
©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Abstract – The Augmented Ordered Binary Decision
Diagram (OBDD-A) has been shown to be extremely efficient
for reliability calculations, especially when combined with the
Boundary Set method of partition representation. The existing
OBDD-A follows the Boundary Set method closely, requiring
the calculation of partition numbers large enough to exceed the
capacity of native storage types in languages such as C++. By
omitting the use of partition numbers the execution speed of
the algorithm is increased, while the low memory usage of an
OBDD-A is maintained. We compare the new OBDD-A to the
existing version on a number of networks, showing that
processing time for large networks increases significantly.

Keywords – binary decision diagram, network reliability, K-
terminal reliability, all-terminal reliability, space efficient.

I. INTRODUCTION
ITH increasing reliance on communication networks,
measuring their reliability is an important aid in
design and analysis. When communication links

between network devices fail, critical devices may become
unable to communicate with each other. The reliability
(REL) of a communication network has been studied
extensively [1-9] and measures the probability that the
network meets the relevant standard of connectivity. This
standard depends on which nodes must communicate with
each other.

A number of different REL metrics exist. The most
common are two-terminal reliability (2-REL), K-terminal
reliability (K-REL) and all-terminal reliability (ALL-REL).
The difference between these metrics is the number of
devices that are required to be able to communicate with
each other. In 2-REL, a source device must be able to
communicate with a target (or sink) device. With K-REL a
given set of K devices must be able to communicate with
each other; generally this is assumed to mean that one
source device can communicate with a set of K-1 others.1
Finally, ALL-REL requires all devices to be able to
communicate with each other. It can be seen that 2-REL is a
special case of K-REL. Similarly, K-REL is a special case of
ALL-REL. These metrics have been shown to be NP-Hard
[1, 5].

A number of other metrics have been considered,
although these are less common. For example 1-of-S-REL
requires that at least one of the source devices out of a group
S of source devices can communicate with the target device.
While some work has been done on these [6], this paper
does not address them directly. The methods discussed in
[6] apply equally to the OBDD-A introduced in this paper.

1 When communication links are undirected this is equivalent to the

general definition of K-REL.

The literature contains two main approaches to
computing REL; those that generate network paths or cuts
and then manipulate them, and those that manipulate the
network directly. For general networks, algorithms that
apply factoring techniques to the network are more efficient
than those that manipulate paths and/or cuts [3]. However
even these systems can have difficulty analyzing large
networks.

The Ordered Binary Decision Diagram (OBDD) [10] has
been successfully used to compute 2-REL[3], K-REL[1-3,
11] and ALL-REL[1, 4] directly from the network. This
approach reduces redundant computations by detecting and
merging equivalent (isomorphic) diagram nodes, and thus
reduces the number of nodes generated.

For OBDDs it is important to efficiently represent and
manipulate network states. Hardy, Lucet and Limnios [1, 4]
use boundary sets [6] to efficiently represent OBDD states;
we discuss boundary sets in detail in Section II.C. Even with
the use of isomorphism and boundary set notation, the
number of OBDD nodes generated for very large networks
(e.g., 7×1,000 grid) or networks with a large maximal
boundary set (e.g., K15, the 15-node fully connected
network) is extremely large.

In addition, the 2-step boundary set algorithms [1, 4] first
generate the OBDD and then traverse it a second time to
generate REL. This approach requires all diagram nodes to
be stored. Thus, even for nodes with an efficient
representation of the network, the amount of memory
required is extremely large. As reported in [1], the 12×12
grid requires storing close to 65 million OBDD nodes which
may require more than 780MB of memory [8].

A more memory efficient solution [8] has been proposed,
utilizing the partition numbering method [1] with an
Augmented OBDD (OBDD-A). This solution combines the
efficient partition notation of network states with the
memory efficiency of the OBDD-A. In particular, for
networks of varying sizes but identical connectivity
structure the amount of diagram nodes generated has a
constant bound. For example, for the 3×1000 grid the
OBDD-A [8] stores at most 7 nodes at one time out of a
total of 24,970 nodes generated.

