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Abstract This research has determined the carbon footprint or the carbon dioxide equivalent 7 

(CO2eq) of potable water production from a groundwater recycling scheme, consisting of the 8 

Beenyup wastewater treatment plant (WWTP), the Beenyup groundwater replenishment trial 9 

plant (GWRT) and the Wanneroo groundwater treatment plant (GWTP) in Western Australia 10 

(WA), using a life cycle assessment (LCA) approach. It was found that the scheme produces 11 

1,300 tonnes of CO2eq per gigalitre (GL) of water produced, which is 933 tonnes of CO2eq 12 

higher than the desalination plant at Binningup in WA powered by 100% renewable energy 13 

generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient 14 

of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input 15 

accounts for 83% of the carbon dioxide equivalent produced during the production of potable 16 

water. The chosen mitigation strategy was to consider the use of renewable energy to generate 17 

electricity for carbon intensive GWRT. Depending on the local situation, a maximum of 93% 18 

and a minimum of 21% GHG saving from electricity use can be attained at GWRT by replacing 19 

grid electricity with renewable electricity. In addition, the consideration of vibrational 20 
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separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 21 

tonne of CO2 eq saving per GL of water produced by the plant. 22 

 23 

Keywords Groundwater recycling, carbon footprint, Western Australia 24 
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 26 

1 Introduction 27 

 28 

In Western Australia, it has been observed that the freshwater run off into the dams, which has 29 

traditionally been the main source of water for the Perth metropolitan area, reached an all-time 30 

low of 11.4GL in the year 2015. When compared to the streamflow of 394GL as a pre-1975 31 

average or 189GL as a post-1975 average, the current level is significantly low (i.e. about one 32 

third of post-1975) (Water Corporation, 2016a). Due to this scarcity of supply, the Water 33 

Corporation has sought out alternate sources of fresh water, including desalination and 34 

groundwater bores. Direct water recycling has also been considered, however, due to lack of 35 

community acceptance it is not yet in place within Western Australia (Kemp et al. 2012). 36 

Desalination is seen as a climate independent source of water (Biswas 2009), whilst the 37 

use of groundwater is both climate and environmentally sensitive due to drought and low 38 

rainfall in a semi-arid region of WA (DPI 2016). In addition, desalination is seen as a more 39 

costly endeavour, both in monetary and environmental terms (Stokes and Horvath (2009); 40 

Siddiqi and Anadon 2011). This is because the removal of salts requires the use of a more 41 

energy intensive process (and is therefore costlier), than the removal of organic particulates 42 

seen in the groundwater system. Taking into account the high salinity of water and the 43 

comparatively large waste streams associated with desalination, groundwater recycling is 44 

favourable (Lyon et al. 2009). 45 

In 2014–15, 17% of water supplied into the Integrated Water Supply Scheme (IWSS) came 46 

from surface water (dams), 42% from groundwater and 41% from desalinated seawater (Water 47 

Corporation 2015; Shahabi et al. 2014). The use of groundwater replenishment within Western 48 

Australia, could help Water Corporation to supply water with a lower impact on the 49 
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environment in comparison with desalination (DoE 2016). It will also allow for the greater 50 

extraction of water in the future as the aquifers may not become depleted in the near future 51 

(Department of Water 2011). It was estimated that this water source could potentially provide 52 

up to 20% of Perth's drinking water supplies by 2060 (Water Corporation 2016). Groundwater 53 

replenishment has been successfully implemented in other parts of the world, including 54 

Singapore’s Newater initiative and the Orange County Water District Groundwater 55 

Replenishment System (Newater 2015). All of these systems are based on similar technologies, 56 

including pre-purification (traditional wastewater management), microfiltration, and reverse 57 

osmosis (RO) and UV light treatment before water distribution (NeWater 2015; Orange County 58 

Water District, 2016). Orange County also treats the water with hydrogen peroxide (a 59 

disinfectant) to further purify the water (Newater 2015). The Newater plant in Singapore adds 60 

chemicals to the water to make it drinkable or usable to industry. It is then pumped either back 61 

into the Singapore water supply or to factories (majorly wafer fabrication plants due to their 62 

requirement for high quality water), where it is reused (NeWater 2015). Orange County uses 63 

the water it produces for two main things: one third of the water produced is pumped in the 64 

‘seawater intrusion barrier’, which is designed to stop seawater from entering the groundwater 65 

table due to its extremely low level in relation to the sea, whilst the other two thirds is pumped 66 

into recharge bores with the plan being that it can be removed many years later (Orange County 67 

Water District, 2016). The Perth groundwater replenishment trial acted on the same principle, 68 

however, all of the water from the Perth groundwater trial project was recharged into 69 

underground aquifers (Water Corporation 2011). The main reason for the water being 70 

recharged into aquifers instead of being used directly is to remove the societal stigma 71 

associated with drinking recycled water (Kemp et al. 2012).   72 

In 2009  the Water Corporation began the construction of a trial groundwater 73 

replenishment plant next to the Beenyup wastewater treatment plant and this plant was 74 
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operational for 4 years before being decommissioned to construct a full scale plant, due to 75 

become operational in 2017 (Water Corporation 2016b and 2016c). The full-scale groundwater 76 

replenishment scheme cannot only address WA’s water scarcity issue, but there may be CO2 77 

emission saving opportunity associated with the production of recycled water. 78 

Desalination plants accounting for Western Australia’s largest water supply in the 79 

metropolitan area have been found to be a more carbon intensive water supply option compared 80 

to other existing options. For example, a local WA study found that to produce 1 GL of 81 

desalinated water, 3,890 tonnes of CO2 equivalent emissions would be evolved when grid 82 

electricity is the main source of energy, which is extremely high compared to other water 83 

supply options (Biswas and Yek 2016).  This is also similar to a study in Denmark that found 84 

that groundwater was the least polluting in terms of greenhouse effect while desalination was 85 

the greatest polluting source  (Godskeseen et al. 2011). In another study, desalination 86 

technologies were compared with Memstill that involves the use of an external thermal energy 87 

resource to reduce chemical requirements. It was identified that due to the lower energy 88 

requirement of the Memstill unit it had a lower environmental impact than a similar sized 89 

reverse osmosis unit (Tarnacki et al. 2011).  90 

The extraction, treatment and distribution of water has a significant energy footprint. The 91 

severe water scarcity that has been experienced in Australia over the last few decades have 92 

driven water utilities to consider and implement a range of energy intensive sources of water 93 

such as desalination and advanced water treatment. The energy intensity for water production 94 

is the highest for desalination through reverse osmosis (i.e. 3.64 – 5 MWh/ML), followed by 95 

groundwater extraction (0.13 – 0.6 MWh/ML), recycled water through advanced treatment (i.e. 96 

