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Abstract

This thesis addresses some problems that arise in signal processing when the noise
is impulsive and follows a heavy tailed distribution. After reviewing several of
the more well known heavy tailed distributions, the common problem of which of
these best models the observations is considered. To this end, a test is proposed
for the symmetric alpha stable distribution. The test threshold is found using
both asymptotic theory and parametric bootstrap resampling. In doing so, some
modifications are proposed for Koutrouvelis’ estimator of the symmetric alpha
stable distribution’s parameters that improve performance. In electrical systems
impulsive noise is generated externally to the receiver while thermal Gaussian
noise is generated internally by the receiver electronics, the resultant noise is an
additive combination of these two independent sources. A characteristic function
domain estimator for the parameters of the resultant distribution is developed for
the case when the impulsive noise is modeled by a symmetric alpha stable dis-
tribution. Having concentrated on validation and parameter estimation for the
noise model, some problems in signal detection and estimation are considered.
Detection of the number of sources impinging on an array is an important first
step in many array processing problems for which the development of optimal
methods can be complicated even in the Gaussian case. Here, a multiple hy-
pothesis test for the equality of the eigenvalues of the sample array covariance is
proposed. The nonparametric bootstrap is used to estimate the distributions of
the test statistics, removing the assumption of Gaussianity and offering improved
performance for heavy tailed observations. Finally, some robust estimators are
proposed for estimating parametric signals in additive noise. These are based on
M-estimators but implicitly incorporate an estimate of the noise distribution, en-
abling the estimator to adapt to the unknown noise distribution. Two estimators
are developed, one uses a nonparametric kernel density estimator while the other
models the score function of the noise distribution with a linear combination of

basis [unections.
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Chapter 1

Introduction

Ed

Do, or do not. There is no ‘try’,

— Yoda

For several reasons the Gaussian distribution dominates as a statistical model.
Theoretical justification is provided by the central limit theorem (CLT) which
states that, subject to some conditions [25], the result of summing the contribu-
tions of a large number of random variables with similar behaviour is a Gaussian
random variable. A well known example is the Gaussian nature of thermal noise.
Procedures based on the assumption of Gaussian noise tend to be structurally
simple, the optimal Neyman-Pearson detector for a known signal in Gaussian
noise is the matched filter, a linear transformation. Finally, there exists a large
body of knowledge regarding the statistical characteristics of Gaussian processes,
which expediates the design and analysis of these procedures.

In contrast, non-Gaussian models generally lead to nonlinear structures. This
can complicate matters to the extent that although the Gaussian model is not
accurate it is preferred for its tractability and the performance loss is accepted.
Despite the simplicity of a Gaussian model, performance may be degraded to the
point where more accurate, albeit more complicated, non-Gaussian models are
necessary. Performance degradation is most severe when the noise is impulsive.
Impulsive noise is characterised by larger values which occur too frequently for
the Gaussian model to be an accurate description of the process. The heavy
tailed distributions used to model impulsive noise are common in the statistical
literature where they model data contaminated by outliers.

There now exists a large body of evidence for impulsive noise in a variety of
important practical situations such as wireless and submarine communications,
switching transients in powerlines [4, 129, 135], ignition noise [80, 161, 162], un-

derwater acoustic signals [174], radar sea clutter [147], infra-red remote sens-

1
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ing [96], synthetic aperature radar returns [12, 45], shot noise [146] and tele-
phone static [165]. Impulsive noise is also prevalent in work environments due
to office equipment, fluorescent lighting, elevators, microwaves and electrical ma-
chinery [20, 21]. Heavy tailed processes have been used to model heart rate
variability [28, 29|, seismic activity and climate change [147], computer net-
works [62, 93, 94] and econometric time series [117, 123].

A number of heavy tailed distributions exist and the question of which best
models a set of observations is an important one since the performance of any pro-
cedure is dependent on the model faithfully capturing reality. Existing techniques
used in testing for specific distributions tend to perform poorly when deciding
between heavy tailed distributions and so more powerful tests are needed. Fol-
lowing validation of the model, any defining parameters must be estimated. The
first part of this thesis concentrates on the problems of validation and estimation
when using symmetric alpha stable (SaS) distributions to model impulsive noise.

