes the circuit topology of the power converter. Three distinct
topologies are possible. The �
� topology is modeled by the dynamics

����� ���
���� � �����

���� ���
���� � �����

where �� � ���, �� � ���, �� � ���, and �� � are obtained
using Kirchhoff’s laws. The output voltage is regulated to the desired

3Since � �� � � ��� � � ��� ��� � � �� � � � � �, the penalty term in
�� ���� � ��� � vanishes.

1.8 V (half of the 3.6 V input) by switching between these topologies
in an appropriate manner.

An operating schedule for the power converter specifies the order in
which topologies are operated (the switching sequence) and the times at
which the topologies are switched (the switching times). Since the ideal
output is 1.8 V, the operating schedule should be chosen to minimize

�

�

������ ������� (26)

where here the terminal time � � ��� � ���� �������. We use the
method suggested in [2] and model the power converter by the fol-
lowing dynamics:

����� ���
���� � �����

� � ������ ��� � � � �� � � � � � (27)

���� ���
���� � �����

� � ������ ��� � � � �� � � � � � (28)

where �� �; �� ��������; �� , � � �� � � � � �, are switching times
such that ���� � �� ; and

�� ����� � �� �� � �� � � �� � � � � ��

Equations (27)–(28) can replicate any operating schedule. For example,
if

� � �� � �� � �� � �� � �� � �� � �� � �	 � �
 � �� � �

then the switching sequence is ��� �� �	4 and the switching times are
�� � �� and �� � ��. Clearly, unnecessary subsystems in (27)–(28)
are “deleted” by combining some of the switches.

In practice, topology switches are accompanied by a voltage leak
from the capacitors in the circuit [6], [7]. We assume that this leak
is 10% of the voltage immediately before the switch. Hence, the fol-
lowing state jump conditions are imposed:

��� �� ��� � �� � � �� (29a)
����� � �

�������� �� �� � � ��� � � � � �	� ���� � �� � ��

(29b)

Our optimal control problem is as follows: Choose switching
times �� , � � �� � � � � �, such that (26) is minimized subject to the
switched system (27)–(29). We solved this problem using a Fortran
90 implementation of the algorithm discussed in Remark 5. In this
implementation, Problem 3 was solved by applying the optimization
routine NLPQLP [15] ten times with random starting points. Initially,

 � ���

 (here, � � � and � � ��� � ����) and 
 � ���. The
algorithm was terminated when 
 � �

����.

The optimal switching times in (27)–(28) are

��� � ��� � ���

��� � ��� � ��� � ������� ����

��� � ��� � �� �� � ����

��	 �������� ����

��
 � ��� � ���� �����

This solution “deletes” subsystems ��� ��  � �� �	 in (27)–(28). In fact,
the optimal switching sequence is ��� �� �	. Fig. 1 shows the voltage
across the load and capacitors for this optimal operating schedule.

4This means that the topologies are operated in the following order: Topology
2, Topology 1, Topology 3.
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Fig. 1. Output and state voltages for the optimal operating schedule.
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