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Abstract – The Augmented Ordered Binary Decision 
Diagram (OBDD-A) has been shown to be extremely efficient 
for reliability calculations, especially when combined with the 
Boundary Set method of partition representation. The existing 
OBDD-A follows the Boundary Set method closely, requiring 
the calculation of partition numbers large enough to exceed the 
capacity of native storage types in languages such as C++. By 
omitting the use of partition numbers the execution speed of 
the algorithm is increased, while the low memory usage of an 
OBDD-A is maintained. We compare the new OBDD-A to the 
existing version on a number of networks, showing that 
processing time for large networks increases significantly. 
 

Keywords – binary decision diagram, network reliability, K-
terminal reliability, all-terminal reliability, space efficient. 

I.  INTRODUCTION 
ITH increasing reliance on communication networks, 
measuring their reliability is an important aid in 
design and analysis. When communication links 

between network devices fail, critical devices may become 
unable to communicate with each other. The reliability 
(REL) of a communication network has been studied 
extensively [1-9] and measures the probability that the 
network meets the relevant standard of connectivity. This 
standard depends on which nodes must communicate with 
each other. 

A number of different REL metrics exist. The most 
common are two-terminal reliability (2-REL), K-terminal 
reliability (K-REL) and all-terminal reliability (ALL-REL). 
The difference between these metrics is the number of 
devices that are required to be able to communicate with 
each other. In 2-REL, a source device must be able to 
communicate with a target (or sink) device. With K-REL a 
given set of K devices must be able to communicate with 
each other; generally this is assumed to mean that one 
source device can communicate with a set of K-1 others.1 
Finally, ALL-REL requires all devices to be able to 
communicate with each other. It can be seen that 2-REL is a 
special case of K-REL. Similarly, K-REL is a special case of 
ALL-REL. These metrics have been shown to be NP-Hard 
[1, 5]. 

A number of other metrics have been considered, 
although these are less common. For example 1-of-S-REL 
requires that at least one of the source devices out of a group 
S of source devices can communicate with the target device. 
While some work has been done on these [6], this paper 
does not address them directly. The methods discussed in 
[6] apply equally to the OBDD-A introduced in this paper. 

                                                           
1 When communication links are undirected this is equivalent to the 

general definition of K-REL. 

The literature contains two main approaches to 
computing REL; those that generate network paths or cuts 
and then manipulate them, and those that manipulate the 
network directly. For general networks, algorithms that 
apply factoring techniques to the network are more efficient 
than those that manipulate paths and/or cuts [3]. However 
even these systems can have difficulty analyzing large 
networks.  

The Ordered Binary Decision Diagram (OBDD) [10] has 
been successfully used to compute 2-REL[3], K-REL[1-3, 
11] and ALL-REL[1, 4] directly from the network. This 
approach reduces redundant computations by detecting and 
merging equivalent (isomorphic) diagram nodes, and thus 
reduces the number of nodes generated. 

For OBDDs it is important to efficiently represent and 
manipulate network states. Hardy, Lucet and Limnios [1, 4] 
use boundary sets [6] to efficiently represent OBDD states; 
we discuss boundary sets in detail in Section II.C. Even with 
the use of isomorphism and boundary set notation, the 
number of OBDD nodes generated for very large networks 
(e.g., 7×1,000 grid) or networks with a large maximal 
boundary set (e.g., K15, the 15-node fully connected 
network) is extremely large. 

In addition, the 2-step boundary set algorithms [1, 4] first 
generate the OBDD and then traverse it a second time to 
generate REL. This approach requires all diagram nodes to 
be stored. Thus, even for nodes with an efficient 
representation of the network, the amount of memory 
required is extremely large. As reported in [1], the 12×12 
grid requires storing close to 65 million OBDD nodes which 
may require more than 780MB of memory [8]. 

A more memory efficient solution [8] has been proposed, 
utilizing the partition numbering method [1] with an 
Augmented OBDD (OBDD-A). This solution combines the 
efficient partition notation of network states with the 
memory efficiency of the OBDD-A. In particular, for 
networks of varying sizes but identical connectivity 
structure the amount of diagram nodes generated has a 
constant bound. For example, for the 3×1000 grid the 
OBDD-A [8] stores at most 7 nodes at one time out of a 
total of 24,970 nodes generated. 