The prevalence of heavy tailed phenomena has motivated the design of statis-
tical methods with improved performance over those based on Gaussian assump-
tions and, for the case when none exist, the development of new techniques. This
is the focus of the second part of the thesis where specific problems in detection
and estimation are addressed.

Detection of the number of sources impinging on an array is an application
of the general problem of estimating the dimension of a signal subspace. The
associated statistical theory is complicated even for the Gaussian case, while
existing solutions are known to be sensitive to departures from Gaussianity. The
source detection problem has not been properly addressed for heavy tailed models,
one approach is proposed here.

An optimal approach to estimation of a parametric signal in additive noise is
maximum likelihood estimation (MLE). Some disadvantages of MLE are its po-
tentially debilitating computational complexity and reliance on a specific model.
Robust estimators such as M-estimation seek to reduce dependence on a specific
model while still offering certain level of performance with acceptable complex-
ity. Some modifications to existing robust estimators are proposed which improve

their performance.

1.1 Aims and Objectives

The broad aim of this thesis is to develop technigues for the validation and

parameter estimation of models for impulsive noise, and then to design methods
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for detection and estimation of signals in impulsive noise. More specifically,

1. Validation and parameter estimation: To develop tests for the validation
of SaS distributions. To both improve and develop estimators for the

parameters of heavy tailed distributions.

2. Detection: To design methods for the detection of sources in array process-

ing.

3. Estimation: To design robust estimators when the noise is impulsive.

1.2 Contributions

The original contributions made in this dissertation include

1. A goodness-of-fit test for SwS distributions based on the stability property.

2. Asymptotically optimal selection of points at which to sample the empirical

characteristic function {ecf) for Koutrouvelis’ Sa.S parameter estimator.

3. Animproved estimator for the parameters of the SaS Gaussian sum (Sa.SG)
distribution, a sum of SaS and Gaussian random variables which models

impulsive and thermal noise simultaneously.

4. A method for source detection in array processing when the sample size is

small and/or the observations are non-Gaussian.

5. Generic adaptive robust estimators for the parameters of a deterministic

signal in additive noise.

1.3 Scope and Overview

Chapter 2. Reviews several heavy tailed distributions which are used as impul-

sive noise models throughout the thesis.

Chapter 3. A goodness-of-fit hypothesis test is developed for Sa&$ distributions
based on the stability property. The null distributions of the test statistics
are derived using asymptotic theory and estimated using bootstrap tech-

niques.
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Chapter 4. An estimator for the parameters of the SaSG distribution model
of impulsive noise is proposed based on a nonlinear weighted least squares

regression in the characteristic function (cf} domain.

Chapter 5. The problem of source detection in array processing is considered.
A detector utilising the bootstrap to estimate the null distributions of the

test statistics is developed.

Chapter 6. An adaptive robust estimator is developed for a parametric signal
in impulsive noise. An M-estimation structure is used but with the score
function of the noise distribution being estimated from the observations.

Chapter 7. Conclusions and future directions.
Appendix A. A review of the cf, ecf and associated theory.

Appendix B. Optimal sampling of the ecf for estimation of the parameters of
SaS distributions by the method of Koutrouvelis.

Appendix C. Taylor series expansions of random variables.
Appendix D. A review of the bootstrap and similar resampling techniques.

Appendix E. A review of multiple hypothesis tests.



Chapter 2

Models for Heavy Tailed
Distributions

Research is what I'm doing when

I don’t know what I'm doing.
— Wernher von Braun

Heavy tailed distributions may be defined as those which possess probability
density functions (pdfs) whose tails decay at a rate which is less than that of the
Gaussian pdf. Although this definition admits an unlimited number of possible
pdfs, several dominate due to their mathematical tractability and capacity to
accurately model data. The models may be broadly classified as either statistical-
physical or empirical models.