The disadvantage of using partition numbering is that
such numbers quickly grow to be larger than can be stored
in the standard data types of languages such as C++. This
requires the use of a library such as GNU MP [12] for
dealing with numbers of arbitrary size and greatly slows the
processing speed of the program. In addition, the partition
numbers must be calculated whenever a new partition is
created, and partitions must be recreated from numbers in

Improving Reliability Calculation with
Augmented Binary Decision Diagrams

Johannes U. Herrmann
Department of Computing

Curtin University of Technology, Perth, Australia
jherrmann@ieee.org

W

2010 24th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/10 $26.00 © 2010 IEEE

DOI 10.1109/AINA.2010.148

328

order to be processed. This creates unnecessary processing
overhead.

In this paper we present an exact algorithm using an
Augmented OBDD (OBDD-A) which does not use partition
numbering. The algorithm computes REL metrics for
networks whose undirected communication links can fail but
which have perfect devices. We compare this approach to
the existing OBDD-A algorithm [8] that has been shown to
perform comparably to the OBDD-based boundary set
approach [1] in terms of processing time but use far less
memory.

 This paper is organized into five sections. We introduce
the background of the REL metrics and introduce the
notation used in Section II. The OBDD-A approach is
discussed in Section III, with and without the use of
partition numbering. The implementation of these methods
and comparisons are discussed in Section IV and
conclusions and the scope of future work in Section V.

II. BACKGROUND AND NOTATION

A. Network Model
We model a communication network using a graph

G=(V,E), where each vertex in V represents a
communication device and every edge in E represents a
communication link between these devices. An edge ej is
said to be UP (DOWN) if it is functioning (failed). Let pj
(qj=1-pj) be the operational (failure) probability of ej and
assume all failures are statistically independent. Assume that
all vertices are always active and that all edges are
undirected.

Let n=|V|, and let vertices V = {v0, v1, …, vn-1} be
ordered in increasing distance (number of hops) from a
source vertex, v0, except that the target vertex is labeled vn-1.
If the network has no distinct source, choose a vertex in K as
v0. If considering ALL-REL, any vertex can be chosen as v0.
If no distinct sink exists, vn-1 should be in K for K-REL, and
can be any vertex for ALL-REL. When two or more vertices
have the same distance from v0, they are ordered arbitrarily.

Let (vi,vj) denote an undirected edge between vertices vi
and vj, with i>j. The sample network in Fig. 1 shows an
example of the above ordering.

Figure 1: Sample Network

A network state Ω=EΩ of network G=(V,E) is a partition

of E such that all edges in EΩ⊆E are UP and all other edges
in E are DOWN. The probability of state Ω is computed as:

 Pr(Ω)= ∏∏
ΩΩ ∉∈ EeEe

qp
ii

ii . (1)

Each Ω is associated with a sub-graph GΩ = (VΩ,EΩ)
where VΩ are the vertices reachable from v0 (or S) via the
edges in EΩ. Let ΩG be the set of success states for graph G.
For K-REL, Ω is a successful state if K⊆VΩ and for ALL-
REL, Ω is a successful state if VΩ=V. REL can be calculated
by summing the probabilities of the success states of the
network. Since each edge can be UP or DOWN, there are
2|E| states for network G., and therefore REL cannot be
solved for large networks through state enumeration.

In this paper we use the words ‘device’ and
‘communication link’ to refer to the physical network. We
use ‘vertex’ and ‘edge’ to refer to the mathematical model
representing the network. Finally we use ‘node’ and ‘link’ to
refer to the decision diagram representing the connectivity
of the network.

B. Ordered Binary Decision Diagrams
The OBDD is based on the Shannon decomposition [10].

Each level of the OBDD represents the evaluation of one
variable; for this paper this is edge ek at level k. Each
diagram node Ni has two children; positive child N2i+2
representing the case when ek is UP and negative child N2i+1
when it is DOWN. We say that an edge ex is decided if it is
known to be either UP or DOWN at the current level k of
the OBDD; that is if x < k. We say that level k decides edge
ek.