The disadvantage of using partition numbering is that 
such numbers quickly grow to be larger than can be stored 
in the standard data types of languages such as C++. This 
requires the use of a library such as GNU MP [12] for 
dealing with numbers of arbitrary size and greatly slows the 
processing speed of the program. In addition, the partition 
numbers must be calculated whenever a new partition is 
created, and partitions must be recreated from numbers in 
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order to be processed. This creates unnecessary processing 
overhead. 

In this paper we present an exact algorithm using an 
Augmented OBDD (OBDD-A) which does not use partition 
numbering. The algorithm computes REL metrics for 
networks whose undirected communication links can fail but 
which have perfect devices. We compare this approach to 
the existing OBDD-A algorithm [8] that has been shown to 
perform comparably to the OBDD-based boundary set 
approach [1] in terms of processing time but use far less 
memory. 

 This paper is organized into five sections. We introduce 
the background of the REL metrics and introduce the 
notation used in Section II. The OBDD-A approach is 
discussed in Section III, with and without the use of 
partition numbering. The implementation of these methods 
and comparisons are discussed in Section IV and 
conclusions and the scope of future work in Section V.  

II. BACKGROUND AND NOTATION  

A. Network Model 
We model a communication network using a graph 

G=(V,E), where each vertex in V represents a 
communication device and every edge in E represents a 
communication link between these devices. An edge ej is 
said to be UP (DOWN) if it is functioning (failed). Let pj 
(qj=1-pj) be the operational (failure) probability of ej and 
assume all failures are statistically independent. Assume that 
all vertices are always active and that all edges are 
undirected. 

Let n=|V|, and let vertices V = {v0, v1, …, vn-1} be 
ordered in increasing distance (number of hops) from a 
source vertex, v0, except that the target vertex is labeled vn-1. 
If the network has no distinct source, choose a vertex in K as 
v0. If considering ALL-REL, any vertex can be chosen as v0. 
If no distinct sink exists, vn-1 should be in K for K-REL, and 
can be any vertex for ALL-REL. When two or more vertices 
have the same distance from v0, they are ordered arbitrarily. 

Let (vi,vj) denote an undirected edge between vertices vi 
and vj, with i>j. The sample network in Fig. 1 shows an 
example of the above ordering. 

 
Figure 1: Sample Network 

 
A network state Ω=EΩ of network G=(V,E) is a partition 

of E such that all edges in EΩ⊆E are UP and all other edges 
in E are DOWN. The probability of state Ω is computed as: 

 Pr(Ω)= ∏∏
ΩΩ ∉∈ EeEe

qp
ii

ii . (1) 

Each Ω is associated with a sub-graph GΩ = (VΩ,EΩ) 
where VΩ are the vertices reachable from v0 (or S) via the 
edges in EΩ. Let ΩG be the set of success states for graph G. 
For K-REL, Ω is a successful state if K⊆VΩ and for ALL-
REL, Ω is a successful state if VΩ=V. REL can be calculated 
by summing the probabilities of the success states of the 
network. Since each edge can be UP or DOWN, there are 
2|E| states for network G., and therefore REL cannot be 
solved for large networks through state enumeration. 

In this paper we use the words ‘device’ and 
‘communication link’ to refer to the physical network. We 
use ‘vertex’ and ‘edge’ to refer to the mathematical model 
representing the network. Finally we use ‘node’ and ‘link’ to 
refer to the decision diagram representing the connectivity 
of the network. 

B. Ordered Binary Decision Diagrams  
The OBDD is based on the Shannon decomposition [10]. 

Each level of the OBDD represents the evaluation of one 
variable; for this paper this is edge ek at level k. Each 
diagram node Ni has two children; positive child N2i+2 
representing the case when ek is UP and negative child N2i+1 
when it is DOWN. We say that an edge ex is decided if it is 
known to be either UP or DOWN at the current level k of 
the OBDD; that is if x < k. We say that level k decides edge 
ek. 

 Two diagram nodes Ni and Nj on level k are isomorphic 
if their sub-diagrams are identical. Isomorphic nodes are 
merged before being processed to eliminate redundant 
computation. The ordering of the variables affects the size 
of the OBDD, and finding the optimal variable ordering is 
itself an NP-Complete problem [13]. A breadth-first 
ordering is commonly used. We use the ordering of vertices 
as described in Section A of this chapter, and edges 
ex=(vi,vj) are decided in increasing order of i and then j. This 
is equivalent to the ordering used by Hardy et al. [1, 4];  

C. Boundary Sets  
In order to calculate REL, an OBDD algorithm must 

record the effect of decided edges on the network state at 
any given level k of the diagram. In order to minimize 
memory usage, this information should be encoded as 
efficiently as possible. One approach is to use boundary sets 
which were introduced in [7]. 

