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ABSTRACT

Estimation of effective porosity in shaly sand formations is
the prime parameter for reserve calculation and for good
understanding of the behaviour of a formation during
production. The Late Carboniferous to Early Permian,
fluvio-deltaic Tirrawarra Sandstone is a kaolinite-bearing
sandstone and an important hydrocarbon reservoir in the
Cooper Basin. Petrographic point count and image analysis
data from 130 samples, together with data from about 650
core samples and wireline log data from 14 wells of the
Tirrawarra Sandstone in the Moorari and Fly Lake Fields,
have been used to estimate effective porosity from sonic log.

Based on integration of all data and with the knowledge
of the volume fraction of kaolinite and associated
microporosity (20% for kaolinite masses in the Tirrawarra
Sandstone in the studied samples) effective porosity can be
expressed as:

¢e = ¢som’c _0‘2Vk *

where ¢, is effective porosity and ¢y, is sonic porosity,
and V. is volume fraction of kaolinite.

On average, estimated effective porosity is 2 porosity
units ‘less than the total porosity and it varies for
depositional environments which have different kaolinite

contents.
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INTRODUCTION

The time required for a sonic wave to travel a given
distance in a formation is measured by the sonic log. This
travel time depends on many factors, including porosity,
pore geometry, pore fluid type and transit time, matrix
transit time, fluid satoration, pore pressure, clay content,
and consolidation. Many workers, over the years, have tried
to find a universal equation to translate sonic transit time to
porosity.

The Wyllie time average equation (Wyllie et al.,
1956) has been used for many years to determine porosity
from logs:
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where At is rock transit time, At,,, is the transit time of the
rock matrix, and At is the pore fluid transit time.

Many other equations have been proposed to improve the
Wyllie equation for translating sonic (ransit time to porosity
(Pickett, 1963; Raymer et al., 1980; Raiga-Clemencean et
al,, 1988; and Vernik, 1994). Most of the proposed
~equations show a linear relationship between transit time
and porosity in the following form:

At=adp+b . 2
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Equations of this form directly reflect the Wyllie transit
time equation in which a and b are empirical coefficients
and can be defined as:

a=Ar,—Ar,, (3)
and

b=At,, . @

In further studies (Tosayva and Nur, 1982; Kowallis et al.,
1984; Han et al., 1986; and Eberhart-Phillips et al., 1989),
other parameters such as clay content, pressure and
temperature, were also added to the general equation.

In the present study, an empirical equation is introduced
for translating sonic wave transit time to porosity for the
Tirrawarra Sandstone. The equation, which has a Wyllie
equation style, estimates total porosity (macroporosity and
microporosity). To estimate macroporosity alone a new
equation is introduced, in which the reduction of sonic wave
velocity in shaly sand formations is attributed to
microporosity associated with kaolinite.

Geological setting

The Permo-Triassic Cooper Basin of central Australia is
Australia’s largest onshore hydrocarbon province. The basin
consists mainly of lacustrine—fluvial deposits with local
glacio-fluvial deposits (Battersby, 1976; Thornton, 1979;
Stuart, 1976; Fairburn, 1989). The basin is unconformably
underlain by the early Paleozoic marine and volcanic rocks
of the Warburton Basin (Gatehouse, 1986) and uncon-
formably overlain by the Jurassic—Cretaceous sedimentary
units of the Eromanga Basin (Armstrong and Barr, 1986).
About 95% of the Cooper Basin oil occurs in the Tirrawarra
Sandstone of the Tirrawarra Field (Heath, 1989). Additional
oil reserves are found at the same stratigraphic interval in
the Moorari and Fly Lake Fields (Figure 1). The two fields
were discovered in 1971 and are fault-bounded anticlinal
stroctures.

