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ABSTRACT 
 
Numerical modeling of the granular pavement materials is one of the modeling 
approaches which can be used to predict material response to specific loading 
conditions. This modeling is dependent on many factors and variables and 
includes assumptions for material behavior, loading conditions, geomechanical 
properties and geometrical parameters. In this study in-depth research has been 
undertaken to determine the sensitivity of geometrical parameters on pavement 
numerical modeling. 

Geometrical parameters are all those parameters that can be used to define a 
numerical model including layer thickness, meshing system and nature of the 
model (2D or 3D). In this study a layered granular pavement has been modeled 
through ABAQUS which is a general finite element program. The results have 
been compared with layered elastic theory by CIRCLY and KENLAYER. 
 This study will deal with three kinds of modeling being 2D axisymmetric, 2D 
plain strain and a complete 3D model.  In each of these three models, the influence 
of layer thickness, elements type and mesh density has been investigated. The 
results have been presented, compared and discussed in order to identify the most 
influential parameters.  
 
INTRODUCTION 
 

In the pavement engineering field, there is a growing trend to use 
mechanistic design procedure. These methods rely on the calculation of the 
strain and stress in the layers of pavement. To do this, the most common 
approach is the numerical approach through which the layered pavement system 
is modeled and solved by one of the familiar continuum mechanic assumptions 
(linear elastic, nonlinear elastic, elastoplastic, etc.). 

There are two main categories in the numerical modeling; that using an 
analytical solution provided from theory of elasticity or implementation of finite 
element technique to solve the general equilibrium of the layered system.    

While the first approach has traditionally been used as the basis for the 
mechanistic design, finite element modeling will be increasingly used by 
pavement designer. The apparent advantage of the finite element models is its 
capabilities to model various types of mechanical behavior, loading conditions 
and geometrical parameters. However, compared to layered elastic solutions 
finite element methods are more complicated and time consuming.   
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Finite element modeling provides a more comprehensive understanding 
of the pavement response to stress distribution, strain and displacement. 
Therefore, comparing these two methodologies and the sensitivity to 
geometrical parameters is of considerable value.   

 
NUMERICAL MODELING OF THE LAYERED 
PAVEMENT MATERIALS 
 

Using linear elastic theory, an analytical response for the layered semi-
infinite half-space can be calculated. The assumptions are that stress-strain 
behavior is linear elastic and the pavement domain has no limit in horizontal 
direction. In vertical direction there is a horizontal stress-free surface at top of 
the medium while the supporting layer (subgrade) is extended to infinite depth. 

D.S Gedafa (2006) used KENLAYER and HDM-4 to analyze flexible 
pavement performance. Hadi and Symons (1996) have compared results of 
CIRCLY program with finite element model constructed in MSC/NASTRAN 
and STRAND. Tutumluer (2003) compared the results of pavement modeling 
through finite element program GT-PAVE and CIRCLY for a cross anisotropic 
model. 

By applying partial differential equations of the equilibrium condition, 
finite-element method (FEM) is a numerical approach that will approximate the 
solution of an engineering structure under different boundary conditions.  

While there are specific advantages, special consideration is required in the 
field of the numerical modeling of the layered pavement system.  There are 
many aspects that need to be verified before the output results can be considered 
reliable. One of these aspects is geometrical structure of the model. It has been 
recognized that effect of geometrical structure on the model output cannot be 
ignored.(Cho 1996).  
 Cho et. Al (1996) investigated the effect of various parameters including; 
element size, aspect ratio, and type of FEM formulation. These formulations 
(which are used as the basis of comparison in the current study) are 2-D plain 
strain, 2-D axisymmetric and a full three dimensional formulation. The FEM 
was constructed in the commercial software package, ABAQUS while the 
layered elastic model was constructed in the BISAR. It was concluded that the 
3-D and axisymmetric FEM models provide closest agreement for the analysis 
of traffic loading. 
 Zaghloul and White (1993) have used ABAQUS to model the three 
dimensional behavior of a pavement layered system under dynamic loading.  
Mallela and George (1994), Uddin and Pan (1994) Mallela and George (1994) 
and Uddin and Pan (1994) used the finite element computer package ABAQUS 
with a three dimensional model in their studies. 
 Myers et. al (Myers, Roque et al. 2001) studied FEM models in both 
axisymmetric and two dimensional analysis. They acknowledged that 3-D 
model is more accurate but it is also more complicated and takes more computer 
time. They concluded that a 2-D analysis can be an acceptable approximation 
for 3-D analysis, however, the discrepancies are dependent of the characteristics 
of the pavements structure. 