For level k of the diagram, the Boundary Set, Fk⊆V, is 
composed of only those vertices required to encode the 
current network state. For the vertices in the boundary set, 
the algorithm must record the connections (via paths of UP 
edges) between them. If we are computing K-REL with 
K<|V| the algorithm must also record whether each vertex in 
the boundary set is connected to any of the vertices in K. 

Formally, Fk can be defined as Fk = {vx|  vx is an endpoint 
of both ey and ez, with y≤k and z≥k}. The ith element of Fk. is 
written as Fk[i]. The interconnectivity of elements of Fk is 
encoded by partitions of Fk; two vertices are in the same 
partition if and only if they are connected to each other. For 
K-REL, if a partition is connected with one or more of the K 
vertices, then it is marked. We write both boundary sets and 
partitions using only the subscripts of the vertices. 

For example the edges of the graph shown in Fig. 1 are 
ordered (0,1) (0,2) (1,2) (1,3) (1,4). The OBDD-A for this 
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network is shown in Fig. 2, including all partitions and 
boundary sets. For level k=2 of the diagram, the edge being 
decided is (1,2) and hence the boundary set is {1,2}. 

If K={v0,v3} the possible partitions of the boundary set at 
this level are [1 2]*, [1]*[2], [1][2]*. We refer to [1] and [2] 
as the blocks of the partition [1]*[2] and denote the marking 
of the block [1] by an asterisk. Any partition that has no 
marked blocks (e.g. [1][2]) has no connection with vertex 0 
and hence is failed.  

 
Figure 2: OBDD-A of Sample Network 

Partitions are represented by vectors of size |Fk| where the 
ith position in the vector contains the number of the block 
containing Fk[i]. The enumeration of partitions makes use of 
Stirling numbers of the second kind. These are calculated 
using Ai,j= j×Ai-1,j+Ai-1,j-1 for 1≤j≤i, with Ai,1=1 and Ai,j=0 if 
i<j. This ordering is described in [1] and applies to ALL-
REL. Because it does not consider marked partitions, it does 
not suffice for K-REL. 

The algorithms given in [1] describe a pair of methods 
for ALL-REL that convert between the boundary set 
partition representation of the network and a unique 
partition number, and back again. Modified methods that 
can be used for ALL-REL and K-REL (and hence 2-REL), 
are described in [8]. 

D. Augmented Decision Diagrams 
The Augmented Ordered Binary Decision Diagram 

(OBDD-A) is an OBDD that stores network state 
information in each node. For an application such as REL 
only the probability of each state needs to be stored [8] with 
other applications requiring more information. For example, 
for the Expected Hop Count (EHC) the minimum path 
lengths to each active vertex are also stored [6]. The hybrid 
OBDD-A in Fig. 2 is for reliability calculation only. 

Early versions [6, 9] of the OBDD-A stored the state of 
the network using a notation that tracked paths between 
source vertices and the vertices in the boundary set. While 
this notation allows directed networks to be analyzed, it is 

not as quick as a standard OBDD using boundary set 
numbering [1]. For this reason the hybrid OBDD-A [8] was 
created to store partition numbers instead of path 
information. 

The hybrid OBDD-A was shown to be comparable in 
processing speed to the partition number OBDD but to use 
significantly less memory [8]. For the sake of brevity we 
will omit the ‘hybrid’ before each OBDD-A for the rest of 
this paper since we will discuss the hybrid OBDD-A 
exclusively. 

III. THE HYBRID OBDD-A ALGORITHM 

A. Introduction 
 This section details the structure of the OBDD-A and 

how it is used to compute REL. Part B details the structure 
of the OBDD-A node, and hence the diagram itself. Part C 
discussed the different types of OBDD-A nodes and node 
isomorphism. The method for constructing an OBDD-A and 
obtaining REL from it is discussed in Part D, and illustrated 
with an example in Part E. Finally Part F briefly discusses 
the space required by the OBDD-A algorithm. 