 Two diagram nodes Ni and Nj on level k are isomorphic
if their sub-diagrams are identical. Isomorphic nodes are
merged before being processed to eliminate redundant
computation. The ordering of the variables affects the size
of the OBDD, and finding the optimal variable ordering is
itself an NP-Complete problem [13]. A breadth-first
ordering is commonly used. We use the ordering of vertices
as described in Section A of this chapter, and edges
ex=(vi,vj) are decided in increasing order of i and then j. This
is equivalent to the ordering used by Hardy et al. [1, 4];

C. Boundary Sets
In order to calculate REL, an OBDD algorithm must

record the effect of decided edges on the network state at
any given level k of the diagram. In order to minimize
memory usage, this information should be encoded as
efficiently as possible. One approach is to use boundary sets
which were introduced in [7].

For level k of the diagram, the Boundary Set, Fk⊆V, is
composed of only those vertices required to encode the
current network state. For the vertices in the boundary set,
the algorithm must record the connections (via paths of UP
edges) between them. If we are computing K-REL with
K<|V| the algorithm must also record whether each vertex in
the boundary set is connected to any of the vertices in K.

Formally, Fk can be defined as Fk = {vx| vx is an endpoint
of both ey and ez, with y≤k and z≥k}. The ith element of Fk. is
written as Fk[i]. The interconnectivity of elements of Fk is
encoded by partitions of Fk; two vertices are in the same
partition if and only if they are connected to each other. For
K-REL, if a partition is connected with one or more of the K
vertices, then it is marked. We write both boundary sets and
partitions using only the subscripts of the vertices.

For example the edges of the graph shown in Fig. 1 are
ordered (0,1) (0,2) (1,2) (1,3) (1,4). The OBDD-A for this

329

network is shown in Fig. 2, including all partitions and
boundary sets. For level k=2 of the diagram, the edge being
decided is (1,2) and hence the boundary set is {1,2}.

If K={v0,v3} the possible partitions of the boundary set at
this level are [1 2]*, [1]*[2], [1][2]*. We refer to [1] and [2]
as the blocks of the partition [1]*[2] and denote the marking
of the block [1] by an asterisk. Any partition that has no
marked blocks (e.g. [1][2]) has no connection with vertex 0
and hence is failed.

Figure 2: OBDD-A of Sample Network

Partitions are represented by vectors of size |Fk| where the
ith position in the vector contains the number of the block
containing Fk[i]. The enumeration of partitions makes use of
Stirling numbers of the second kind. These are calculated
using Ai,j= j×Ai-1,j+Ai-1,j-1 for 1≤j≤i, with Ai,1=1 and Ai,j=0 if
i<j. This ordering is described in [1] and applies to ALL-
REL. Because it does not consider marked partitions, it does
not suffice for K-REL.

The algorithms given in [1] describe a pair of methods
for ALL-REL that convert between the boundary set
partition representation of the network and a unique
partition number, and back again. Modified methods that
can be used for ALL-REL and K-REL (and hence 2-REL),
are described in [8].

D. Augmented Decision Diagrams
The Augmented Ordered Binary Decision Diagram

(OBDD-A) is an OBDD that stores network state
information in each node. For an application such as REL
only the probability of each state needs to be stored [8] with
other applications requiring more information. For example,
for the Expected Hop Count (EHC) the minimum path
lengths to each active vertex are also stored [6]. The hybrid
OBDD-A in Fig. 2 is for reliability calculation only.

Early versions [6, 9] of the OBDD-A stored the state of
the network using a notation that tracked paths between
source vertices and the vertices in the boundary set. While
this notation allows directed networks to be analyzed, it is

not as quick as a standard OBDD using boundary set
numbering [1]. For this reason the hybrid OBDD-A [8] was
created to store partition numbers instead of path
information.