In communications, radar and sonar systemns it is generally assumed that there
are an unspecified number of independent noise sources transmitting at random
in time and space. The mechanisms generating the noise include natural and
artificial electromagnetic or acoustic transients and multiple access interference.
Statistical-physical models are based solely on these broad assumptions regarding
the noise generating mechanisms and generally lead to accurate but complex
models whose parameters have a direct physical significance.

Empirical models are favored for their ability to accurately model the data in
a mathematically tractable fashion. Their parameters may not have any direct
physical significance, but rather describe the level of impulsive behaviour in an
arbitrary fashion.

Several of the most common heavy tailed distributions which model impulsive
noise are Middleton’s models [129], the SaS distribution [135] and the Gaussian
mixture distribution [186]. Next, the models are briefly reviewed. Herein, the

general assumption of iid noise is made.

5
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2.1 Middleton’s Models

Middleton developed the statistical-physical Class A, B and C models of noise [19,
129, 130, 132] based on general assumptions regarding the statistics of the noise
sources. The models are canonical, that is, they are independent of the specific
mechanisms which generate the noise. They model electromagnetic and acoustic

noise equally well given the fundamental assumptions hold, these are

1. An unlimited number of sources generate random waveforms independent

of each other.

2. The distribution of these sources is random in time and space, being tem-
porally and spatially Poisson distributed independent of the waveform or

propagation law.
3. The propagation law is an inverse power one.

Inherent in these models is a Gaussian component which describes thermal noise
generated at the receiver.

The three classes, A, B and C are characterised by the relative bandwidths of
the noise and the receiver. For Class A noise the signal bandwidth is less than the
receiver bandwidth and visa versa for Class B noise. Class C is an intermediate
case. The relationship between the noise and receiver bandwidths results in Class
B noise producing significant transients at the receiver while for Class A noise
the transients are negligible. Consequently, the Class B model is more impulsive.

The pdf of Class A noise is a scale mixture of Gaussian distributions, the

instantaneous envelopes of the sources being Rayleigh,

x

= e 4Ar 1 2
fX (ﬂ:) - Z n' F—'_Qﬂ_o_%o_z exp _20_’%0_2 H

n=0

(2.1)

where 02 = (n/A + T,)/(1 +T,). The pdf is described by the 3 parameters
A >0, 0% > 0and I, > 0 which describe the intensity with which impulsive
events occur, the power (variance) of the noise and the ratio of the powers of the
Gaussian and non-Gaussian components respectively.

The more general Class B model requires up to 6 parameters and is a gener-
alisation of Hall’s model for atmospheric interference when the Gaussian compo-
nent is ignored [128]. Middleton’s Class A model has since been generalised to
model the electromagnetic noise received by antenna arrays in communications

systems [125].
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2.2 Symmetric Alpha Stable Distributions

Sa§ distributions were first encountered by Cauchy. He considered whether a
pdf would result if the Gaussian cf, exp(—w?), was generalised to exp(—|w|*).
The only solution obtained in closed form was for & = 1 and is now known as
the Cauchy distribution. The inverse Fourier transform of this cf is a proper pdf
for 0 < a < 2 and is the SaS distribution [90]. Since then, the theory of SaS
distributions has been extended to alpha stable («S) distributions, which may
be nonsymmetric, for multivariate random variables and processes [33, 52, 98,
152, 154, 156]. Due to the general lack of a closed form expression for the pdf of
«S distributions but the existence of a simple expression for the cf, much of the
theory has been developed in the cf domain [114]. The theory of oS distributions
is considered in more detail in Chapter 3.

These heavy tailed distributions possess several interesting properties, two of
which are highly relevant to the use of @S distributions in modelling impulsive
noise. First, except for the specific case of Gaussian distributions, they possess
infinite variance. Some argue that infinite variance is an unrealistic assumption,
since in practice the variance will always be bounded. By the same reasoning
the Gaussian model can also be rejected since in practice unbounded random
variables do not occur. Also, the sample variance of a finite realisation of oS
random variables will always be bounded. Second, the generalised central limit
theorem (GCLT) states that regardless of the existence of the variance, the limit-
ing distribution of a sum of independent and identically distributed (iid) random
variables is @S. This encompasses the CLT where the limiting distribution of a
sum of iid random variables with finite variance is Gaussian. Just as the CLT is
a powerful motivation for the use of a Gaussian model, so too does the GCLT
make a5 distributions an appealing model.

