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Abstract This paper presents an adaptive power harvester using shunted piezoelectric control 

system with segmented electrodes. This technique has spurred new capability for widening the 

three simultaneous resonance frequency peaks using only a single piezoelectric laminated 

beam where normally previous works only provide a single peak for the resonance at the first 

mode. The benefit of the proposed techniques is that it provides effective and robust 

broadband power generation for application in self-powered wireless sensor devices. The 

smart structure beam with proof mass offset is considered to have the simultaneous 

combination between vibration-based power harvesting and shunt circuit control-based 

electrode segments. As a result, the system spurs new development of the two mathematical 

methods using electromechanical closed-boundary value techniques and Ritz method-based 

weak form analytical approach. The two methods have been used for comparison giving 

accurate results. For different electrode length using certain parametric tuning and harvesting 

circuit systems, the technique enables the predictions of the power harvesting that can be 

further proved to identify the performance of the system using the effect of varying circuit 

parameters so as to visualize the frequency and time waveform responses. 

Keywords: Adaptive response · control · energy harvesting · piezoelectric · shunt circuit · 

smart structures · vibration. 

 

1 Introduction 

Emerging micro-power harvesters have become important due to increasing demands of portable 

power electronic devices that still traditionally rely on their electrical energy from battery and 

powerline systems. Such micro-power harvesting devices can alleviate those essential technical 

issues by converting the vibration energy into the usable electrical energy so as to recharge battery 

and enable wireless sensor devices [1]-[3]. The most common micro-power harvester has been 

increasingly found in a wide range of applications using thermoelectric [4], electrostatic [5], 

electromagnetic [6]-[7], and piezoelectric [8]-[10] transductions. In terms of advantages over other 

competing transducers, the piezoelectric component has high sensitivity and power density, 

compact design, and scalability. Some preliminary technical aspects of the piezoelectric structures 

with different applications have been formulated using the mathematical studies for discussing the 

actuated system [11]-[12], shape control system [13]-[14], thermoelastic effect [15]-[16], 
feedback gain control system [17]-[19], and electrical shunt control systems [20]-[24]. Typical 

piezoelectric power harvesters have mainly used laminate cantilever beams (unimorph or bimorph  

structures)   because  they  provide  high  elemental   strain  from  the   transverse  bending  motion 
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to create significant electrical energy due to electric field generated from the piezoelectric element. 

Nevertheless, the complete process for designing robust power harvesters is very challenging since 

it depends on the application, geometrical parameters, physical properties, optimization, 

fabrication, and electronic power management circuits with sensor systems. However, the 

investigation of the system models using mathematical studies has become an essential feature for 

power harvesting research. For that reason, broader power harvesting systems have been 

investigated using different technical aspects where the fundamental resonance of the system has 

become the main aspect of producing a single peak of power harvesting amplitude. Starting with 

the equivalent electromechanical lumped parameter model-based closed circuit system, the 

standard methods using resistive impedance [8] and AC-DC rectification [25] have been used for 

analyzing the power harvesting techniques. Then, the system model has been continually 

developed using synchronized switching harvesting on an inductor (SSHI) [26]-[28] in order to 

create the constant reversed peak voltage for certain time waveforms giving more stable piecewise 

power harvesting output.  

Other theoretical strategies for analyzing the power harvesting piezoelectric beam models 

connected with resistive circuit can also be found with the mechanical tuning system. The attached 

tip mass of the smart cantilever beam structure can be used to shift the single resonance frequency 

and increase the power output. The solution techniques have mainly focused on various theoretical 

implementations such as Rayleigh-Ritz method [29]-[30], distributed parameter system [31], 

electromechanical weak form [32], closed form methods [10],[33]-[34], assumed-mode method 

[9], transfer matrix [35], electromechanical finite element analysis [10],[36], and analytical 

voltage- and charge-type formulation techniques [37]. Alternatively, the multifrequency tuning 

system has been developed using the electrically connected multiple piezoelectric bimorph beams 

[38]-[41]. The use of multiple piezoelectric beams can generate multiple resonance peaks. The 

techniques can be used for matching the particular frequency from the piezoelectric structure with 

the vibration environment that can change over time. There is also the distinct application of using 

the piezoelectric components e.g. the shunt control system for the vibration suppression of the 

smart structures [21],[24],[42]-[43] in many different case studies. Nevertheless, it gives direct 

relevancy and basis for developing new power harvesting techniques as proposed in this paper. 