Kim and Tutumluer ((2006), (2007) and (2009))  used the general purpose 
finite element computer program ABAQUS in their study on modeling the 
nonlinear behavior of stress-dependent pavement foundation (subgrade). They 
used both 2-D axisymmetric and three dimensional modeling in their study. 

Holanda (Holanda, Parente Junior et al. 2006) implemented a new 
technique using Objective-Oriented Programing. They used this technique to 
model both axisymmetric and three dimensional models. The results are 
evaluated against existing computational and analytical solutions.   

Bodhinayake (2008) has used ABAQUS to model a full three dimensional 
analysis. Nonlinearity in subgrade soil has been studied while other pavement 
layer has been modeled as a linear elastic material.  
 
REVIEW OF THE SOFTWARES 
 
 Two well-accepted pavement design programs, KENLAYER and 
CIRCLY, calculate pavement system responses (stress, strain, deformation, etc.) 
based on this elastic theory. 

KENLAYER is a generally accepted computer program (Huang (1993) and 
(2004)) program which can model pavement layers as linear elastic, nonlinear 
elastic or Mohr-Coulomb elastoplastic materials. The main core of KENLAYER 
is the solution for an elastic multilayer system under a circular loaded area. 

CIRCLY (Wardle (1977)) is a computer program for pavement material 
analysis. It can model materials either isotropic or anisotropic. The load is 
considered as the tyre pressure uniformly distributed over a circular area.  The 
analysis is assumed to be under static condition and superposition principle is 
valid.  

Released in 1978, ABAQUS is an engineering simulation programs, based 
on the finite element method that can solve problems ranging from linear 
analyses to the nonlinear simulations. It is available to model a range of 
geometrical forms. ABAQUS can model the mechanical behavior of 
geotechnical materials such as soils and rock. (ABAQUS (Hibbit 2010)) 
 
CURRENT STUDY 
 

In this study the effect of geometrical parameters on the pavement 
mechanical response has been investigated. Three programs (ABAQUS, 
KENLAYER and CIRCLY) has been manipulated to simulate pavement layers. 
The FEM model has been constructed in three dimensional, axisymmetric two 
dimensional and plain strains formulation. Mesh density and effect of element 
type on the analysis has been studied. The effect of variation of asphalt layer 
thickness and base layer thickness has also been analysed. The result are 
presented and concluded.  

 
NUMERICAL MODELING 
 

Duncan et al. (1968) first used the finite element approach in flexible 
pavements analysis. Huang (1969) calculated stresses and displacements in 
nonlinear soil using finite element modeling. Since then there have been many 



authors who have employed numerical modeling to calculate induced damage in 
pavement layers including the asphalt layer, base and subgrade. 
 Modeling of flexible pavement is undertaken by assuming specific material 
behavior and simplification of the actual geometry. In this paper the effect of the 
geometrical assumption is considered.  
 
GEOMETRICAL FORMULATION 
 
 In this study three geometrical formulations has been modeled; three 
dimensional geometry, 2-D plane strain and 2-D axisymmetric formulation. 

In three-dimensional elastic analysis the stress and strain are related as 
shown in Equation 1.(Hai-Sui Yu (2006)): 
௫௫ߝ  = ܧ1 ௫௫ߪൣ − ௬௬ߪ൫ߥ +  ௭௭൯൧ߪ
 

 

௬௬ߝ = ܧ1 ௬௬ߪൣ − ௫௫ߪሺߥ +  ௭௭ሻ൧ߪ
 

Equation (1) 

௭௭ߝ = ܧ1 ௭௭ߪൣ − ௫௫ߪ൫ߥ +   ௬௬൯൧ߪ

 
 Where: 
  σ is the normal stress along the axes.  
  ε is  the normal strain along the axes. 
  E is the elastic modulus of the materials. 
  ν is the Poisson ratio.  
  