0.08 – 0.32 MWh/ML), and surface water pumping (i.e. 0.04 – 0.30 MWh/ML) (Stanford 97 

University 2013; ISF 2013). If energy is generated predominantly from fossil fuels, then the 98 

increase in energy intensity of water production will increase the intensity of GHG emissions. 99 
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The groundwater recycling scheme that includes three stages: wastewater treatment, 100 

groundwater pre-treatment through advance treatment and groundwater extraction and 101 

treatment, is expected to increase both energy intensity and carbon footprints.  102 

Carbon footprint assessment has been done in the research as it is one of the most important 103 

indicator for Australia. Prime Minister has reaffirmed during the Climate Change conference 104 

in December 2015  that the Australia would “meet and beat” its 2020 emissions reduction goal 105 

which is the reduction of 5 per cent compared with 2000 levels (Tom Arup, 2015). 106 

A life cycle assessment (LCA) that followed the ISO 14040-44 guideline has been used to 107 

estimate the carbon footprints of water supply and wastewater treatment options. The use of 108 

LCAs within the wastewater treatment industry is relatively common and was first seen in the 109 

1990s (Newater 2015). 110 

Whilst LCA of other components of water supply and treatment have been conducted, the 111 

advanced water recycling has not been covered in a large amount of detail in the existing LCA 112 

analyses. Wastewater treatment initiatives have been covered by many LCA’s, as it allows for 113 

differing technology types to be compared and contrasted with each other on another level 114 

(Orange County Water District 2016). Groundwater treatment plants have had various LCA’s 115 

done on them so as to compare them to other potable water sources. Generally water treatment 116 

plants are decided on price and capacity constraints, however, it is now common for emissions 117 

to need to be considered due to the environmental authorities within each country (Bontonne 118 

et al. 2012).  This gives rise to the need for LCA’s to be used to compare plants around the 119 

world in an emissions basis.  120 

LCA has been used to determine that chemical treatment processes that would deliver 121 

required water quality with reduced level of GHG emissions (Foley et al. 2010). The changing 122 

of the conventional electrical energy source (coal to wind power) could significantly reduce 123 
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the environmental impacts (Li et al. 2013). The comparative LCA also found that the enhanced 124 

conventional plant causes far greater amounts of environmental damage than the nanofiltration 125 

plant when both plants are powered via hydroelectricity (Bonton et al. 2012). 126 

There is however one comparative LCA which compares three pathways for water supply 127 

for Scottsdale, USA: importation, advanced water recycling and desalination (Lyons et al. 128 

2009). The report found that desalination was the largest emitter of greenhouse gas emissions, 129 

with water transportation the second and water recycling the lowest emitter. Also, it was found 130 

that when comparing desalination to advanced water recycling, the environmental impacts 131 

associated with the use of chemicals in advanced water recycling was higher than that of the 132 

desalination. 133 

This research assesses the current groundwater recycling scheme in terms of its greenhouse 134 

gas (GHG) emissions. The carbon footprint of the scheme was chosen as it is the most 135 

commonly recognised (Racoviceanu et al. 2007). This means that the scheme can be easily 136 

compared and contrasted to other schemes and processes. 137 

The analysis undertook a cradle to gate approach, with the cradle being the inlet at the 138 

Beenyup wastewater plant and the gate being the outlet into the Water Corporation’s Wanneroo 139 

reservoir. In the analysis of the scheme, four main discussion points will be covered; 140 

distribution of emissions within the plant, mitigation of emissions via the use of renewable 141 

energies, comparison to desalination as a climate dependant supply and the effect of the 142 

vibrational separation system on the greenhouse gas emissions.  143 

From this point on in the research, scheme refers to the overall process (wastewater inlet 144 

to reservoir outlet), plant refers to individual plants within the scheme and stage refers to 145 

individual stages within each of the plants. 146 

 147 
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2 Groundwater cycle scheme components 148 

 149 

There are three main plants within the groundwater recycling scheme. These are the Beenyup 150 

wastewater treatment plant, the Beenyup groundwater recycling plant (groundwater pre-151 

treatment plant) and the Wanneroo groundwater treatment plant.  Figure 1 shows a visual 152 

representation of these plants and stages. 153 

The overview of the stages of these three plants has been completed via the information 154 

given during a tour of the Water Corporation’s facilities, as well as the virtual tours which the 155 

Water Corporation has created to show the public where water comes from in Western 156 

Australia. [Hamilton S, Water Corporation, Perth, personal communication, March 31, 157 

2016](Water Corporation 2016b, 2016c and 2016d). 158 

Wastewater Treatment Plant: Overall electricity usage within the plant is 2189 kWh per 159 

GL [Hamilton S, Water Corporation, Perth, personal communication, April 29, 2016]. 160 

Pre-screening:  Pre-screening is used to remove the bulk of the large objects. This can 161 

include rags, plastic and rubbish. The rubbish that is removed from this stage is taken away 162 

and disposed of at a landfill site. This is done as larger objects can damage equipment used 163 

within the process, which would be costly to repair or replace. From this section the removed 164 

waste is the only output. Odours from here are taken to the odour control section. 165 