Characterised by two parameters, Sa.S distributions can offer greater math-
ematical tractability over Middleton’s more complex statistical-physical models.
In particular, SaS distributions approximate Middleton’s Class B model if the
Gaussian component is ignored. As the Class B model requires 6 parameters, the
parsimonious SaS model may be preferred {132]. The SaS distribution can be
regarded as a hybrid between statistical-physical and empirical models.

Practical applications of SaS distributions go back to the work by Holtsmark
who showed that the gravitational field resulting from an infinite collection of
Poisson distributed sources in space is SaS [35]. Later, oS distributions were

suggested as a model for econometric time series by Mandelbrot [118, 117] and
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others [47, 48, 57, 123]. Further evidence for S distributions came when tele-
phone noise was shown to be non-Gaussian and well modelled by a5 distribu-
tions [163].

Motivation for the oS model is not limited to empirical evidence. In a similar
approach to Middleton’s it has been shown that spatially and temporally dis-
tributed Poisson scatterers result in Sa.S noise at the front end of a receiver [135].
The same was shown to be true in a multiple access system where the noise
sources are other users sharing the channel and of backscattered echo in radar
systems (82, 84].

Some more recent applications of aS distributions have been in modelling
submarine communications, switching transients in power-lines, automobile igni-
tion, seismic activity, ocean waves, radar sea clutter, file transfer size and packet
inter-arrival times in computer networks, heart rate variability, synthetic aper-
ature radar data, infra-red remote sensing data, shot noise, Cerenkov radiation
and ultrasound imaging of tissue [4, 12, 28, 29, 45, 62, 93, 94, 96, 146, 147].

2.3 Gaussian Mixtures

Gaussian mixtures possess a pdf which is a weighted sum of Gaussian pdfs. As
the ratio of each components’ variance increases with respect to the smallest,
the heavier tailed the distribution becomes. The model is quite general and
for a suitably large number of components can approximate a wide variety of
symmetric zero mean random variables such as the Laplace distribution [9] and
the SaS distribution [110]. The approximation becomes equality for a continuous
scale mixture of Gaussian distributions, so that SaS and Laplace distributions
can be considered to be conditionally Gaussian [109, 156, 9]. The definition of
Middleton’s Class A model directly shows it to be a Gaussian mixture distribution
comprised of an infinite number of components.

A large number of components, while accurate, is not particularly parsimo-
nious and tractability will suffer. In [22, 108, 107] a 2 to 4 term Gaussian mixture
was suggested as being sufficient in most problems where the parameters were
estimated using the expectation-maximisation algorithm. A popular compromise

is the 2 component e-mixture (¢~mix) distribution,
fx(z) = (1 - &) folz;0?) + efelz; ko), (2.2)

where 0 < ¢ < 1, k > 1 and fg(z;0?) is a Gaussian pdf with zero mean and

variance o. The component with the larger variance models the impulsive noise,
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impulsive events occurring with probability . The e—mix distribution can be
regarded as an approximation to Middleton’s Class A model where all the com-
ponents comprising the non-Gaussian noise are lumped together into a single
component of the Gaussian mixture [186]. Aside from this theoretical motiva-
tion, the e—mix distribution is an empirical model for impulsive noise. It is also
one of the simplest models, in terms of mathematical tractability, which includes

the effects of Gaussian noise.

2.4 Generalised Distributions

Distributions such as the generalised Gaussian, generalised Cauchy and gener-
alised Laplace have not been as extensively studied for the purpose of modelling
impulsive noise [36, 99, 172, 133] as the aforementioned Middleton’s models, Sa.5
distributions or Gaussian mixtures.