The hybrid OBDD-A was shown to be comparable in
processing speed to the partition number OBDD but to use
significantly less memory [8]. For the sake of brevity we
will omit the ‘hybrid’ before each OBDD-A for the rest of
this paper since we will discuss the hybrid OBDD-A
exclusively.

III. THE HYBRID OBDD-A ALGORITHM

A. Introduction
 This section details the structure of the OBDD-A and

how it is used to compute REL. Part B details the structure
of the OBDD-A node, and hence the diagram itself. Part C
discussed the different types of OBDD-A nodes and node
isomorphism. The method for constructing an OBDD-A and
obtaining REL from it is discussed in Part D, and illustrated
with an example in Part E. Finally Part F briefly discusses
the space required by the OBDD-A algorithm.

B. OBDD-A Node Structure
An OBDD-A is an OBDD whose nodes contain

additional information [9]. For each metric, an OBDD-A
node stores both the state represented by that node and
information needed to compute the metric. An OBDD-A
node does not store pointers to child or parent nodes since
such linkages are never traversed.

For example an OBDD-A used to compute the Expected
Hop Count stores information on path length and state
probability [9] in addition to network state information. For
REL, the OBDD-A stores only the network state
information and its probability.

The state of the network at level k is represented by
partitions of Fk, with each OBDD-A node representing one
network state and hence having one unique partitioning of
Fk. This provides an efficient means of storing the network
state in the OBDD-A node and also of detecting isomorphic
OBDD-A nodes; if two OBDD-A nodes have the same
partition then they are isomorphic. For REL, the OBDD-A
node Ni on level k of the diagram has the format (parti, Pri).

The OBDD-A introduced in [8] uses the partition number
to encode the network state. This means that parti = PNi. The
OBDD-A introduced in this paper stores the partition
directly. We refer to new OBDD as OBDD-A2 to avoid
confusion and use the notation OBDD-A/2 when referring to
both diagrams simultaneously. For OBDD-A2, parti = (Bi,
Mi), where Bi is an array that allocates each member of Fk to
a block of the partition, and Mi is a j-bit binary number that
has a value of 1 for each of the j blocks that is marked.

For example, the node representing the network state of
partition [0]*[1] on level 2 of the diagram in Fig. 2 is stored
as N1=(PN1=4, 0.1) for OBDD-A and as N1= ((B1=[0 1],
M1=[1 0]), 0.1) for OBDD-A2 when computing K-REL.
When computing ALL-REL partitions are not marked,
hence N1=(PN1=1, 0.1) for OBDD-A and (B1=[0 1], 0.1)
for OBDD-A2. Note that the partition number of partition
[0]*[1] is 4.

330

When a new node is created, its probability is calculated
from the probability of the parent node. For node Ni on level
k, the probability of the child nodes are Pr2i+1=Pri×qk and
Pr2i+2=Pri×pk for the negative and positive child respectively.
The negative child represents edge ek being DOWN while
the positive child represents ek being UP.

When two OBDD-A/2 nodes are found to be isomorphic,
they are merged into a single node whose probability is the
sum of the probabilities of both nodes. The probability of
the success terminal node is the appropriate REL metric.

C. OBDD-A Node Type and Isomorphism
An OBDD-A/2 node is either terminal or non-terminal

and a terminal node is either successful or failed. For K-REL
a node is failed if it contains a marked partition that is empty
and is successful if it has a single marked partition
containing vn-1. For ALL-REL all nodes are considered
marked and hence a node is failed if it has an empty
partition and successful if it contains a single partition
including vn-1.

When boundary set notation was introduced [7],
comparison between partitions was implemented using
partition numbers. Unique methods exist for translating
between partitions and partition numbers. Earlier versions of
the hybrid OBDD-A [8] stored partition numbers instead of
the partitions themselves. The advantage of this approach is
that the partition numbers are relatively efficient to store and
compare.