Grit Tanks and Washing: Grit tanks are used to allow inorganic materials to settle out of 166 

the process fluid. The water and organic materials are then drained to the next part of the 167 

process and the grit is washed to remove any final organic material and then sent to landfill to 168 

be disposed of. The output from this section is the grit, as it contains no organic material, it is 169 

assumed to be inert and therefore has no emissions. 170 
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Primary Sedimentation: Primary Sedimentation is where the bulk of the organic materials 171 

are removed from the water. The water is allowed to sit and the ‘sludge’ is allowed to settle to 172 

the bottom. Scrapers are then used to push the sludge to one end of the tank, from here it is 173 

then pumped to the sludge treatment area. Odours from this section are contained and sent to 174 

the odour control section. As such the sludge is the only output. 175 

Sludge Treatment and Digestion: Sludge from the primary sedimentation area is pumped 176 

into heated digestion tanks, where it is broken down by bacteria. The broken down sludge is 177 

then dehydrated and sent to an offsite facility which converts it into fertiliser. During the 178 

breaking down of the sludge a large amount of methane is produced. This methane is used to 179 

heat and power mixers in the sludge digestion tanks as well as for heating and electrical 180 

generation within the plant. This is a major reason why the power usage within the plant is so 181 

low. The output from this stage is the dehydrated sludge. 182 

Aeration: The water from the primary sedimentation tanks is then aerated in order to 183 

promote microbes to consume the last of the remaining organic matter and nutrients within the 184 

water. At this point the water is nearly clean enough to be returned to the environment (Water 185 

Corporation 2016b). These tanks are covered in order to limit the amount of odour and gas 186 

which is released to the environment. As the odour is contained there is no outputs from this 187 

stage. 188 

Odour Control: Odour control is a major factor within the plant to maintain community 189 

support and meet government guidelines on odours and chemical emissions (Water 190 

Corporation 2016b). Odour control is managed by using chemical scrubbers, which then vent 191 

to high stacks which means that any remaining odour is dissipated to the atmosphere.  192 

Secondary Sedimentation: Secondary sedimentation tanks are not covered as the water is 193 

already quite clean and odourless. This is used as a polishing step to remove any particles which 194 
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may have been carried over by the process before it is either sent back to the ocean or pumped 195 

to the groundwater replenishment circuit. 196 

Pumping to Replenishment: Water from the wastewater treatment plant is then pumped to 197 

the groundwater replenishment trial plant. This water must meet strict guidelines to be 198 

accepted, and as such surge tanks are used so that the flow to the groundwater replenishment 199 

plant can be established at a designated level of 5975 m3/day (Water Corporation 2008). Water 200 

that is not suitable as it is outside the specifications set by the groundwater replenishment team 201 

is simply diverted back to the ocean outlet. [Hamilton S, Water Corporation, Perth, personal 202 

communication, March 31, 2016] 203 

Groundwater Pre-Treatment Plant (Groundwater Replenishment): The groundwater pre-204 

treatment plant requires a proportionally large amount of energy (1019669 kWh) due to the 205 

high pressures required by the reverse osmosis (RO) units. [Hamilton S, Water Corporation, 206 

Perth, personal communication, May 12, 2016] 207 

Ultrafiltration: Water from the wastewater plant first undergoes ultrafiltration. This is done 208 

as a primary clean to stop any larger particles from entering the reverse osmosis (RO) unit. 209 

This prolongs the life of the RO membranes. When the pressure differential becomes too high 210 

they are backwashed, and the water from the backwash is returned to the beginning of the 211 

wastewater treatment plant. 212 

 Reverse Osmosis: Similar to the RO units used for seawater filtration, the RO units within 213 

the groundwater replenishment are used to remove any particles which may have made it past 214 

the ultrafiltration units. These run at a pressure up to 4136.80 kPa (Lenntech 2016). 215 

UV Light: Ultraviolet disinfection is used to kill any viruses and bacteria which are left in 216 

the water after the RO system.  217 
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Recharge/Injection: The water is then recharged into bores. The bores for the groundwater 218 

trial were relatively shallow bores (150 – 220m (MWH 2010)), with the bores drilled for the 219 

full-scale project at a mixture of shallow and deep depths. The water from the bores is expected 220 

to remain underground for decades before being drawn up by the current water extraction bores. 221 

Groundwater Treatment Plant: The groundwater treatment plant requires 2,19,205 kWh of 222 

power to operate. A lot of this power can be associated with the MIEX® system as it was a 223 

recent treatment addition to the plant, and as such requires large amounts of pumping. 224 

Extraction: Water is extracted from several bores at varying depths in the northern suburbs 225 

of Perth to be used at the groundwater treatment plant site. Currently no water from the storage 226 

dams is being used for drinking water purposes due to their low level [Hamilton S, Water 227 

Corporation, Perth, personal communication, March 31, 2016]. The water for the Wanneroo 228 

groundwater treatment plant comes from several bores, which allows the plant to create a 229 

blended water type for a more constant feedstock to the plant. It can be assumed that the 230 

quantity of water being injected is equal to the quantity of water being extracted. This is 231 

because the Water Corporation currently has a credit system associated with their license, 232 

which allows for an equal amount of water to be extracted as is injected. [Hamilton S, Water 233 