The generalised Gaussian distribution has been considered as an alternative to
the SaS distribution [173] and as a model for multiple access interference in direct
sequence spread spectrum systems [172], while in [174] an asymmetric generalised
Gaussian distribution was shown to accurately model underwater acoustic data.
The tails of the generalised Gaussian distribution decay exponentially, meaning
the distribution is not as heavy tailed as one with algebraically decaying tails,
such as the SaS or Cauchy distribution. This exponential decay is evident from

the generalised Gaussian pdf,
v z
fxlz) = 2al(1/v) exp(— ‘E

and is controlled by the shape parameter 0 < v < 2. The scale parameter a > 0
is related to the variance of the distribution as o? = a®T'(3/v)/T'(1/v) where T'(-}

is Euler’s Gamma function. For v = 2 the distribution is Gaussian and for v =1

) (2.3)

it is the Laplace or double exponential. Note that the form of the generalised
Gaussian pdf, exp(—|z|"), is the same as that of the Sa.S cf, exp(—|w|*). Use of
the generalised Gaussian distribution as an impulsive noise model is motivated
by the simple form of the pdf, the existence of all moments and the reduction to
a Gaussian distribution for v = 2.

In comparison, the generalised Cauchy distribution possesses algebraically
decaying tails [99], except for a limiting case where it approaches the generalised
Gaussian distribution [133]. Also note that the generalised Cauchy and SaS

distributions coincide for the case of a Cauchy distribution. One reason for using
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the generalised Cauchy distribution is that it broadens some existing models for
impulsive noise [133, 126].

The generalised Laplace distribution has not appeared a great deal in the
literature except for the special case of the Laplace distribution. It can be shown
to have a limiting Gaussian distribution and hence coincides with the generalised

Gaussian distribution in this and the Laplace case (36].

2.5 Examples

To gain an intuitive understanding into the nature of impulsive noise, realisations
from several heavy tailed distributions are shown in Figure 2.1 with their asso-
ciated pdfs appearing in Figure 2.2. The distributions have been scaled to have
unit variance and for the Sa.S distribution, a unit scale. Note the common char-
acteristic impulses which tend to dominate the sample. Their relative intensity
is related to the tail thickness. For example, the SaS distribution, having the

thickest tails, produces significant impulses.
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Figure 2.1: Realisations from several heavy tailed distributions. Middleton's Class A
model with 4 = 0.1, [, = 0.1 (top left), the SaS distribution with & = 1.8 (top
right), the e—mix distribution with & = 0.1, & = 10 (bottom left) and the generalised

Gaussian distribution with © = 1.
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Figure 2.2: Pdfs of the heavy tailed distributions referred to in Figure 2.1.



Chapter 3

Testing for Symmetric Alpha Stable
Distributions

Do not worry about your problems
with mathematics, I assure you

mine are far greater.
— Albert Einstein

The symmetric alpha stable distribution is a well-known statistical model for
heavy tailed phenomena encountered in communications, radar, biomedicine and
finance. Theoretical motivation for the symmetric alpha stable model is provided
by results such as the generalised central limit theorem and the stability property
which transcend similar results for Gaussian distributions. Aside from theoreti-
cal arguments, heavy tailed phenomena have been shown to be well modelled by
symmetric alpha stable distributions in many cases. The empirical evidence is
largely qualitative in nature, such as visual comparisons of the amplitude proba-
bility distributions of impulsive noise and symmetric alpha stable distributions.
As human judgement is subjective, quantitative statistical tests are preferred.
Here, a hypothesis test for the goodness-of-fit to symmetric alpha stable distri-
butions is developed based on the stability property.

3.1 Introduction

While a model may be well motivated theoretically, sufficient empirical evidence
should exist to support its use, as statistical procedures developed under the
incorrect model may perform poorly. Much effort has been devoted to the analysis
of signals modelled using aS distributions, even though they may not always
provide the best fit to the data [16, 88]. Empirical evidence for a5 distributions

12
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tends to be based on qualitative subjective tests or exploratory analysis, hence
quantitative statistical tests are needed.

Current techniques include tests for infinite variance and examination of the
estimated pdf’s tails [135]. Tests for infinite variance exclude the Gaussian case,
which is SaS, but admit all other distributions with infinite variance. Both
require visual inspection, leading to subjective decisions. A statistical test for a5
distributions has been proposed based on the maximum distance between the ecf
(empirical characteristic function) and the parametric cf evaluated at estimates
of the distributional parameters {29]. This is an adaptation of a well known cf
based goodness-of-fit test [197).