B. OBDD-A Node Structure 
An OBDD-A is an OBDD whose nodes contain 

additional information [9]. For each metric, an OBDD-A 
node stores both the state represented by that node and 
information needed to compute the metric. An OBDD-A 
node does not store pointers to child or parent nodes since 
such linkages are never traversed. 

For example an OBDD-A used to compute the Expected 
Hop Count stores information on path length and state 
probability [9] in addition to network state information. For 
REL, the OBDD-A stores only the network state 
information and its probability.  

The state of the network at level k is represented by 
partitions of Fk, with each OBDD-A node representing one 
network state and hence having one unique partitioning of 
Fk. This provides an efficient means of storing the network 
state in the OBDD-A node and also of detecting isomorphic 
OBDD-A nodes; if two OBDD-A nodes have the same 
partition then they are isomorphic. For REL, the OBDD-A 
node Ni on level k of the diagram has the format (parti, Pri). 

The OBDD-A introduced in [8] uses the partition number 
to encode the network state. This means that parti = PNi. The 
OBDD-A introduced in this paper stores the partition 
directly. We refer to new OBDD as OBDD-A2 to avoid 
confusion and use the notation OBDD-A/2 when referring to 
both diagrams simultaneously. For OBDD-A2, parti = (Bi, 
Mi), where Bi is an array that allocates each member of Fk to 
a block of the partition, and Mi is a j-bit binary number that 
has a value of 1 for each of the j blocks that is marked. 

For example, the node representing the network state of 
partition [0]*[1] on level 2 of the diagram in Fig. 2 is stored 
as N1=( PN1=4, 0.1) for OBDD-A and as N1= ( (B1=[0 1], 
M1=[1 0]), 0.1) for OBDD-A2 when computing K-REL. 
When computing ALL-REL partitions are not marked, 
hence N1=( PN1=1, 0.1) for OBDD-A and ( B1=[0 1], 0.1) 
for OBDD-A2. Note that the partition number of partition 
[0]*[1] is 4. 
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When a new node is created, its probability is calculated 
from the probability of the parent node. For node Ni on level 
k, the probability of the child nodes are Pr2i+1=Pri×qk and 
Pr2i+2=Pri×pk for the negative and positive child respectively. 
The negative child represents edge ek being DOWN while 
the positive child represents ek being UP. 

When two OBDD-A/2 nodes are found to be isomorphic, 
they are merged into a single node whose probability is the 
sum of the probabilities of both nodes. The probability of 
the success terminal node is the appropriate REL metric. 

C. OBDD-A Node Type and Isomorphism 
An OBDD-A/2 node is either terminal or non-terminal 

and a terminal node is either successful or failed. For K-REL 
a node is failed if it contains a marked partition that is empty 
and is successful if it has a single marked partition 
containing vn-1. For ALL-REL all nodes are considered 
marked and hence a node is failed if it has an empty 
partition and successful if it contains a single partition 
including vn-1.  

When boundary set notation was introduced [7], 
comparison between partitions was implemented using 
partition numbers. Unique methods exist for translating 
between partitions and partition numbers. Earlier versions of 
the hybrid OBDD-A [8] stored partition numbers instead of 
the partitions themselves. The advantage of this approach is 
that the partition numbers are relatively efficient to store and 
compare. 

The main drawback of using partition is the translation 
between the partitions and partition numbers and back again. 
While node comparison is efficient with this method, the 
translation adds a large overhead. In addition, partition 
numbers grow quickly and thus require more space than the 
standard C++ long integers can store. This means that a 
special library must be used to handle integers of arbitrary 
size. Such a library adds its own processing overhead.  

The disadvantage of storing partitions instead of partition 
numbers is that node comparisons are more complex. Two 
OBDD-A/2 nodes Ni,k = ( parti, Pi ) and Nj,k = ( partj, Pj ) are 
considered equal (isomorphic) if the partitions are equal 
(parti = partj). For OBDD-A2 this requires up to |Fk| 
comparisons between integers and a bitwise comparison of 
two binary numbers instead of the single comparison 
between large numbers required for OBDD-A. 

D. Constructing an OBDD-A 
Fig. 3 shows the OBDD-A/2 algorithm for computing 

REL. The algorithm is initialized with F0={0} and the initial 
node N0 = ([0]*, 1.0) stored in the root node of the BDD and 
on the current queue, QC. Note that for ALL-REL, all 
partitions are considered marked so we do not need to 
explicitly mark any; hence N0 = ([0], 1.0). 