Corporation, Perth, personal communication, March 31, 2016] 234 

Aeration: Water which has come from the ground is often high in H2S and iron, and as 235 

such must be treated to remove them. Aeration involves spraying the water into the air which 236 

oxidises contaminates such as hydrogen sulfide and iron sulfide. This is the cheapest and most 237 

effective way of removing these particles. 238 

MIEX® (Magnetic Ion Exchange): MIEX® resin is used to remove the organic matter from 239 

the water. The MIEX® resin particles bind to the organic matter and due to its magnetic 240 

properties, make it heavier so it sinks to the bottom faster than conventional resin. This bottom 241 
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stream is then taken away for regeneration, whilst the top stream is the relatively clean water 242 

which then goes to clarification. 243 

MIEX® regeneration involves mixing the MIEX® resin loaded with organics with a 244 

saturated salt solution. The salt solution displaces the organics, meaning the MIEX® resin is 245 

ready to be used again. (Hamilton 2015) The salt and organic solution is sent to another location 246 

to be blended for ocean disposal. [Hamilton S, Water Corporation, Perth, personal 247 

communication, March 31, 2016]  248 

Clarification: At the clarifiers two chemicals called aluminium sulfate (alum) and 249 

polyelectrolyte are added. Alum aids in binding the particles, making them larger and heavier 250 

so they will settle out of the solution and the poly electrolyte acts as a flocculent, coagulating 251 

the particles together. The clean water spills over at the top into spillways, whilst the larger 252 

particles at the bottom are scraped away and sent for drying. This dried sludge is the main 253 

output from the groundwater plant and is used for fire breaks.  254 

At this point the clean water has any pH adjustments required made to it through the use 255 

of lime. 256 

Filtration: Filtration is used as a final polishing step to remove any particles which may 257 

have made it through the clarification process. The filters used are bed filters, which are 258 

designed to use a variety of media in shrinking sizes. This media is layered on top of each other, 259 

in such a way that the water must pass through the media in order of decreasing size. This 260 

means that large particles can be caught before they get to the smallest media which would 261 

cause a blockage. 262 

Filters are cleaned using backwashing, with the water from the backwash again being 263 

returned to the aeration step. 264 
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Disinfection: Finally the water has fluoride and chlorine added to the water. This is used 265 

to keep the water clear, bacteria free and the fluoride is added as it is a government requirement. 266 

(Department of Health 2016). 267 

 268 

3 Methodology 269 

 270 

The LCA was conducted following the guidelines outlined in ISO14040-44 (ISO 2010) and 271 

can be divided into four basic steps. These are; goal and scope, inventory analysis, impact 272 

assessment and interpretation. The interpretation part has been performed in the results and 273 

discussion section of this report.  274 

Goal and Scope Definition: The goal of this report is to determine the emissions of various 275 

parts of the three plants used within the groundwater system. This research takes a cradle to 276 

gate (wastewater inlet to outlet into reservoir) approach to data collection and uses a functional 277 

unit of 1 GL. This allowed to carry out a mass balance to determine the amount of inputs and 278 

outputs in all processes of product life cycle to produce 1 GL of recycle water. 279 

The carbon footprint (CO2 equivalent or CO2 eq) of the scheme was chosen not only because 280 

Australia had committed to reduce GHG emissions but also this indicator is the most commonly 281 

recognised and referenced GHG emissions (Worldwatch Institute 2011). This means that the 282 

scheme can be easily compared and contrasted to other schemes and processes (Worldwatch 283 

Institute 2011). From data generated on the carbon footprint both a hotspot analysis, as well as 284 

a comparison to other ‘climate independent’ water sources can be completed. 285 

The LCA of the groundwater recycling scheme consists of three main plants, wastewater 286 

treatment, groundwater pre-injection treatment and groundwater treatment. Each of these 287 

plants are then broken into stages as shown in Figure 1. Emissions from equipment and capital 288 
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that has a long life span is not included in the system boundary (Sharrad 2008), however short 289 

lifespan items or operational items have been considered. 290 

Inventory Analysis: An initial inventory analysis was completed using data provided by the 291 

Water Corporation. In this inventory analysis the inputs and outputs of each stage in the process 292 

are considered. Where real-time average data were not available, data set points and average 293 

design flows were considered. These inputs and outputs are used to create the life cycle 294 

inventory (LCI)  for the water treatment plants. Table 1 shows the LCI which was a pre-295 

requisite to carry out a life cycle impact analysis. All raw data are converted into a single unit 296 

which allows for to be compared to each other. The unit of water which has been chosen to be 297 

used is 1 GL of output water (water outputted to the reservoir at the end of the process). This 298 

means that a considerable amount of extra water would need to be used in the beginning to 299 

account for water leaving the system through other mediums. 300 

Energy and chemicals used within the system for pumping, transport, control, disinfection, 301 

cleaning, regeneration and making the water potable must be considered in the process (Table 302 

1). The transport required for the chemicals and waste also needs to be considered (Table 2). 303 

The unit of tkm (tonnekilometers) will be used in calculation of the transport emissions.  304 

Impact Assessment: The values for the impact of global warming are expressed over time 305 

horizons of 20, 100 and 500 years respectively to allow relevant climate change decisions to 306 

be made. As such, GHG emissions from around the scheme must be converted to their CO2 307 

equivalent values using established conversion factors  (IPCC 2007). In this research, the 100 308 

year horizon has been considered, as it is usually a reference point by policy makers. According 309 

to the IPCC data on global warming potential factors, at 100 years, CO2 has a factor of one, 310 

CH4 a factor of 25 and N2O a factor of 298 (IPCC 2007).These factors must be considered 311 

when working out the CO2 equivalent calculations. 312 
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Once the inventory data was collected, they were entered into SimaPro  program to calculate 313 

the GHG emissions for each LCI item. This LCA software program contains libraries (i.e. 314 

emission databases) for the GHG emissions for various chemical and energy inputs. A library 315 

in Simapro is an emission database of chemicals and processes which give GHG  (CO2, N2O, 316 

CH4) values associated with their production. This value was then converted within SimaPro, 317 

using the global warming potential factors to the CO2 equivalent value. These values were then 318 

totalled up to give the total CO2 eq value. 319 

Table 3 shows the different inputs and outputs, the libraries used and their associated CO2 320 

equivalent values as well as the totals for each stage of the overall scheme.  The unit of the data 321 

required from the inventory is dependent on what value each database requires. Where possible 322 

local databases i.e. AusLCI (Australian Life Cycle Inventory) has been used, however in the 323 

event where a local value has not been available (Life Cycle Strategy Pty Ltd. 2015), a new 324 

database has been created representing the local situation (Table 3). The value for the CO2 of 325 

the salt used at the GWTP was found from the WA Salt Group which produces it (Lake 326 