The techniques provide the adaptive response system using multiple tuning and harvesting circuits 

onto separated piezoelectric layers in order to widen the frequency band and stimulate multi-

resonance peaks while using a single piezoelectric beam.  

In this paper, the piezoelectric laminated structure with proof mass offset under input base 

excitation was used to model the coupled system of multiple electrical shunted control and 

electromechanical power harvester. Novel analytical techniques of the system have been 

developed using the extended Hamiltonian principle for deriving the dynamical closed-form 

boundary value equations and Ritz method-based weak form analytical approach. The two 

methods have been used for comparison giving accurate results. Recently, new adaptive power 

harvesting response [44] has been presented. However, this paper further extends and reveals key 

technical equations for widening the frequency band of the three simultaneous resonance peaks 

while using only a single piezoelectric bimorph beam. At this stage, there are no previous works 

developing the proposed analytical techniques with the combinations of the multi-tuning and 

harvesting circuits, mechanical system (elasticity with mechanical stress and dynamic motions), 

and electromechanical system (electrical displacement, electrical stress and electric-polarity field). 

As a result of these combined techniques, the normalized closed-form electromechanical 

transverse dynamic equations were reduced to formulate two complete forms of electromechanical 

multi-mode FRFs and time waveform responses using the Laplace transform. Moreover, the 

reduced electromechanical transverse dynamic equations-based Ritz method using weak form 

technique were developed to formulate multi-mode FRFs. Certain parametric tuning and 

harvesting circuit system case studies are developed for predictions of the power harvesting so as 

to identify the performance of the system using the effect of varying circuit parameters. 

2 Constitutive Electromechanical Equations  

In Fig. 1, the robust smart structure system-based Euler-Bernoulli piezoelectric laminate beam 

model with proof mass offset under base excitation consists of tuning piezoelectric, substructure 

and harvesting piezoelectric components. On the lower layer, two electrical shunt control systems 

using variable RLC circuits are connected separately to the etched electrodes on the tuning 

piezoelectric component. For the upper layer, the harvesting circuit is connected to the harvesting 

piezoelectric component for generating power. The middle layer is the passive substructure made 

from brass. The mathematical expressions for the system can be found in the forthcoming section. 
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It is noted here that most common piezoelectric constitutive equations that have been used for 

the power harvesting scheme are based on the electrical enthalpy of the continuum 

thermopiezoelectricity concept giving the stress-electric displacement relation. However, the 

electromechanical dynamic equations from the combined techniques between piezoelectric 

laminates and shunt and harvesting circuit systems can be formulated simultaneously according to 

the Helmholtz free energy [44]. The linear tuning piezoelectric constitutive equation-based 

Helmholtz free energy can be formulated in terms of stress-electric field relations based on the 3-1 

mode of piezoelectric constant operation and 3-3 effect of piezoelectric impermittivity [45]-[46] 

as, 

         1
3

1
31

1
1

11
1 DgScT D  ,                                                   (1a) 

                                    1
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1
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31

1
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1

DεSgE S


  .                                           (1b) 

where the parameters T, S, E  and D represent stress, strain, electric field, and electric 

displacement, respectively. Coefficients cD, g and ε indicate modified elastic constant and 

modified piezoelectric constant, and permittivity at constant strain respectively. Detail of each 

Fig.1. Piezoelectric beam power harvesting with offset proof mass operating under base input 

excitation: a) physical system, b) equivalent tuning circuit 1 for tuning piezoelectric layer, c) equivalent 

tuning circuit 2 for tuning piezoelectric layer.  

b 

c 
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coefficient can be seen in Appendix A. Note that for notations, each layer from the laminated 

structure in Fig. 1a can be stated in the superscripts 1, 2 and 3 representing tuning piezoelectric, 

brass, and harvesting piezoelectric, respectively.  

    The modified constitutive equations in terms of stress-electric field relations for the harvesting 

piezoelectric material can be formulated as, 

                3
3

3
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3
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1

DgScT D  ,                                                (2a) 
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  .                                               (2b) 

The linear-elastic constitutive relation for the substructure can also be formulated as,  

 

       2
1

2
11

2
1 ScT  .                                                  (3) 

Here, the strain field for each layer of the beam can be formulated as,   

 

 
 
2

2

1
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
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.                                                      (4)  

 

where variable z is the distance from the neutral axis to each layer.     