 Three dimensional modeling is considered to be the most accurate 
representation of the true condition. In the pavement modeling, however, there 
is a restriction of boundary condition in three dimensional modeling. In reality 
the pavement is effectively infinite in at least two dimensions and large in the 
third being the width of the pavement, but in the 3-D model, only part of the 
whole continuous medium can be selected for simulation purpose. This selected 
part is then constrained with boundary conditions (such as a fixed or roller 
boundary condition). The three dimensional model also needs a considerably 
larger time for computation. 
 One of the common simplifications in the field of geomechanical modeling 
is the plane strain assumption. According to the plane strain assumption one of 
the strain component (say ߝ௭௭) is zero and this assumption can significantly 
reduce the computation effort. The plane strain represents a case in which one of 
the modeling dimensions is extremely longer than the other two. This condition 
is clearly applicable to pavement modeling.  
 However, the main limitation of this 2-D modeling is that pressure load of 
tyres will be extended to infinity which leads to severe loading conditions. 
Therefore while the actual loading area should be an  elliptical shape, the 
modeled loading in plane strain is a line load  (Cho, McCullough et al. 1996). 
Equation 2 illustrates the stress-strain relationship in assumed plane strain 



condition (Hai-Sui Yu (2006)): 
௫௫ߪ  = ሺ1 − ሺ1ܧሻߥ + ሻሺ1ߥ − ଶሻߥ ቀߝ௫௫ + 1ߥ − ߥ  ௬௬ቁߝ

 
 

௬௬ߪ = ሺ1 − ሺ1ܧሻߥ + ሻሺ1ߥ − ଶሻߥ ቀߝ௬௬ + 1ߥ − ߥ  ௫௫ቁߝ

 
Equation (2) 

௭௭ߪ = ሺ1ܧ + ሻߥ  ௫௬ߝ

 
 

Axisymmetric formulation is a useful simplification of 3-D condition. In 
this case the strain-stress relation is restated in the cylindrical coordination. 
Axisymmetric is a very interesting approach to model a two dimensional model 
which represents a section of the three dimensional model as given in Equation 
3.  ε୰ = 1E ሺσ୰ − νσ୸ሻ 
 Equation (3) ε୸ = 1E ሺσ୸ − νσ୰ሻ 
 
 Where  σ୰ is the radial stress.  σ୸ is the vertical stress.  ε୰ is the radial strain. ε୸ is the vertical strain. 
  E is the elastic modulus of the materials. 
  ν is the Poisson ratio.  

 
The computational intensiveness is similar to the 2-D plane strain 

formulations. The main limitation is that the load can only be modeled as a 
circular area, and dual tyres or multiple axles is impossible in this formulation. 
The interface shear is also neglected and cracks and shoulder conditions are not 
considered (Cho, McCullough et al. 1996). 
  
CHARACTERISTICS OF THE MODEL 
 

The sample section of layered pavement with same materials properties and 
loading characteristics is modeled in CIRCLY, KENLAYER and ABAQUS. 
Figure 1 illustrates geometrical dimension of the modeled pavement.  

The material properties are listed in Table 1. All layers are assumed to 
behave linear elastically under a 0.75 MPa pressure loading, which is applied 
over a circular area of 90-mm radius. This is the normal representation of the 
tyre pressure in AUSTROADS (AUSTROADS (2004)).  

Figure 1 illustrate the geometry of the first constructed model in 
KENLAYER and CIRCLY. To investigate the effects of geometrical parameters 
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pavement design. These responses are surface deflection in center of loading, 
horizontal strain at the bottom of asphalt layer and vertical strain and stress at 
the top of subgrade layer. The values of these four responses for each of the 
models have been presented in Table 2. The plane strain model resulted in 
values considered extreme and beyond possible. For example when the general 
surface deflection resulted from the other model was between 0.22 to 0.25 mm, 
the value calculated by plane strain is 3.228 mm which almost 13 times higher 
than 0.25 mm. This larger value is attributed to the effect of the loading 
condition which is a strip of distributed pressure instead of a circular area as is 
the case in the 3-D, axisymmetric and analytical solution. Therefore it can be 
said that usage of the plane strain assumption will lead to an overestimation of 
pavement damage.  