Deborah 2016). Where chemicals were required to be transported by truck, it was assumed that 327 

a 28 tonne articulated truck was used.  328 

 329 

4 Limitations of the Study 330 

There was a lack of emission database of following chemicals used within the various 331 

processes [Hamilton S, Water Corporation, Perth, personal communication, April 29, 2016]: 332 

BASF ZETag 8165 ( 11082.75 kg per GL used)  333 

BASF ZETag 7563 ( 674.2 kg per GL used) 334 

IXOM MIEX® Resin ( 1481.48 L per GL used) 335 
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Nalco PC 191-T ( 171371.23 L per GL used) 336 

Hydrex 4703 ( 38 L used per week) 337 

Hydrex 4705 ( 38 L used per week) 338 

A second limitation is that membranes and cartridges have not been considered due to 339 

the inability to gather significant data on their life and construction and also due to the trial 340 

nature of this GWRT project [Hamilton S, Water Corporation, Perth, personal communication, 341 

March 31, 2016]. Also negated in this LCA is the cleaning chemicals used (i.e. NaOH, 342 

Antiscalant (PC 191-T), Citric Acid) within the RO units as they are inaccurate due to the trial 343 

nature of the system. The emission factors of two important chemicals MIEX® Resin, 344 

Dissolved Air Flotation Thickener and Centrifuge Polyelectrolyte (STF) are unavailable and 345 

their impacts have been excluded in the assessment. 346 

Exclusion of aforementioned chemicals and membrane will not affect the results 347 

significantly. This is because all chemicals and membrane together account for very small 348 

portion of GHG emission (<5%) of energy intensive water treatment processes (Biswas 2009).  349 

The emissions factor of organic content of the sludge  was a negative emission due to the 350 

collection of landfill gases for energy production (Pré Consultants 2016). It was chosen to omit 351 

these figures due to the uncertainty of landfill gas collection being utilised at the landfill sites.  352 

 353 

 354 

5 Results and Discussion 355 

 356 

5.1 Monte Carlo Simulation (Uncertainty Analysis)  357 
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There are uncertainties associated with the data that is used for estimating carbon footprint. 358 

This data includes; the quality of the inputs and output and the emission factors. In order to 359 

model these uncertainties a stochastic modelling approach was taken (Clavreul et al. 2012). A 360 

Monte Carlo Simulation (MCS) was performed in order to estimate the uncertainty of each of 361 

these data points and predict the influence that variable has on the environmental impacts 362 

(Goedkoop et al. 2013). The MCS is an iterative approach which uses an input from a 363 

probability distribution and produces a distribution of all possible values for in this case 1000 364 

iterations (Goedkoop et al. 2013).  365 

MCS was performed using a confidence interval of 95% and 1000 iterations using the 366 

SimaPro software. It was done using a single score method. The mean value of carbon footprint 367 

of the overall scheme has been estimated to be 1,300 tonnes of CO2 eq per GL of water 368 

production (Figure 2). The uncertainty analysis through MCS simulation proves the validity of 369 

LCA results. This is shown as the standard deviation is only 5.4% of the mean value, meaning 370 

that the data is of good quality (Goedkoop et al. 2013). This value is also known as the 371 

coefficient of variation (CV).  372 

 373 

5.2 Breakdown of Western Australia’s groundwater recycling scheme’s GHG emissions 374 

 Figure 3 shows the distribution of GHGs over the overall groundwater recycling scheme in 375 

terms of 1 GL of water produced. The groundwater replenishment section produces the greatest 376 

amount of greenhouse gases (i.e. 1,027 tonnes CO2 eq/GL, 79%). This is mainly due to the 377 

large amount of energy which is required for the RO pumps in order to get the water pressure 378 

up high enough for the RO membranes to operate as required.  379 

Other sections of the scheme keep their power usage low via the use of novel ideas such as 380 

using gravity to reduce pumping costs and not requiring high pressures to operate [Hamilton 381 
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S, Water Corporation, Perth, personal communication, March 31, 2016]. The wastewater 382 

treatment plant is an example of this as they only require 2,189 kWh electricity/GL on site due 383 

to gravity pumping and heating via methane from digestion.  384 

At the groundwater treatment plant (GWTP) the power usage is higher than the WWTP due 385 

to two main reasons. These are that they must operate pumps to draw the water from the 386 

underground aquifers and because of the added available MIEX® treatment  option . The 387 

original plant was designed to use mainly gravity to flow the water from one end of the plant 388 

to the other, however, the added MIEX® treatment section requires pumps to move the water 389 

throughout the GWTP (Water Corporation 2016c).  390 

This breakdown of emissions compares favourably to the data presented by Godskesen in 391 

‘Life cycle assessment of three water systems in Copenhagen – a management tool for the 392 

future’ (Godskeseen et al. 2011). The research conducted found that for comparable 393 

groundwater replenishment and groundwater extraction plants the carbon footprint associated 394 

with groundwater extraction was around 5.2 times lower than that of groundwater 395 

replenishment. 396 

Figure 4 shows the breakdown of these emissions in terms of key inputs. Electricity 397 

accounts for the majority (83%) of the greenhouse gas emissions from the parts of the scheme. 398 

As can be demonstrated in Figure 4, the emissions associated with transport account for only 399 

0.5% of the total greenhouse gas emissions. This is because the majority of the transport occurs 400 

on a local basis. The final section being chemicals and waste accounts for 16.5 % of the overall 401 

emissions. This can also be regarded as a significant source of emissions for the project. 402 

 403 

5.3 GHG Mitigation potential 404 
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The major reduction potential for GHG emissions in the WA groundwater recycling scheme 405 

life cycle revolve around the production and usage of power for plant operation. As most of 406 

the scheme already relies on gravity for water transfer between sections of the plants, there is 407 

no real way to reduce energy consumption via changes to the pumping within the plants. 408 

However, through the use of lower pressure differential RO membranes the pumping energy 409 

within the groundwater replenishment plant could possibly be reduced, however, has not been 410 

considered in this research. Secondly, energy efficiency improvement could be another option 411 

to reduce the combustion of fossil fuels for electricity generation, but most of Water 412 