 

3 Electromechanical Closed-Form Boundary Value Method 

Development of analytical method is discussed in this section by combining the tuning and 

harvesting circuits, mechanical system (elasticity with mechanical stress and dynamic motions) 

and electromechanical system (electrical displacement, electrical stress and electric-polarity field). 

Key equations of the two analytical coupled systems for shunt tuning circuit with standard 

resistive circuit power harvester (non-rectifier) and AC-DC interface circuit are given in the next 

section.  

 

3.1 Coupled system of shunt tuning circuit and standard harvesting AC circuit 

The system tuning response of power harvesting devices with tip mass offset can be formulated 

using the extended charge type-based Hamiltonian principle to give, 
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or     0d  tδWRδWLδWCδWFδWEδPEδKE
2

1

t

t

.                           (6) 

Each term of (5) can be formulated in (7)-(13). Note that detail discussion for formulating the 

charge type-based Hamiltonian principle can be found in [37]. The kinetic energy of the smart 

structure with the proof mass offset can be reformulated as,                 
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Details of the mathematical equations of the dynamical piezoelectric beam and proof mass offset 

as shown in the kinetic energy can be found in [36]. Moreover, parameters of zeroth and second 

mass moment of inertias of tip mass offset tipI0
 and tipI2

 can also be found in [36]. The potential 

energy or strain energy of the smart structure can be formulated using the first part of (1) and (2) 

associated with (3) and (4) as, 
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Note that Heaviside functions for G1(x)=H(x)−H(x−L1) and G2(x)=H(x−L1)−H(x−L) are 

introduced due to using two segmented electrodes on the tuning piezoelectric layer. The electrical 

energy for the piezoelectric elements can be formulated using the second part of (1) and (2) to 

give, 
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Note that parameter D3 in (9) can be modified for the use in the forthcoming reduced dynamic 

equation. For the lower layer, that can become         xGLbqD 11
11

11
1

3   and 

        xGLbqD 22
11

12
1

3  . For the upper layer, that can show       LbqD 333
3   

    xGxG 21  . It is noted that unlike  1
3D , it may not be necessary to multiply  3

3D  with 

Heaviside functions in (8) and (9) due to the distributed electrode that meets the definite integral of 

the entire system itself over the interval  L,0 . The magnetic co-energy of the inductor in terms of 

tuning and harvesting circuits can be formulated as, 
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where the synthetic inductance values 1sL  and 2sL  from Figs. 1b-c can be reduced from the 

equivalent impedance analysis,    hhhhhhin, ZZZZZZ 42531  2,1 h for two segments by 

allowing the relations Z1h=R1h, Z2h=R2h, Z3h=R3h, Z5h=R5h, and Z4h=1/(jωCsh) to give 

shhin LjωZ , [47]-[49]. Therefore, the synthetic inductance value for tuning circuit one and two 

can be respectively formulated to give   2115131111 RCRRRL ss  and   222523212 RCRRRL ss2  . 

Note that since the large inductance value for the tuning circuit is not commercially available, 

implementing synthetic inductance is practical which is an integrated circuit mainly consisting of 

Op-amp systems (e.g. 741 Op-amp circuit or OPA445 Op-amp), resistors shR  and capacitor shC  

circuits [24],[48]-[49] as can be seen in Fig. 1b-c.  

The electrical energy of the capacitor in terms of the tuning circuits can be formulated as, 
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The non-conservative work on the system due to the input base excitation can be stated as, 
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Note that details of the mathematical expression given in (12) can be found in [36].  

The electrical work dissipated by resistors can be stated as,  
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The functional forms aL and fW from Hamiltonian’s principle can be seen as the continuous 

differentiable functions of virtual displacement, electric displacement and charge for the whole 

systems that can be stated as, 
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Formulating (14) and (15) using total differential equations gives, 
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Corresponding with (7)-(13) and (16)-(17), Eq. (6) can be further formulated using integro-

differential equations and variational principles. After simplification, the electromechanical 

dynamic closed-form boundary value equation for the analytical coupled system of electrical shunt 

control and power harvester system can be reduced to give, 
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Note that certain coefficients can be found in Appendices B and C. Also note that other stiffness 

coefficient Ct and the zeroth mass moment of inertia of all layers I0 can be found in [36]. Applying 

KCL method for the tuning circuits in Figs. 1b-c gives the electric charge equation as, 

            
     1

31
1

21
1

11 qqq  ,    
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32
1

22
1

12 qqq     .                                           (19) 