In this Chapter statistical tests for SaS distribution are developed based on
their unique stability property, the approach being to determine whether the
observations possess this property. Both asymptotic theory and the parametric
bootstrap are used to obtain the distribution of the test statistic under the null
hypothesis.

This Chapter begins by defining the &S distribution and reviewing some of
the properties required later for development of the test in Section 3.2. Next, in
Section 3.3, generic goodness-of-fit tests and specific tests for heavy tailed and
a8 distributions are reviewed. The proposed test is then developed in Section 3.4

and is compared with some existing goodness-of-fit tests in Section 3.5.

3.2 Theory of Alpha Stable Distributions

In this section the .S distribution is defined and some of its important properties

are reviewed.

3.2.1 Definitions of Alpha Stable Distributions

Several equivalent definitions for .S distributions exist. A common thread linking
these definitions is the invariance of aS pdfs to convolution, so that sums of iid

oS random variables are also 5.

Definition 1 A random variable X follows an aS distribution if for any A, B >
0, there is a C > 0 and o D € R such that

AX; +BX; £CX + D, (3.1)

where X, X, are independent copies of X and 2 denotes equality in distribu-
tion [1506].
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Definition 2 A random variable X follows an oS distribution if for any n = 2,
there is a C, > 0 and a D, € R such that

X1+ Xg+ o+ X, L CoX + Dy, (3.2)

where X1, X2, -, X, are independent copies of X. C, can be shown to be
n/= [156].

The term independent copy implies that if a random variable X is distributed
as Fy and another random variable Y is said to be an independent copy of X,
then the distribution of Y, Fy, is identical to Fx.

A random variable is strictly @S if D = 0in (3.1), or if D, = 0 in (3.2). A
random variable is Sa8 if X and —X have identical distributions, SaS random
variables are then a special case of strictly &S random variables.

These two definitions demonstrate the stability property of @S distributions.
They imply that sums of iid oS random variables also follow the same @S distri-
bution to within some scale (C in (3.1), C, in (3.2)) and shift (D in (3.1), D, in

(3.2)).

Definition 3 A random variable X follows an «S distribution if it has a domain
of atiraction such that there exists ¢ sequence of iid random variables ¥1,Ys, ...

and sequences d,, > 0, a, € R fulfilling

K+Y§;...+Yn+aniX’ (3-3)

where 5 denotes convergence in distribution [156].

An equivalent interpretation of this definition is the so called GCLT which states
that the limiting distribution of a normalised sum of iid random variables is a5,
if a limiting distribution exists [25, 52, 63, 156]. The GCLT generalises the CLT
for sums of iid random variables when the variance does not exist, reducing to

the CLT when the variance does exist.

Definition 4 A random variable X follows an oS distribution if there are pa-
rameters 0 < o <2, -1 <3 <1, ¢c>0andd € R such that its cf is of the

form

¢x(w) = exp(pow — |ew|* (1 + s3sgn{w) g(w))) , (3.4)
where ( )
) —tan(F) a#1
glw) = { 2logl|  a=1 (3.5)

and sgn(-) denotes the signum function [65, 156].
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An oS distribution is uniquely defined by the four parameters used in the above

definition. The meaning of each of the parameters is as follows

«:  The characteristic exponent is a measure of the degree of heavy tailed-
ness of the distribution, smaller values corresponding to heavier tails.
The asymptotic rate of decay in the tails of the pdf is proportional to

|.’L'|_a_1.

3:  The skewness parameter is positive when the distribution is skewed
to the right and negative when skewed to the left. When 3 = £1 the

distribution is zero over part of the real line.

¢:  Thescale parameter is a measure of dispersion or spread. When o = 2

2

the variance, o2, exists and ¢ = 0?/2.

d:  The location parameter shifts the distribution along the real line.
When 1 < o < 2 the mean, y, exists and u = 6.