Corporation’s energy efficiency improvements have already resulted from incremental changes 413 

to asset designs, maintenance and operating practices, as well as staff awareness of energy use 414 

after the implementation of energy efficiency program in 2008. Third mitigation would be to 415 

consider the use of more renewable energy within the plant.  416 

Renewable energy was chosen as power generation was identified as a hotspot, and 417 

because renewable energy has currently being considered for use within the Water Corporation 418 

at their Southern Seawater Desalination Plant (SSDP) as all of its energy needs are met by the 419 

10 Megawatt Greenough River solar farm and 55 Megawatt Mumbida wind farm (Water 420 

Corporation  2016e). It was found that there is a reasonably direct relationship between the 421 

amount of renewable energy used and the reduction in carbon dioxide equivalent emissions. 422 

Should a similar initiative be introduced to the groundwater recycling scheme, there would be 423 

a significant reduction in emissions.  424 

Small portion of renewable energy already exist within the Western Australian grid 425 

system. In the current WA power mix wind accounts for 4.5%, solar accounts for 0.04% and 426 

biomass accounts for 0.1% of energy production (Grant 2015). However there is still a huge 427 

potential to generate 37% of Western Australia’s electricity from renewable energy sources by 428 
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2030 (Clean Energy Council 2011). About 43% and 39% of this projected renewable energy 429 

supply will come from wind and solar respectively.  430 

The location of GWRT does not allow wind or solar to meet 100% of electricity demand. 431 

This is due to the proximity to a residential area meaning wind alone would be inappropriate 432 

to meet the electricity demand, due to noise pollution and landscape changes and the lack of 433 

space meaning there is an inadequate amount of land to install solar panels for electricity 434 

generation. Due to these reasons, both wind and solar together are to be considered for use as 435 

a mitigation strategy for replacing at least some portion of carbon intensive grid electricity.  436 

Considering these social and resource constraints and as no renewable energy plant has 437 

been designed for these particular locations in Beenyup and Wanneroo, a scenario analysis has 438 

been considered for grid and renewable energy mix for wind and solar for providing electricity 439 

for GWRT and it will help the Corporation in the decision making process. For each grid and 440 

renewable mix, different mixes of solar and wind have been considered further for finding the 441 

less carbon intensive energy mix under locally available renewable resources and socio-442 

economic constraints.  443 

The maximum GHG emissions from the generation of electricity from wind turbines and 444 

PV are 9.7 and 217 tons CO2 -eq per GWh energy generated, respectively (Lund and Biswas 445 

2008). These emission factors have been considered when estimating GHG emissions from 446 

GWRT using renewable energy as a partial replacement of grid electricity. Figure 5 shows that 447 

GHG mitigation from electricity use at GWRT can be ranged from 21% (i.e. 1,080 – 858 = 222 448 

tonne CO2 eq) for replacing 25% grid electricity with renewable electricity (i.e. 75% solar and 449 

25% wind) to 93% (i.e. 1,080 – 73 = 1007 tonne of CO2 eq.)  for replacing 100% grid electricity 450 

with that produced from 25% solar and 75% wind.  451 
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This research correlates strongly with the life cycle assessment of a municipal wastewater 452 

treatment plant in Suzhou, China. The researchers found that by increasing the reliance of a 453 

wastewater plant on renewable energy technologies, a seven-fold decrease in the global 454 

warming impact was achieved (Li et al. 2013).  455 

The key driving force to make it happen would be Western Australia’s Low Emissions 456 

Energy Development (LEED) Fund program that assists in the promotion of renewable energy 457 

technologies. LEED has already invested more than $30million dollars over four years into 458 

clean and renewable energy technologies (Government of WA YEAR). In addition, there are a 459 

number of renewable energy incentive programs at the national level, known as the expanded 460 

national RET scheme, which will continue until 2030, driving renewable energy investment. 461 

These may be some of the key reasons that the share of renewable energy sources in the energy 462 

mix increased from 5% in 2007 to 9% in 2013 in WA (IMO 2014). It can thus be concluded 463 

that there is a favourable situation to harness the potential of renewable energy resources to 464 

address WAs energy water nexus in an environmentally friendly manner to secure long term 465 

water supply. This current research equally applies to other water scarce region around the 466 

globe with high renewable energy potential to operate groundwater replenishment systems 467 

using renewable energy technologies to deliver long term water supply with a minimum level 468 

of environmental impacts.  469 

 470 

 471 

5.4 Comparison of Groundwater recycling scheme with existing SSDP  472 

The groundwater recycling scheme compares favourably to desalination for several reasons. 473 

Whilst the main reason is because of reduced cost, there are also several major environmental 474 

considerations that need to be considered. Using a similar plant as described in LCA of SSDP 475 
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in WA, a desalination plant would produce 3,890 tonnes CO2 equivalent per GL with no 476 

renewable energy considered and 367 tonnes CO2 when renewable energy is considered 477 

(Biswas 2009). Interestingly, this desalination plant is now using all of its energy from 478 

renewable sources. In comparison the groundwater recycle plant produces 1,300 tonnes CO2 479 

equ as grid electricity is the main source of power. However, this water supply option can only 480 

be environmentally competitive with SSDP if  100% of the electricity used is generated from 481 

renewable energy for energy mixes of wind and solar between (50%W+50%S) and 482 

(75%W+25%S) (Table 4).  The GHG emissions can be reduced to 353 tonnes of CO2 and 293 483 

tonnes of CO2 per GL of water produced for energy mixes of 50%W+50%S and 75%W+25%S, 484 

respectively. Also Figure 5 shows the level of GHG emissions that can be mitigated due to 485 

other energy mixes. These results would help Perth’s full scale groundwater replenishment 486 

plant which is due to operational in 2017 to consider the optimum energy mix for delivering 487 

water with the lowest possible amount of GHG emissions. 488 

It was also found in the case of life cycle assessment of three water systems in Copenhagen 489 

that there is a significant difference in the environmental impacts of groundwater recharge (1.2 490 