As shown, variables  1
21q and  1

22q  in (18) can be eliminated in the forthcoming reduced equations for 

simplicity using the relation as,  
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After applying the mathematical lemma of duBois-Reymond’s theorem for each virtual 

displacement field, the first constitutive electromechanical dynamic equation can be formulated as,  
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The second, third, fourth, fifth, and sixth constitutive electromechanical dynamic equations related 

to the tuning and harvesting circuits can be formulated respectively as, 
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The boundary conditions can be formulated as, 
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The solution form of (21)-(23) can be formulated using mode superposition depending on the 

normalized mode shapes and generalized time dependent coordinates to give, 
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Note that the normalized mode shape in (24) can be found in Appendix D.  
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After manipulation and simplification of using (24) into (21)-(23), the normalized closed-form 

electromechanical transverse dynamic equations with damping effect can be reduced as, 
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Combining (22a) and (22b) including (22c) and (22d), the results of which can be associated with 

(22e) using (24) as,  
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It is noted that Eqs. (25) and (26) consist of four coupled tuning electromechanical power 

harvesting equations. At this case, since Eqs. (25) and (26) have been normalized, their parameters 

can be reduced as, 
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Note that Eq. (26a) can be expressed into the series equivalent circuit as shown in Fig. 1b where 

parameter    twTV r

r

re 






1

1
11
ˆ  represents the equivalent voltage source one generated due to 

electromechanical piezoelectric coupling one and mechanical motion, where parameter equivalent 

capacitor one  
11

1 μC   on the circuit represents  
111 1 CμPC   on the equation and 

1
μ  is a 

constant term. The similar system using (26b) can also be applied for the tuning circuit two in Fig. 

1c. After simplification, Eqs. (25) and (26) can be further formulated using Laplace transformation 

giving the transfer functions which can be reduced into the electric charge frequency response 

functions (FRFs) at harvesting circuit as, 

  

 

           

























1

33

1 2

2
2

1
2

1
2

1 1

2
1

1
1

1
1

1

3

2

3

ˆˆˆ
1

ˆ

r r

rr

r r

rr

r r

rr

r r

rr

tjω
base

GF

TT

EF

μTT

EF

μTT

GF

TQ

ewω

jωq
.                                (28) 

where, 
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222 RjωωLPE sC  ,       
dV RjPG ω3  .                                 (29b) 

 

Other multimode FRFs relation can also be further formulated by using (28). Here, voltage and 

power FRFs across the resistor of the harvesting circuit can be formulated respectively as,
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  ,                                    (30a) 

   

  

 

  

 22

23
2

22

3

tjω
base

d
tjω

base

R

ewω

jωq
Rω

ewω

jωP







 .                             (30b) 

 

3.2  Coupled system of shunt tuning circuit and standard harvesting DC interface circuit 

During each half-cycle period, the production of output current of the harvesting piezoelectric 

element through the AC-DC interface circuit can be illustrated as two intervals as shown in Fig. 2.  

 

                                       

Discharging

ti

VDC

IDC

VDC through Capacitor

VAC

VDC through Rectifier

t

t

t

tf ti+T/2

Charging

IDC 

through 

Capacitor

IDC through 

Load ResistanceIDC

t  
 

 

a. Current flowing with interval ti < t < tf indicating the charging time every half-cycle of the 

waveform. 

With the corresponding previous theoretical derivations, the following equations of coupled 

system response during the period of charging can be formulated using the previous equations in 

(25)-(26a,b). Only Eq. (26c) with slight modification of the first term gives,  

          
               0ˆ

1

333
 





twTtqPv r

r

rVd   .                                     (31)              

Note that variable vd in (31) was introduced by replacing the first part from (26c). This can be 

obtained by removing the third term in (13) and introducing     tδqtvδWFr d
3  in (6). 

Differentiating (31) with respect to time gives,  

         0ˆ

1

333
 





twTtqPv r

r

rVd  .                                   (32)            

The equation for the harvesting circuit can be formulated as, 

         03 
d

d
dd

R

v
vCtq  .                                            (33) 

Substituting parameter   tq 3  from (31) into (25) and parameter   tq 3 from (32) into (33) and 

joining the results with (26a) and (26b) gives the state-space representation of the multi-mode 

response system, 

Fig.2. Time waveforms of the standard harvesting circuit   
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where, 

          
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1
21

1
2111

1
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1
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2
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ˆˆ CμTTCμTTωS  ,            (35a) 

       
22

1
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1
211

1
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1
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2 ˆˆ CμTTCμTTωS rrrrrr  .                                            (35b) 

b. Current flowing with interval t f < t < ti + T/2 indicating the discharging times every half-

cycle of the waveform.  