The main drawback of using partition is the translation
between the partitions and partition numbers and back again.
While node comparison is efficient with this method, the
translation adds a large overhead. In addition, partition
numbers grow quickly and thus require more space than the
standard C++ long integers can store. This means that a
special library must be used to handle integers of arbitrary
size. Such a library adds its own processing overhead.

The disadvantage of storing partitions instead of partition
numbers is that node comparisons are more complex. Two
OBDD-A/2 nodes Ni,k = (parti, Pi) and Nj,k = (partj, Pj) are
considered equal (isomorphic) if the partitions are equal
(parti = partj). For OBDD-A2 this requires up to |Fk|
comparisons between integers and a bitwise comparison of
two binary numbers instead of the single comparison
between large numbers required for OBDD-A.

D. Constructing an OBDD-A
Fig. 3 shows the OBDD-A/2 algorithm for computing

REL. The algorithm is initialized with F0={0} and the initial
node N0 = ([0]*, 1.0) stored in the root node of the BDD and
on the current queue, QC. Note that for ALL-REL, all
partitions are considered marked so we do not need to
explicitly mark any; hence N0 = ([0], 1.0).

The exact form of N0 depends on whether OBDD-A or
OBDD-A2 is used. For OBDD-A N0 = (2, 1.0) for K-REL
and (1, 1.0) for ALL-REL. For OBDD-A2, N0= (([0],[1]),
1.0) for K-REL and ([0], 1.0) for ALL-REL.

At each level nodes are removed from QC and their
partitions are processed to produce two child nodes.
Successful child nodes have their results stored and non-
terminal children are added to the next queue. When the
loop exits, REL has been calculated.

Figure 3: Computing REL using OBDD-A/2

Queues are used for ease of removing nodes from QC,
however we use a hash table to link to nodes in QN to
improve the performance of checking for node
isomorphism. For OBDD-A, we use the partition numbers
as a perfect hash. The hash for OBDD-A2 is not perfect,
which means that several node comparisons may need to be
performed.

As each success node is found, its probability is added to
a running total. When the algorithm completes, REL has
been calculated. This total may be stored in a success node,
although our implementation keeps it separate.

E. OBDD-A Example
To illustrate the OBDD-A/2 algorithm, we apply it to the

sample network in Fig. 1 with a single source (v0) and target
(v3). We assume that each edge has a 0.1 probability of
failure. The root node is initialized to be (2, 1.0) for OBDD-
A and (([0],[1]), 1.0) for OBDD-A2, which represents the
single vertex in F0={0} being in block 0. This vertex is
connected to the source (in fact it is the source) and hence
the block is marked. The probability of this state is 1 since
no decisions have been made yet. We compute F1={0,1}
from e0={0,1}.

We enter the loop and remove the only node from QC.
The only node on level 0 is the root node, N0, which
contains the partition [0]*. This partition is used to create
children [0]*[1] and [0 1]*, which are stored in child nodes
N1 and N2 respectively. The probability of the child nodes is
q0×1.0 = 0.1 for N1 and p0×1.0 = 0.9 for N2.

For OBDD-A we have N1=(4, 0.1) and N2=(2, 0.9). For
OBDD-A2 we have N1=(([0 1],[1 0]),0.1) and N2=([0 0],
[1], 0.9).

The OBDD-A/2 resulting from this process is shown in
Fig. 2, with the partition numbers in parentheses and the
probability of the node underneath. The boundary sets of the
diagram are shown on the left-hand side. Note that the actual
OBDD-A/2 nodes are not linked; the links shown in the
diagram are for ease of understanding only.

Build (G)
k=0; F0={0};
Create node N0 = ([0]*, 1.0) and hash to QC;
Compute F1;
while (QC and QN are not both empty) do
 if (QC is empty) then
 Increment k; // Working on new level
 Compute Fk+1;
 Move contents of QN into QC; // QC now non-empty
 Remove the first node, Ni from QC;
 create N2i+1 from Ni to represent ek DOWN;
 create N2i+2 from Ni to represent ek UP;
 for each (N in {N2i+1 N2i+2}) do
 if (N is successful)
 Store Pr(N).
 else if (N is not a failure) do
 if (N is isomorphic with M on QN) do
 Merge N into M.
 else
 Add N to QN.