E-04 personal equivalent/m3) and Reverse Osmosis (2.15 E-04 personal equivalent/m3), when 491 

wind turbines and solar cells have been considered to provide energy for treatment and 492 

pumping (Godskeseen et al. 2011). The research found that for two comparable systems that 493 

reverse osmosis has the strongest environmental impact. This is a similar result to the one that 494 

has been found by this research. 495 

 496 

5.5 Effect of V-Sep on the emissions from the groundwater scheme  497 

V-Sep is a technology that is being used to reduce waste from the MIEX® cycle. This is done 498 

by using a vibrating membrane to separate the MIEX® waste into a concentrated waste stream 499 



23 
 

and a product stream which can be reused in the process. Figure 6 gives a visual depiction of 500 

the plant. Despite currently being in a testing and research phase, the project is showing very 501 

promising results. [Hamilton S, Water Corporation, Perth, personal communication, March 31, 502 

2016] 503 

V-Sep presents an opportunity to reduce the GHG emissions as it allows for a reduction in 504 

the amount of salt, waste, and waste transport from the MIEX® system. Table 5 shows how V-505 

Sep compares to the standard method in terms of CO2 Equivalent generation. The data was 506 

provided by a V-Sep weekly report. [Hamilton S, Water Corporation, personal communication, 507 

May 10, 2016]. From Table 5 we can see a reduction of 4.03 tonne of CO2 equivalent per GL 508 

from the process overall. This is a significant loss of CO2 saved by the V-Sep process and 509 

represents a very good investment for the Water Corporation. 510 

Vibrational separation (V-Sep) was also studied in relation to reducing the CO2 equ of the 511 

plant. V-Sep is the process of concentrating waste from the MIEX® process by removing some 512 

of the regeneration chemicals that would otherwise be sent to waste. It is completed by using a 513 

vibrating membrane. Using V-Sep allows for the amount of CO2 eq to be lowered via two 514 

methods; lowering transport emissions due to less waste being trucked for ocean disposal and 515 

lowering the requirement of chemicals. It was found that the trial V-Sep plant at Wanneroo, 516 

results in a 4.03 tonne of CO2 eq saving per GL of water produced by the plant. 517 

 518 

6 Conclusion 519 

 520 

This analysis found that 1,300 tonne of CO2 equivalent would be produced from the 521 

groundwater recycling trial scheme as it has been proposed for a volume of 1 GL of water. It 522 

was found that the majority (83.1%) of the greenhouse gases were emitted from the generation 523 
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of the electrical power being used within the plants. From this, it can be seen that the amount 524 

of greenhouse gases that are emitted could be easily changed through the use of renewable 525 

energy instead of the current Western Australia power mixture. Western Australia has adequate 526 

renewable energy resource potential and government level institutional supports to promote 527 

renewable energy to address its energy water nexus in an environmentally friendly manner to 528 

ensure long term guaranteed water supply. 529 

The groundwater recycling trial scheme produced 72% more GHG emissions than the 530 

existing seawater desalination plant due to fact that the former used 100% grid electricity and 531 

latter is powered by 100% renewable energy. The groundwater recycling trial scheme can only 532 

be environmentally competitive with the desalination power supply option if 100% of the 533 

electricity used is generated from renewable energy with mixes between 50% wind and 50% 534 

solar and 75% wind and 25% solar. The similar ground water recycling scenario can be 535 

considered in other states of Australia such as Tasmania and South Australia where there exists 536 

water scarcity but major portion of electricity is generated from renewable energy sources (i.e. 537 

93% RE in Tasmania and 36% RE in South Australia) (Climate Council of Australia Ltd 2014). 538 

 Apart from renewable energy, continued use of the V-Sep system or similar waste 539 

treatment systems could lower the amount of chemicals required and waste removed from the 540 

plant.  541 

This current research concludes that the water scarce region around the globe with high 542 

renewable energy potential can operate energy intensive groundwater recycling scheme using 543 

renewable energy technologies to deliver long term water supply with a minimum level of 544 

global warming impacts. 545 

 546 

 547 
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Table 1 Life cycle inventory of 1GL of water production. 

Input / Output Data Source from Water 

Corporation, Perth documents 

Value/unit 

WWTP   

Power Plant Performance Spreadsheet 2189 kilowatt hour (kWh)/GL 

produced water 

Chlorine Plant Performance Spreadsheet 1250 kg/GL produced water 

Sodium hypochlorite 

(NaClO) 

Plant Performance Spreadsheet 3640 L/GL produced water (4040 

kg/GL produced water) 

Sodium Hydroxide 
(NaOH) 

Plant Performance Spreadsheet 634.9 L/GL produced water (50%)(965 
kg/GL produced water) 

Dissolved Air Flotation 

Thickener (DAFT) 

Plant Performance Spreadsheet 674.2 kg/GL produced water 

Centrifuge Polyelectrolyte 

(STF) 

Plant Performance Spreadsheet 10555 L/GL produced water (7916.25 

kg/GL produced water) 

GWRT   

Power GWRT Power Total 1019669 kWh/GL produced water 

Sulfuric acid (H2SO4) Process Control Table 50640 L/GL produced water (91152 

kg/GL produced water) 

NaClO Process Control Table 65832 L/GL produced water (78998 

kg/GL produced water) 

Ammonium (NH4) Process Control Table 10159 L/GL produced water (7416 
kg/GL produced water) 

GWTP   

Power Monthly Operating Spreadsheet 219205 kWh/GL produced water 

MIEX® Resin Monthly Operating Spreadsheet 1481 L/GL produced water 

Alum Monthly Operating Spreadsheet 77438 L/GL produced water (87890 

kg/GL produced water) 

Polyelectrolyte (LT-25) Polyflow Spreadsheet 171371 L/GL produced water 

HCl Monthly Operating Spreadsheet 1563 L/GL produced water (1814 
kg/GL produced water) 