The harvesting circuit can be formulated as,  

       0
d

d
dd

R

v
vC  .                                                  (36) 

The solution form of (36) can be stated as, 

           
 













 


dd

f

fdd
RC

tt
tvtv exp .                                          (37) 

Note that the expressions of (34) and (37) can be utilized to estimate current and voltage waveform 

during the process of charging and discharging periods.    

 

4 Electromechanical Weak Form Analytical Approach 

The weak form-based Ritz method [50]-[51] reduced from the variational principle is further 

extended into the proposed system model giving an alternative and direct solution technique. This 

technique involves a test function in the essence of the piecewise continuous function for the entire 

structural domain corresponding to virtual relative transverse displacement field, harvesting 

electrical charge and first and second tuning electrical charges that should meet continuity 

requirements and boundary conditions. Further detail derivations can be seen in Appendix E. After 

simplification, the four coupled equations based on the Ritz method-based weak form are 

formulated as,  
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 331
322

1
2

1
311

1
1 ,                  (38a) 
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            0ˆ 3333  tyPtqPtqR rrVd   .                                        (38d) 
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The equations can be further formulated into FRFs as shown in the stage. Moreover, the FRFs 

provide accurate results as long as the test function-based Ritz eigenfunction is chosen correctly. 

At this case, since Eq. (38) has been normalized, the parameters rP1
ˆ , rP2

ˆ and rP̂ can be reduced as, 

                                 
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
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rr PP

1

1
1

1
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rr PP
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1
2

1
2

ˆ ,    



m

r

rr PP

1

33ˆ .                 (39) 

Note that other parameters can be seen in Appendix E (Eqs. (E11)-(E14)). Laplace transformation 

can be used to formulate the multi-mode electromechanical FRFs equations giving the transfer 

functions. Here only one example of the harvesting electrical power FRF is shown across the load 

resistance after simplification, 
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where     ωωζjωCμPCμPωN rrrrrr 22
22

21
211

21
1

2
  and other parameters of E1, E2 and G can 

be seen in similar forms in (29a)-(29b). 

 

5 Result and Discussion 

 

In this section, adaptive tuning piezoelectric harvesting responses were discussed using the two 

segmented thin electrodes-based shunt circuit control systems. The power FRFs and time 

waveform DC output responses presented here use the most effective and feasible parametric 

tuning circuit systems. The material properties of the piezoelectric bimorph beam are given in 

Table 1. The piezoelectric material used here was made from PZT PSI-5A4E. Note that the input 

base excitation onto the smart structure was set to be 1 m/s2. The geometrical structures with tip 

mass offset as shown in Fig. 1 with beam length L and width b with the lower piezoelectric 

thickness h(1), substructure (brass) thickness h(2) and upper piezoelectric thickness h(3) were set to 

60 mm, 6 mm, 0.267 mm, 0.5 mm and 0.508 mm, respectively. The dimensions of the tip mass 

offset  lt, ht and b (width) were set to 15 mm, 10 mm and 6 mm, respectively. 

Note that due to very low inherent piezoelectric capacitance and lower frequency, large 

inductance values are required for both tuning circuits. However, as mentioned previously, for 

practical case, this can be tackled using synthetic inductances which is an integrated circuit mainly 

consisting of op-amp systems, resistors and capacitor circuits. It is noted that most of the typical 

power harvesting under load resistance at the first mode shows only one peak of resonance that 

can shift from short to open circuit resonance. However, after carefully exploring certain tuning 

circuit parameter values; for our proposed technique, three simultaneous resonances appear to the 

system followed by widening of the resonant frequency range to more than 10 Hz. Starting with 

the given example in Fig. 3, using two different electrode segment lengths, the power harvesting 

FRFs show different trends because contribution of partial electrodes covered onto the 

piezoelectric layer also indicates certain values of inherent piezoelectric capacitance to the first 

and second tuning circuits as shown in Fig. 1 giving the options to find the most feasible power 

harvesting response. As shown, the comparison between electromechanical closed form and Ritz 

method-based weak form analytical approach gives good agreement. It is noted here that the 

accurate results given from Ritz method is achieved due to using the same mode shape as given 

from the closed-form method. Also note that the tuning circuit parameters and the total length of 

two electrodes of 60 mm remain constant so as to visualize the effect of tuning electrode segments 

to the power harvesting circuit. Since power harvesting with electrodes lengths L1=20 mm and 