The exact form of N0 depends on whether OBDD-A or 
OBDD-A2 is used. For OBDD-A N0 = (2, 1.0) for K-REL 
and (1, 1.0) for ALL-REL. For OBDD-A2, N0= (([0],[1]), 
1.0) for K-REL and ([0], 1.0) for ALL-REL. 

At each level nodes are removed from QC and their 
partitions are processed to produce two child nodes. 
Successful child nodes have their results stored and non-
terminal children are added to the next queue. When the 
loop exits, REL has been calculated. 

 
Figure 3: Computing REL using OBDD-A/2 

Queues are used for ease of removing nodes from QC, 
however we use a hash table to link to nodes in QN to 
improve the performance of checking for node 
isomorphism. For OBDD-A, we use the partition numbers 
as a perfect hash. The hash for OBDD-A2 is not perfect, 
which means that several node comparisons may need to be 
performed. 

As each success node is found, its probability is added to 
a running total. When the algorithm completes, REL has 
been calculated. This total may be stored in a success node, 
although our implementation keeps it separate. 

E. OBDD-A Example 
To illustrate the OBDD-A/2 algorithm, we apply it to the 

sample network in Fig. 1 with a single source (v0) and target 
(v3). We assume that each edge has a 0.1 probability of 
failure. The root node is initialized to be (2, 1.0) for OBDD-
A and (([0],[1]), 1.0) for OBDD-A2, which represents the 
single vertex in F0={0} being in block 0. This vertex is 
connected to the source (in fact it is the source) and hence 
the block is marked. The probability of this state is 1 since 
no decisions have been made yet. We compute F1={0,1} 
from e0={0,1}. 

We enter the loop and remove the only node from QC. 
The only node on level 0 is the root node, N0, which 
contains the partition [0]*. This partition is used to create 
children [0]*[1] and [0 1]*, which are stored in child nodes 
N1 and N2 respectively. The probability of the child nodes is 
q0×1.0 = 0.1 for N1 and p0×1.0 = 0.9 for N2. 

For OBDD-A we have N1=(4, 0.1) and N2=(2, 0.9). For 
OBDD-A2 we have N1=(([0 1],[1 0]),0.1) and N2=([0 0], 
[1], 0.9). 

The OBDD-A/2 resulting from this process is shown in 
Fig. 2, with the partition numbers in parentheses and the 
probability of the node underneath. The boundary sets of the 
diagram are shown on the left-hand side. Note that the actual 
OBDD-A/2 nodes are not linked; the links shown in the 
diagram are for ease of understanding only. 

Build (G ) 
k=0; F0={0}; 
Create node N0 = ([0]*, 1.0) and hash to QC; 
Compute F1; 
while (QC and QN are not both empty ) do 
 if (QC is empty) then 
  Increment k; // Working on new level 
  Compute Fk+1; 
  Move contents of QN into QC; // QC now non-empty 
 Remove the first node, Ni from QC; 
 create N2i+1 from Ni to represent ek DOWN; 
 create N2i+2 from Ni to represent ek UP; 
 for each ( N in {N2i+1 N2i+2} ) do 
  if ( N is successful ) 
   Store Pr(N). 
  else if ( N is not a failure ) do 
   if ( N is isomorphic with M on QN ) do 
    Merge N into M. 
   else 
    Add N to QN. 

331



 

The diagram in Fig. 2 shows nodes that contain both the 
partition and the partition number. It should be noted that 
the OBDD-A contains only the partition number and the 
OBDD-A2 contains only the partition itself. 

Note that K-REL is the probability stored in the success 
node; in this case 0.97929. For the sake of completeness the 
diagram shows the failure node (which contains the 
probability 0.02071 = 1 – 0.97929) but the OBDD-A/2 does 
not store failed partitions or their probability. 

For this example, 10 non-terminal nodes are generated. 
The OBDD method [1] would store all 10 nodes, whereas 
the OBDD-A/2 method stores at most 4 nodes at any one 
time. 

F. Space Required 
As each node on level k is processed, its child nodes are 

added to level k+1 and its parent node deleted. Thus the 
number of nodes kept in memory at any one time is always 
less than two full levels.. 

The details of this and experimental results for OBDD-A 
are discussed in [8]. The bound on the number of nodes per 
level depends on the structure of the network and increases 
rapidly for networks with larger boundary set sizes. Hence 
networks with a large boundary set may require a large 
amount of memory for a single level of the diagram. 