NaOH Monthly Operating Spreadsheet 785 L/GL produced water 

(50%)(1193kg/GL produced water) 

Chlorine Chlorine Spreadsheets 5020 kg/GL produced water 

FSA (Flourosilicic Acid) SCADA Screenshot 3649 kg/GL produced water 

Salt Salt Usage Spreadsheet 23708 kg/GL produced water 

Note: Beenyup Wastewater Treatment Plant (WWTP) would need to operate for 13.19 days, the groundwater 

replenishment trial plant (GWRT) for 211days and the Wanneroo groundwater treatment plant (GWTP) for 9.24 

days to produce 1GL (Giga Litres) of water at the outlet pipe into the Wanneroo reservoir. Data for most of the 

plant was sourced from the Water Corporation. [Hamilton S, Water Corporation, Perth, personal communication 

, April 29, 2016] 

 

 

 

  

  
 

  



Table 2 Transportation information of inputs. 

Chemical Amount 
(tonne) 

Km Travelled (Source) CO2 equivalent 

WWTP    

Chlorine 1.25 3944 (IXOM (Botany)) 0.5 tonne CO2 eq 
Sodium hypochlorite (NaClO) 4.04 63 (Coogee Chemicals) 0.027 tonne CO2 eq 
Sodium hydroxide (NaOH) 0.965 63 (Coogee Chemicals) 0.0065 tonne CO2 eq 
DAFT 0.674 37 (BASF) 0.0027 tonne CO2 eq 
Cent Poly 7.92 37 (BASF) 0.03 tonne CO2 eq 

GWRP    
Sulfuric acid (H2SO4) 91.15 63 (Coogee Chemicals) 0.61 tonne CO2 eq 

NaClO 78.99 63 (Coogee Chemicals) 0.53 tonne CO2 eq 
Ammonium (NH4) 7.42 10 (Environex) 0.0079 tonne CO2 eq 

GWTP    

MIEX
®

 Resin 1.78 3944 (IXOM (Botany)) 0.75 tonne CO2 eq 

Alum 87.89 76 (Coogee Chemicals) 0.71 tonne CO2 eq 

Polyelectrolyte (LT-25) 128.53 36 (BASF) 0.50 tonne CO2 eq 
Hydrochloric acid (HCl) 1.81 76 (Coogee Chemicals) 0.02 tonne CO2 eq 
NaOH 1.19 76 (Coogee Chemicals) 0.01 tonne CO2 eq 
Chlorine 2.17 3944 (IXOM (Botany)) 0.92 tonne CO2 eq 
FSA (Flourosilicic Acid) 3.65 77 (CSBP Kwinana) 0.03 tonne CO2 eq 
Salt 23.71 50 (WA Salt Supply) 0.13 tonne CO2 eq 

Note: It was assumed that all transport takes place by 28t fleet average truck. This truck has an emission of 

0.107 kg CO2 equivalent (eq) per tkm (or tonne*km travelled) found using the AusLCI database on SimaPro.  

 

  



Table 3 Emission factors. 

Input / Output Value CO2 

Equivalent 

Library Used 

WWTP    

Power 2189 kWh 1.9 tonne AusLCI 

Chlorine 1250 kg 2.42 tonne AusLCI 

NaClO 3640 L (4040 kg) 5.83 tonne AusLCI 

NaOH 634.9 L (50%)(965 kg) 1.77 tonne AusLCI 

GWRP    

Power 1019669 kWh 887 tonne AusLCI 

H2SO4 50640 L (91152 kg) 94.5 tonne AusLCI 
NaClO 65832 L (78998 kg) 114 tonne AusLCI 

NH4 10159 L (7416 kg) 15.4 tonne AusLCI 

GWTP    

Power 219205 kWh 191 tonne AusLCI 

Alum 77438 L (87890 kg) 52.3 tonne AusLCI 

HCl 1563 L (1814 kg) 2.62 tonne AusLCI 

NaOH 785 L (50%)(1193kg) 2.18 tonne AusLCI 

Chlorine 5020 kg 9.73 tonne AusLCI 

FSA (Flourosilicic 

Acid) 

3649 kg 0.32 tonne AusLCI 

Salt 23708 kg 2.09 tonne ( Lake Deborah 2016) 

  
 

  



 

 

 

Table 4 Comparison of Emissions Distribution (tonnes CO2 eq/GL) 

 Groundwater Scheme Desalination 

 GE 100% 

RE(50%S+50

% W) 

100% RE 

(25%S +75%W) 

GE SSDP’s 

current mix 

100% RE 

Power 1080 (83.0%) 133 (79%) 73 (25%) 3,583(92.1%) 59 (16%) 

Transport 7 (0.5%) 7(1%) 7 (3%) 16 (0.4%) 16 (4%) 
Chemicals and Waste 213 (16.5%) 213 (20%) 213 (72%) 292 (7.5%) 292 (80%) 

Total 1,300 353 293 3.891 367 

GE= Grid Electricity; RE = Renewable Energy; S= Solar; W= Wind  



Table 5 Effect of V-Sep (per week) 

Input / Output CO2 equivalent Effect 

Salt (20.12 tonne produced) - 1.77 tonne 

Waste Trucked (5 less) - 1.3 tonne 
Chemicals Cannot be determined due to proprietary nature 

Power Usage (15.4 kWh) + 0.0134 tonne 

Total saving -3.06 tonne per week 

 - 4.03 tonne per GL 
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Fig. 1 Overall Water Model (developed from tour and Water Corporation videos (Water Corporation 2016b and 2016c; Godskeseen et al. 2011 ). 



 

 

 

 

 

 

Fig. 2 Monte Carlo Simulation results.



 

Fig. 3 Carbon footprint breakdown in terms of inputs for three systems. 
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Fig. 4 Share of CO2 eq inputs of the whole system. 

 

 

 



 

 

Fig. 5 Carbon footprint implications of the use of solar and wind powered electricity 
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Fig. 6 V-Sep flow diagram (Leong et al. 2016) 

 

 