L2=40 mm provides better responses, the widening frequency band and time waveform using 

variable system parameter will be further explored in the next stage using similar electrode lengths 

associated with their tuning and harvesting circuit parameter values. In Fig. 4, the three peaks of 

power harvesting resonances can be visualized using variable harvesting load resistance. Two 

maximum peaks around 47.3 Hz-57.3 Hz occur not only at the lower load resistances, but also at 

the higher load resistances. One additional peak showing the lower value can be seen at the lower 

resonance of 41.7 Hz. Note that the power harvesting FRF with 140 kΩ in Fig. 4 can also be seen 

similarly in Fig. 3 (red line) giving the most effective response. Slightly different parametric 

system behaviour can be seen in Fig. 5a, where shifting resonances from the two maximum peaks 
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to single maximum peak appear at the lower and higher tuning circuit load resistances, 

respectively. A minimum peak at the lower resonance can also be seen. In Fig. 5b, the power 

harvesting FRF appears to give different trend. It can be remarked in Fig. 5 that the use of the first 

tuning load resistance connected at the first electrode segment gives a more responsive system 

compared with the second tuning load located at the second electrode segment. 

 

 

 

 

 

 

 

 

 

 

 

 

                       
 

 

 

 

 

                     
 

 

 

 

 

Material  properties Piezoelectric layers     Brass 

Young’s modulus, 11c  (GPa) 66 105 

Density, ρ (kg/m3) 7800 9000 

Piezoelectric constant, d31 (pm/V) -190 - 

Permittivity, Tε33  (F/m) 1800 oε  - 

Permittivity of free space,
o (pF/m) 8.854 - 

Fig.3. Power harvesting FRFs with different segmented electrode lengths with fixed harvesting load resistance 

Rd=140 kΩ, fixed first and second tuning capacitors C1= 25 nF and C2=45 nF, fixed first and second synthetic 
inductances Ls1 =  330 H and Ls2 =  250 H, and fixed first and second  tuning load resistances R1 =50 Ω and R2 

=50 Ω (solid line–closed form and circle–Ritz method). 

Fig.4. Power harvesting FRFs under varying harvesting load resistance fixed first and second tuning capacitors 

C1= 25 nF and C2=45 nF, fixed first and second synthetic inductances Ls1 =  330 H and Ls2 =  250 H, and fixed 

first and second  tuning load resistances R1 =50 Ω and R2 =50 Ω. 

Table 1. Material properties of the piezoelectric bimorph 
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This situation occurs because the strain field to induce the polarity of the piezoelectric 

component predominantly reacts at the certain location quite close to the support of the 

cantilevered beam (strain node). However, even though the second tuning element is a slightly less 

responsive system, it can tune the third peak of resonance and also can be used to select the best 

tuning load resistance values. Moreover, a wider frequency response band as shown in Fig. 6a can 

also be intensified using the most feasible particular inductance values. At particular inductance 

values, the three peaks of resonances can be tuned to give even wider frequency range achieving 

more than 20 Hz. Again, the first tuning inductance value in Fig. 6a provides a more responsive 

parameter compared with the second tuning element in Fig. 6b. Nevertheless, the required second 

Fig.6. Power harvesting FRFs with fixed first and second tuning capacitors C1= 25 nF and C2=45 nF, fixed first and 

second tuning load resistances R1 =50 Ω and R2 =50 Ω, and harvesting load resistance Rd =140 kΩ : a) variable first 

synthetic inductance with fixed second synthetic inductance Ls2=250 H, b) variable second synthetic inductance 

with fixed first synthetic inductance Ls1 = 330 H. 

Fig.7. Power harvesting FRFs with fixed first and second synthetic inductances Ls1 =330 H and Ls2 =250 H, fixed 
first and second  tuning load resistances R1 =50 Ω and R2 =50 Ω, and harvesting load resistance Rd  =140 kΩ: a) 

variable first tuning capacitor with fixed second tuning capacitor C2=45 nF, b) variable second tuning capacitor 

with fixed first tuning capacitor C1= 25 nF. 

a 

 

b 

 

a 

 

a 

 

b 

 

b 

 

Fig.5. Power harvesting FRFs with fixed first and second tuning capacitors C1= 25 nF and C2=45 nF, fixed first and 
second synthetic inductances Ls1 =330 H and Ls2 = 250 H, and harvesting load resistance Rd =140 kΩ : a) variable 

first tuning load resistance with fixed second tuning load resistance R2=50 Ω, b) variable second tuning load 

resistance with fixed first tuning load resistance R1 =50 Ω. 
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tuning system is an essential feature and complementary to intensify the third peak of the 

frequency regime as shown in both figures. Like the tuning inductance parameter, another key 

aspect to optimize the power harvesting FRFs can be seen in Fig. 7a, where the first tuning circuit 

capacitance can also contribute to widen and intensify the three peaks of the resonances. 