Because the part of the algorithm that generates nodes is 
identical between OBDD-A and OBDD-A2, both algorithms 
generate the same number of nodes. Isomorphism is based 
on comparing partitions, whether directly or via partition 
numbering, so the same nodes are isomorphic for both 
algorithms. Hence the total number of nodes processed is 
the same for both algorithms. 

This means that the OBDD-A2, like the OBDD-A, will 
store only a maximum of 7 out of 24,970 nodes for the 
3×1000 grid and 237 out of 1,210,148 nodes for K7,1000 
[8]. Similarly it has a constant upper bound on the number 
of diagram nodes generated for networks of constant 
internal connectivity and arbitrary size. 

IV. RESULTS 
We implemented the OBDD-A algorithm for solving K-

REL and ALL-REL in gcc and tested it on a Pentium 
computer (2 Xeon 3.2GHz processors, 1MB cache, 2GB 
RAM). For each chosen network the test was run five times 
in order to generate an average CPU time, recorded in 
seconds. 

We tested the implementation on a number of networks. 
Most networks were taken from [1] to enable a better initial 
comparison. Larger networks were taken from [8]; in 
particular, network K7,1000 denotes a 7-connected network 
of 1000 nodes and W×L is a grid network of width W and 
length L. A K-connected network is one where each vertex 
is connected to the next K vertices (and hence the previous 
K vertices for an undirected network). The network net.19 is 
Fig. 19 in [5].  

A KW,n network is one that has each of its n nodes 
connected to the following W-1 vertices. Since edges are 
undirected, each vertex is also connected to the preceding 
W-1 vertices. Note that if n = W we have KW,n = Kn, the 
fully connected graph of n vertices. We use KW,n and grid 
networks because we can generate networks of arbitrary size 
without changing the internal connectivity and hence Fmax.  

The results of a sample of these tests are shown in Table 
1, with the OBDD results being from the algorithm by 
Hardy, Lucet and Limnios [1].  

The initial testing on small networks showed that OBDD-
A and OBDD-A2 were within an order of magnitude of each 
other. For these smaller networks, OBDD-A often 
outperformed OBDD-A2. In these networks, the library for 
large numbers is not required and the calculation of the 
partition numbers is not as costly due to smaller partitions. 

The truth of this argument can be seen in the comparison 
on the 2x100 grid. The maximum number of nodes on one 
level of the OBDD-A is 3, so partition numbers are 
extremely low and conversion between partitions and 
partition numbers is fast. Hence the pattern of similar 
performance remains. 

For larger networks with a greater number of partitions, 
the results are noticeably different. For such networks, the 
calculation of partition numbers and use of the GNU library 
greatly outweighs the hashing and node comparison. As can 
be seen for the 7x1000 grid and the K7,1000 networks, 
OBDD-A2 outperforms OBDD-A by a significant amount. 

Both OBDD-A and OBDD-A2 outperform the state of 
the art OBDD-A algorithm [1] for all networks tested. 

V. CONCLUSIONS 
We have improved on our hybrid OBDD-A algorithm [8] 

by removing the need for large partition numbers. This 
improvement results in a significant improvement in 
processing speed for large networks. Such improvements are 
important  in order to allow the analysis of more complex 
networks. The improved OBDD-A generates the same 

Network 
2-Terminal All-Terminal 

OBDD-A OBDD-A OBDD-A2 OBDD-A OBDD-A OBDD-A2 

net.19 0.09 0.039 0.042 0.12 0.016 0.039 
5x5 0.05 0.034 0.09 0.07 0.009 0.08 
2x100 0.02 0.009 0.005 0.09 0.006 0.006 
K,7,1000 na 41.513 22.293 na 7.824 2.787 
7x1000 na 495.33 59.159 85.18 53.51 23.168 

TABLE 1: COMPARISON OF PROCESSING TIME 
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amount of nodes as the original, and hence has a constant 
bound for families of networks with identical connectivity. 

For future research we will extend the application of 
boundary set notation to directed networks. The hybrid 
OBDD-A will also be adapted to solve performability 
metrics such as the Expected Hop Count and Expected 
Message Delay. We will also seek to allow multiple children 
per diagram node, creating an OMDD-A (multi-variate 
instead of binary) approach that can effectively compute 
networks for which both devices and links fail.[14] 
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