331

The diagram in Fig. 2 shows nodes that contain both the
partition and the partition number. It should be noted that
the OBDD-A contains only the partition number and the
OBDD-A2 contains only the partition itself.

Note that K-REL is the probability stored in the success
node; in this case 0.97929. For the sake of completeness the
diagram shows the failure node (which contains the
probability 0.02071 = 1 – 0.97929) but the OBDD-A/2 does
not store failed partitions or their probability.

For this example, 10 non-terminal nodes are generated.
The OBDD method [1] would store all 10 nodes, whereas
the OBDD-A/2 method stores at most 4 nodes at any one
time.

F. Space Required
As each node on level k is processed, its child nodes are

added to level k+1 and its parent node deleted. Thus the
number of nodes kept in memory at any one time is always
less than two full levels..

The details of this and experimental results for OBDD-A
are discussed in [8]. The bound on the number of nodes per
level depends on the structure of the network and increases
rapidly for networks with larger boundary set sizes. Hence
networks with a large boundary set may require a large
amount of memory for a single level of the diagram.

Because the part of the algorithm that generates nodes is
identical between OBDD-A and OBDD-A2, both algorithms
generate the same number of nodes. Isomorphism is based
on comparing partitions, whether directly or via partition
numbering, so the same nodes are isomorphic for both
algorithms. Hence the total number of nodes processed is
the same for both algorithms.

This means that the OBDD-A2, like the OBDD-A, will
store only a maximum of 7 out of 24,970 nodes for the
3×1000 grid and 237 out of 1,210,148 nodes for K7,1000
[8]. Similarly it has a constant upper bound on the number
of diagram nodes generated for networks of constant
internal connectivity and arbitrary size.

IV. RESULTS
We implemented the OBDD-A algorithm for solving K-

REL and ALL-REL in gcc and tested it on a Pentium
computer (2 Xeon 3.2GHz processors, 1MB cache, 2GB
RAM). For each chosen network the test was run five times
in order to generate an average CPU time, recorded in
seconds.

We tested the implementation on a number of networks.
Most networks were taken from [1] to enable a better initial
comparison. Larger networks were taken from [8]; in
particular, network K7,1000 denotes a 7-connected network
of 1000 nodes and W×L is a grid network of width W and
length L. A K-connected network is one where each vertex
is connected to the next K vertices (and hence the previous
K vertices for an undirected network). The network net.19 is
Fig. 19 in [5].

A KW,n network is one that has each of its n nodes
connected to the following W-1 vertices. Since edges are
undirected, each vertex is also connected to the preceding
W-1 vertices. Note that if n = W we have KW,n = Kn, the
fully connected graph of n vertices. We use KW,n and grid
networks because we can generate networks of arbitrary size
without changing the internal connectivity and hence Fmax.

The results of a sample of these tests are shown in Table
1, with the OBDD results being from the algorithm by
Hardy, Lucet and Limnios [1].

The initial testing on small networks showed that OBDD-
A and OBDD-A2 were within an order of magnitude of each
other. For these smaller networks, OBDD-A often
outperformed OBDD-A2. In these networks, the library for
large numbers is not required and the calculation of the
partition numbers is not as costly due to smaller partitions.

The truth of this argument can be seen in the comparison
on the 2x100 grid. The maximum number of nodes on one
level of the OBDD-A is 3, so partition numbers are
extremely low and conversion between partitions and
partition numbers is fast. Hence the pattern of similar
performance remains.

For larger networks with a greater number of partitions,
the results are noticeably different. For such networks, the
calculation of partition numbers and use of the GNU library
greatly outweighs the hashing and node comparison. As can
be seen for the 7x1000 grid and the K7,1000 networks,
OBDD-A2 outperforms OBDD-A by a significant amount.