Moreover, Fig. 7b also shows the three peaks, but does not further boost the amplitude response. 

However, it certainly provides important information for identifying the best value of the second 

tuning capacitance so as to create the three most feasible peaks of the resonances when analyzing 

the whole system. Again, the power harvesting FRF with 25 nF and 45 nF for the first and second 

tuning capacitances in Fig. 7 can also be seen similarly to that in Fig. 3 (red line). As can be seen 

for the whole scenario so far, the circuit parameters can dependently affect the system of the 

adaptive power harvesting responses.  

The time waveform of the DC electrical output through the rectifier and capacitor at the 

harvesting circuit can be visualized using tuning circuit parameters and the excited resonance 

frequency of 51.3 Hz.  Note that the resonance of the smart structure appears due to careful 

selection of the tuning circuit parameters. It should also be noted if the smart structure has similar 

resonance value with the tuning circuit system resulting in the lowest power amplitude, it will not 

give benefit for power harvesting application, but rather for vibration suppression. In Fig. 8a, the 

DC voltage signal amplitudes through the rectifier and capacitor can be seen to have different 

trend. In the harvesting circuit, the AC/DC rectifier with smoothing RdCd circuit has been used for 

DC ripple voltage signal behaviours. The process of maintaining the DC voltage level depends not 

only on the smoothing capacitor Cd, but also on the value of resistance across the harvesting 

circuit. This situation will occur using larger harvesting load resistance Rd where the time of the 

capacitor Cd to discharge will be short. Note that the charging process through the capacitor only 

occurs for the ripple process each time the diodes conduct to capture the process of AC-DC current  

(equation 32). Once the capacitor discharges, no current will flow (equations 33 and 34) as shown 

in Fig. 8b. It is also obvious to see that the capacitor connected into the full-wave rectifier can only 

be charged for each half-cycle of the DC signal and then again for the next half-cycle. The 

prediction of the DC power harvesting time waveform as shown in Fig. 8c can be obtained across 

load resistance. The fluctuated DC power amplitude provides higher value due to using selective 

circuit parameters for tuning particular frequency of the system where the performance can also be 

seen similarly in Fig. 3 (red line). Note that the three peaks of resonances can be the best option for 

exciting the smart structure so as to maximize the time waveform DC power output. At this case, 

careful selection of harvesting and tuning circuit parameters can potentially tune and widen the 

frequency band with increasing power harvester amplitude. 

                                

  
 

 

Fig.8. Time waveform signal based on fixed harvesting load resistance Rd=140 kΩ and capacitance Cd=0.3 nF, 

fixed first and second tuning capacitors C1= 25 nF and C2=45 nF, fixed first and second synthetic inductances 

Ls1 =330 H and Ls2 =250 H, and fixed first and second tuning load resistances R1 =50 Ω and R2 =50 Ω:a)  DC 
Voltage, b) DC capacitor current, c) DC power harvesting across harvesting load resistance.  
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6  Conclusion  

 

This paper discussed shunt circuit networks connected to the two segmented electrodes covered 

onto the bottom surface of the piezoelectric layer for controlling the upper layer of the 

piezoelectric power harvester. The system provides the adaptive smart structure power harvester to 

be capable of not only tuning across a certain frequency band but also creating three peaks of the 

resonances. The electromechanical closed-form boundary value method reduced from the extended 

Hamiltonian principle was developed to formulate new electromechanical frequency response 

functions and time waveform systems of the standard AC-DC circuit power harvesting using 

Laplace transforms. The Ritz method-based weak form analytical approach has also been 

formulated to give electromechanical transverse dynamic equations for formulating multi-mode 