The remaining models are in general agreement, however, results of 3-D 
model with 8-noded elements shows higher discrepancies. The error is 
especially large for the stress calculation in the subgrade layer (12200.4 pa 
regarding to 11110 pa calculated from CIRCLY or 11120 pa calculated from 
KENLAYER). This error (which is almost 10%) is due to inner approximation 
of the element (linear interpolation of calculated responses in nodes). Therefore 
a 4-noded brick cannot be appropriate for this type of pavement modeling.  
 
COMPARISON OF THE EFFECTS OF LAYER THICKNESS 
 

The second part of the analysis is to investigate the effect of variation in 
layer thicknesses and the influence it has between different models. 

 
Table 3. Effect of layer thickness on the numerical approximation 

Model 

Vertical 
Deflection 

(Top of 
AC) 

Horizontal 
Strain 

(Bottom of AC) 

Vertical 
Strain 
(Top of 

SG) 

Vertical 
Stress 

(Top of SG) 

CIRCLY  
 (10-cm AC) 0.2327 mm -2.37E-04 -9.46E-05 -11120 Pa 

KENLAYER 
 (10-cm  AC) 0. 2224 mm -2.69E-04 -8.94E-05 -10583 Pa 

ABAQUS 
(10-cm AC) 

 
0. 2240 mm -2.61E-04 -8.91E-05 -10555 Pa 

CIRCLY  
(20-cm AC) 0. 1737 mm -9.45E-05 -5.46E-05 -6462 Pa 

KENLAYER 
(20-cm AC) 0. 1595 mm -1.01E-04 -5.47E-05 - 6451 Pa 

ABAQUS 
(20-cm  AC) 0. 1653mm -1.10E-04 -5.40E-05 -6426 Pa 

CIRCLY 
(60-cm Base) 

0. 2144 mm -2.37E-04 -6.56E-05 -7696 Pa 

KENLAYER 
(60-cm Base) 0. 2053 mm -2.31E-04 -6.57E-05 -7686 Pa 

ABAQUS 0. 2059 mm -2.60E-04 -6.48E-05 -7645 Pa 



(60-cm Base) 
 
Here, three different pavement structures have been studied. The first 

structure is the same as figure 1 with a 10 cm asphalt layer and a 40 cm base 
layer. The second structure is a 20 cm asphalt layer and a 40 cm of base layer. 
The third has a 10 cm asphalt layer and a 60 cm base layer. Finite element 
modeling is in axisymmetric 8-noded element with normal mesh density.  

Table 3 represents the results of four critical responses for three different 
pavement structures. There is an acceptable agreement among the results, 
however, the calculated horizontal strain at the bottom of asphalt layer from the 
ABAQUS has a higher value than KENLAYER and CIRCLY but the difference 
is less than 10%. 

It can be seen that the thickness of the layer does not significantly influence 
the outcomes and there is general agreements among the numerical models.  

 
CONCLUSION 

 
An in-depth investigation of the effects of geometrical parameters and their 

influence on the results of numerical modeling has been undertaken. FE 
modeling has analysed in 2-D plane strain, 2-D axisymmetric, 3-D and 
analytical elastic solution. The influence of mesh density and elements’ type has 
been compared and finally a separate analysis has been done to consider the 
effect of modification of layers thickness over the consistency of the results of 
the numerical models. 

According to the analyses the following outcome can be concluded: 
1) The plane strain model results in extremely severe response by the 

pavement system in comparison to the results of the analytical solution, 
axisymmetric solution and 3-D model. Therefore, using of this 
simplification should be with extreme caution. 

2) The 8-nodes brick elements lead to a stiffer medium and the results of 
the analysis has a range of 10% approximation. 

3)  The 8-noded axisymmetric elements or 20-noded brick element 
provide close approximation to the currently used linear elastic 
solutions. 

It is worth to mention that all analyses in this study is carried out in the linear 
elastic assumption which is not true representation of the flexible layered 
pavement behavior. A non-linear elastoplastic analysis is required for further 
study. 
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