Several palaeoenvironments of deposition are recognised
in the Tirrawarra Sandstone In the Moorari and Fly Lake
Fields, including lacusirine, parallel beach-barrier, back-
barrier marsh with outwash beds, distal and medial braid-
delta, meandering fluvial system and aeolian depositional
environments (Rezaee and Lemon, 1996).
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Tirrawarra Sandstone diagenesis

The Tirrawarra Sandstone in the Moorari and Fly Lake
Fields consists mainly of medium-grained, moderately
sorted sublitharenites (mostly mica schist and phyllite, shale
and siltstone clasts) (classification of Folk, 1974). A variety
of authigenic minerals are recognised, including syntaxial
quartz overgrowths, kaolinite, minor illite, and siderite.

Quartz is the dominant pore-filling cement in most
samples. Cathiodoluminescence microscopy indicated the
presence of three main quartz cement zones in the
Tirrawarra Sandstone (Rezace and Tingate, 1996; 1997).
Quartz cementation was initiated prior to major compaction,
but probably continued until relatively recent times.

Pore-filling euhedral and vermiform kaolinite booklets are
common, and are sometimes intergrown with the outer

margin of quartz overgrowths. The kaolinite is believed to -

have formed mainly as a replacement product of feldspars,
and to a lesser extent, micas. In 44 carbon-coated polished
sections that were impregnated by blue-dye epoxy,
microporosity within kaolinite booklets was measured using
image analysis of back-scaticred électron (BSE) images
from scanning electron microscopy (SEM). The average
measured microporosity within the kaolinite masses in the
Tirrawarra Sandstone is 20%.

Authigenic illite has rare fibrous, lath-like habit and is
thought to have formed as a rcplacement of chemically
unstable rock fragments,

Siderite cements are common in minor amounts in most
samples, usually as disseminated, pore-filling cement. Three
generations of siderite cement are recognised (Rezaee and
Schulz-Rojahn, 1996), separated by dissolutien boundaries.

Porosity from sonic log for the Tirrawarra Sandstone

An empirical equation for translation of sonic transit time
to: porosity is presented for the Tirrawarra Sandstone. To
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Figure 1. Map of the southern Cooper Basin showing the major struciural

elements and the location of the Moorari and Fly Lake Fields in the Patchawarra -

Trough, Cooper Basin {modified from Stuart ct al., 1988).

derive the equation, several corrections have been applied to

the data, including those described below.

1. Zonation of sonic log data and core porosity. One of the
important problems that makes comparison of core and
log measurements difficult is the different volume
investigated by log and core plugs (Marion and Pellerin,
1994). In order to reduce this problem, log data and core
porosity were averaged for the intervals with the same
lithological properties. During core logging, the
Thrawarra Sandstone was divided into eleven classes -
based on visual grain size, porosity; sorting, clay content
and consolidation. Core and sonic data were separated
into intervals with similar lithological properties.

2. A porosity reduction of 5% between conventional
(ambient pressure) and reservoir (overburden pressure)
core analysis for the Cooper Basin has been derived by
Morton (1990) as:

Poverburden = Qambien * 0.95 )
All core porosity dala are cormected for overburden

pressure using equation (5).

3. Deletion of problematic core. data; Many plugs were
found to be completely unsuitable for core analysis due to
the presence of microfractures, surface bedding and
pebbles in the plugs. Some plugs were from very thin
unrepresentative intervals. These sorts of data points were
deleted during this study.

4. Precise core and log depth matching. Several methods
were used for core and log depth matching, including:
core gamma scan; coroparison of lithology and gamma-
1ay and comparison of sonic log and core porosity:

The new empirical equation has the same style as the
equation At=a®+5 in which empirical coefficients, a and
b, refer to apparent matrix and pore fluid transit time.
Apparent matrix and pore fluid transit time are detertidned
from the relationship between core porosity and sonic transit
time (Figure 2a, b). Apparent matrix (ransit time is the
intersection of a regression line at zero porosity and
apparent pore fluid transit time is the intersection of
regression line at 100% porosity. The apparent mattix transit
time and apparent pore fluid transit time in Moorari Field
are 193 ps/m and 583 ps/m, respectively, and in the Fly
Lake Field are 193 ps/m and 600 [s/m, respectively.