Both OBDD-A and OBDD-A2 outperform the state of
the art OBDD-A algorithm [1] for all networks tested.

V. CONCLUSIONS
We have improved on our hybrid OBDD-A algorithm [8]

by removing the need for large partition numbers. This
improvement results in a significant improvement in
processing speed for large networks. Such improvements are
important in order to allow the analysis of more complex
networks. The improved OBDD-A generates the same

Network
2-Terminal All-Terminal

OBDD-A OBDD-A OBDD-A2 OBDD-A OBDD-A OBDD-A2

net.19 0.09 0.039 0.042 0.12 0.016 0.039
5x5 0.05 0.034 0.09 0.07 0.009 0.08
2x100 0.02 0.009 0.005 0.09 0.006 0.006
K,7,1000 na 41.513 22.293 na 7.824 2.787
7x1000 na 495.33 59.159 85.18 53.51 23.168

TABLE 1: COMPARISON OF PROCESSING TIME

332

amount of nodes as the original, and hence has a constant
bound for families of networks with identical connectivity.

For future research we will extend the application of
boundary set notation to directed networks. The hybrid
OBDD-A will also be adapted to solve performability
metrics such as the Expected Hop Count and Expected
Message Delay. We will also seek to allow multiple children
per diagram node, creating an OMDD-A (multi-variate
instead of binary) approach that can effectively compute
networks for which both devices and links fail.[14]

REFERENCES
[1] G. Hardy, et al., "K-Terminal Network Reliability Measures

With Binary Decision Diagrams," IEEE Trans. Reliability,
vol. 56, pp. 506 - 515, Sept. 2007.

[2] F.-M. Yeh, et al., "Analyzing network reliability with
imperfect nodes using OBDD," in Pacific Rim Int'l Symp.
Dependable Computing, 2002, pp. 89-96.

[3] F.-M. Yeh, et al., "OBDD-Based Evaluation of k-Terminal
Network Reliability," IEEE Trans. Reliability, vol. 51, pp.
443-451, 2002.

[4] G. Hardy, et al., "Computing all-terminal reliability of
stochastic networks with Binary Decision Diagrams," in
11th International Symposium on Applied Stochastic
Models, 2005.

[5] S. Soh and S. Rai, "CAREL: Computer Aided Reliability
Evaluation for Distributed Computing Networks," IEEE
Trans. Reliability, vol. 2, pp. 199-213, 1991.

[6] J. U. Herrmann, et al., "On Augmented OBDD and
Performability for Sensor Networks," Int'l J. Performability
Engineering, accepted for publication 2009.

[7] J. Carlier and C. Lucet, "A Decomposition Algorithm for
Network Reliability Evaluation," Discrete Applied
Mathematics, vol. 65, pp. 141-156, 1996.

[8] J. U. Herrmann and S. Soh, "A Space Efficient Algorithm
for Network Reliability," presented at the 15th Asia-Pacific
Conf. Communications (APCC2009), 2009.

[9] J. U. Herrmann, et al., "Using Multi-valued Decision
Diagrams to Solve the Expected Hop Count Problem," in
IEEE 23rd Int. Conf. Advanced Information Networking and
Applications Workshops, Bradford, UK, 2009, pp. 419-424.

[10] R. E. Bryant, "Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams," ACM Computing
Surveys, vol. 24, pp. 293-318, 1992.

[11] J. Carlier and C. Lucet, "A decomposition algorithm for
network reliability evaluation," Discrete Applied
Mathematics, vol. 65, pp. 141–156, 1996.

[12] Sept. 25). The GNU MP Bignum Library. Available:
http://gmplib.org/

[13] S. J. Friedman and K. J. Supowit, "Finding the Optimal
Variable Ordering for Binary Decision Diagrams," in 24th
ACM/IEEE Conf. Design Automation, 1987, pp. 348-356.

[14] R. K. Ahuja, et al., "Computational investigations of
maximum flow algorithms," European Journal of
Operational Research, vol. 97, pp. 509-542, 16 March
1997.

333