FRFs. These two analytical techniques developed coupled systems of the electromechanical power 

harvesting equations showing the simultaneous combinations of the mechanical system (dynamical 

behaviour of piezoelectric structure), electromechanical system (electrical piezoelectric response) 

and electrical system (tuning and harvesting circuits). The two methods have shown identical 

results in the frequency analysis. The accuracy of the Ritz method was achieved due to using the 

same mode shape as given from the closed-form boundary value techniques. Moreover, after 

carefully exploring certain tuning and harvesting circuit parameter values, the results show that 

varying different electrode lengths connected to the two separated tuning circuits can provide the 

guideline to identify not only levels of the wider frequency band, but also surveys of the peaks of 

resonances. For that reason, using particular electrode lengths and tuning and harvesting circuit 

parameter values, further proofs have been provided using the effect of varying circuit parameters 

of the system for exploring the widening and increasing the resonance frequency band and time 

waveform. As a result, adaptive power harvesting techniques can give benefit for tuning frequency 

response and time waveform in applications of the self-powered wireless sensor devices that is 

normally located at the surrounding vibration environment for capturing mechanical energy and 

converting it into the usable electrical energy. 

 

A Appendix: Modified Elastic Constant and Piezoelectric Constant  

 The modified elastic constant and modified piezoelectric constant for tuning and harvesting 

piezoelectric layers can be formulated, respectively as, 
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Note that general parameter   Si,
ε

33 for piezoelectric layers (superscript  3,1i ) indicates the 

permittivity at constant strain (superscript S) that can be further formulated as 
       iiTi,Si,

deεε 31313333  or        Ei,2iTi, Si, cdεε 11313333   where  Ti,
ε

33
 is the permittivity at constant stress 

(superscript T). Parameter 31e  is  piezoelectric coefficient  which is obtained using Ecde 113131 .  

 

B Appendix: Modified Transverse Piezoelectric Coupling Coefficient  

 The modified transverse piezoelectric coupling in the tuning and harvesting piezoelectric layers 

can be formulated, respectively as, 
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C Appendix:  Modified Internal Capacitance of Piezoelectric 

 The modified internal capacitances in the tuning and harvesting piezoelectric layers can be 

stated, respectively as,  
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D Appendix: Mode shapes of the Cantilevered Bimorph Beam with Proof Mass Offset 

The normalized eigenfunction series  xWr
ˆ  in (24) can be proved by manipulating (21) and 

(23) and taking only consideration of the transverse mechanical equation of using 
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where:      
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The frequency equation and eigenvalues can be formulated from Eq. (D1) leading to nontrivial 

solutions as, 

    012212211  AAAA    .                                            (D3) 

The mode shape or space-dependent eigenfunction of transverse bending can be formulated can be 

formulated as, 
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Since Eq. (D4) contains constant ra1  as the transverse amplitude constant, the normalized mode 

shape can be formulated as,  
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E Appendix: Derivations of Ritz Method-Based Analytical Weak Form 
Further derivations of the electromechanical weak form can be formulated by substituting (7)-

(13) associated with (16), (17) and (20) into (6) and the result of which can be reformulated by 

using the normalized eigenfunction series forms,
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normalized mode shape-related Ritz method can be discussed in the next stage. 

After simplification, the first electromechanical dynamic equation represents the coupled 

tuning-harvesting piezoelectric bimorph under transverse bending form as, 
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The second, third, fourth, fifth and sixth equations represent the electromechanical harvesting 

piezoelectric, tuning piezoelectric and tuning circuit forms, respectively to give, 
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In terms of (E1)-(E6), the normalized electromechanical dynamic equation can be further 

simplified in the matrix form as,  
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where: 
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Here, parameter of the normalized eigenfunction  .Yr
ˆ can be assumed to have a similar form with 

(D5) by considering    xWxY rr
ˆˆ   and    xWxY rr  . However, parameter  .Yr can be obtained 

from the generalized space-dependent Ritz eigenfunctions as,   
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Note that the accuracy of the Ritz mode shape  xYk can be obtained using the same mode 

shape  xWk  as the closed-form boundary value technique where it can be found in (D4) in 

Appendix D (considering    xWxY kk   and ignoring constant ra1  because it is used for the 

closed-form technique where the generalized Ritz method is used in this section). The generalized 

Ritz coefficient krc  is the eigenvector matrix where each column corresponds to a specific 

independent eigenvalue. The coefficient can only be proved by replacing 
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rc  is called the Ritz coefficient for the mechanical transverse bending form which sometimes 

refers to the eigenvectors in the mechanical domain. Corresponding to (E7), the 

orthonormalizations can now be further proved using the orthogonality property of the mechanical 

dynamic equations for the Euler-Bernoulli bimorph beam with proof mass offset as, 
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where qrδ  is the Kronecker delta, defined as unity for rq   and zero for rq  .  
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