The equation for relating sonic transit tire to porosity in
the Moorari Field is

¢ _ Ar—193 (6)
390
and for Fly Lake Field is
At —193
= 7
o 207 N

The crossplot of measured sonic porosity from the above
equations. and core porosity show a good correlation
(r*= 0.8) (Figure 3).

A new approach for estimation of effective porosity

The reduction of acoustic wave velocity was attributed by
Kowallis et al. (1984) to the presence of microporosity
associated with clay minerals (Neashem, 1977; Pittman and
Thomas, 1978). Thus, sonic porosity includes both micro-
porosity and macroporosity. The relation between total
porosity and effective macroporosity can be expressed by

q)x :¢c+¢mjr 3 (8)
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Figure 2. Crossplot of core porosity (%) versus sonic wave transit time (us/m) in the Moorari (a) and Fly Lake (b) Fields, DT = pore fluid (rabsit fime; Dima = matrix

transit time; DT = rock transit time.
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Figare 3. A crossplot of poresity calculated using the new equation shows good
correlation (r2 = 0.8) with measured core porosity.

where ¢; is total porosity, ¢, is effective porosity and ¢, is
microporosity associated with clay minerals,

As sonic porosity is equal to total porosity, and Back-
Scattered Electron (BSE) image analysis of the clay
minerals in the Tirrawarra Sandstone indicates an average of
20% microporosity in the kaolinite, equation (8) can be re-
arranged as

q)e = ¢som‘c _02"/&: ] (9)

where ¢sgnic 15 sonic porosity and Vy, is volume fraction of
kaolinite.

Knowlédge of volume fraction of clay allows detérmina-
tion of the amount of effective porosity for the Tirrawarra
Sandstone.

Petrographic point count data were used to evaluate
equation (9). Point count intergranular porosity is
considered as effective porosity and sonic porosity is
estimated from equations (6) and (7). On average, the
estimated effective porosity is 2 porosity units less than the
total porosity, with. a corrélation coefficient of about 0.9. To
find a better estimation of effective porosity with less
variation of values, different subsets were tried. The best
subsets were those classified according to depositional
environment where variations of effective and sonic
porosity were less, thereby suggesting a better estimation of
effective porgsity. The difference between effective and
total porosity in each sedimentary envitonment indicates
that the volume fraction of kaolinite is different in each
environment.

The crossplots of sonic. porosity versus effective porosity
for samples from each sedimentary environment (Figure 4a-
e) show a good correlation. The equations from the
regression line of the crossplots can be used for each
sedimentary environment to estimate effective porosity.

For all samples the relation between effective and sonic
total porosity is

0,=095¢, - 14 - (10)

The relationships between sonic total porosity and
effective porosity . for the individual paleoenvironment
subsets are plotted in Figure 4.

As the determination of kaolinite from wireline log data
for the present wells is difficult and not reliable, the
equations (Figure 4) will allow estimafion of effective
porosity for Tirrawarra Sandstone in the Moorari and Fly
Lake fields.

DISCUSSION AND CONCLUSION

The reduction of acoustic velocity in kaolinite-bearing
Tirrawarra Sandstone is related to microporosity among
kaolinite booklets. This indicates that sonic porosity
includes both macroporosity and microporosity. In the
present study, new equations are introduced for the
Tirrawarra Sandstone in the Moorari and Fly Lake Fields.
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Figure 4. The: crossplot of sonic poresity versus effective porosity for all samples
(a), for samples from the beach barrier environment (b); meandering fluvial
system (c), medial part of the braid-delta (d), and distal part of the braid-delta (¢).
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The plot of sognic porosity derived from the new equations
and core porosity shows ari r2 value of 0.8. These equations
calculate total porosity. In this study, a new equation is
suggested for kaolinite-rich sdndstones to estimate
macroporosity from sofiic porosity

¢mac = ¢sonic -aVy

“In this equation a value of 20% was used for
microporosity within kaolinite masses (a) in the Tirrawarra
Sandstone. The equation can be applied to other kaolin-
bearing sandy formations provided that the amount of
microporosity associated with kaolinite (2) be assessed for
the formation.
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