An a8 distribution is standardised if ¢ = 1 and § = 0, in which case it is
entirely determined by the shape parameters a and 3, excluding the special case
a=1,3#0. If X follows a standard oS distribution, then ¢X + 4 has an aS
distribution with the same shape parameters, but with scale ¢ and location 9,
this is easily proven using the a8 cf. Of interest here is the SaS distribution for
which 5 =0, § =0 and the cf is

dx (w) = exp(— |ew[") - (3.6)

3.2.2 Properties of Alpha Stable Distributions
3.2.2.1 Probability Density and Cumulative Distribution Functions

The pdf of an oS distribution is unimodal and continuous. In all but three
cases the pdf cannot be expressed in closed form but exists as a definite integral
obtained from an inverse Fourier transform of the ¢f. The three exceptions are
the Gaussian (o = 2, 8 = 0), Cauchy (¢ = 1, 3 = 0) and Lévy (a = 0.5,
3 = 1) distributions. Convergent and asymptotic series representations for a8
distributions also exist.

Much effort has been devoted to developing fast algorithms for calculation of
the pdf and cumulative distribution function (cdf), though a numerically expen-
sive inversion of the cf is the only general approach which can be taken. Efficient

methods for numerical integration coupled with an alternative representation of



3.2 Theory of Alpha Stable Distributions 16

the cf for improved accuracy over parts of the parameter space was considered
in [139, 136, 138]. Further reductions were obtained by using spline interpolation
over a grid covering the support of the distribution and the parameter space.
In {133, 182] series expansions are used when they are known to be accurate,
while a fast Fourier transform inversion of the c¢f was used otherwise. An alter-
native approach was taken in [124] where the Sa.S distribution was modeled as a
linear combination of Cauchy and Gaussian distributions with the residue being
approximated by splines, this gave accurate results for 0.84 < a < 2.

The numerical difficulties associated with evaluating the oS pdf and cdf have
limited the widespread application of common statistical techniques, such as

MLE [113], to oS distributions and has motivated investigation into alternatives.

3.2.2.2 Tail Behaviour

Non-Gaussian (o < 2) a5 distributions are heavy tailed, with an asymptotically
algebraic rate of decay [156],

Property 1 If X ~ aS{a,3,¢,6) with 0 < o < 2 then,

lim Pr[X > z] = (14 8)C,c"z™™ (3.7)
lim PriX < —z] = (1= p3)Cacz™7, (3.8)
where
1-o
Cu= | Tl 7 (39)
= o =1

The Gaussian (o = 2) distribution decays exponentially, if X ~ aS(2,0,¢c,§) then

1 z?
im PrlX = -— . 3.10
\:clllgloo X >zl 2/mex P ( 4c? ) (3.10)

3.2.2.3 Fractional Lower Order Moments

For an aS distribution with a < 2, the variance does not exist, in addition, the
mean does not exist for &« < 1. This limits the use of the method of moments
and has motivated the use of fractional lower order moments (FLOMSs) in their
place. The FLOM of order p is defined as

E[X[7], (3.11)

where in general 0 < p < 2, although negative values of p are sometimes used.
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Property 2 The FLOMs of an oS distribution are finite for 0 < p < o [185,
156]. For a SaS distribution the FLOMs exist for —1 < a < p [116, 135].

The conditions required for existence of the FLLOMs of an @S distribution can be

obtained by way of Property 1.

3.3 Goodness-of-Fit Tests

The goodness-of-fit problem can be stated as follows. Given N iid random vari-
ables X1, ..., Xw, determine whether they are distributed as Fx(z; @)} where the
distributional parameters contained in 8 may be unknown.

An objective answer to this question is obtained by formulating the problem
as a statistical hypothesis test [112]. The hypothesis testing framework for the
goodness-of-fit problem is comprised of the null hypothesis H, that the X, are
distributed as Fx(x;8), versus the alternative hypothesis K, that they are not.
Let the unknown distribution of the X, be Gx{z), then the test is succinctly

described as

H : Gx(z)= Fx(z;8)
K : Gx(z)# Fx(x;9). (3.12)

Note that while the distribution of the X, is not equal to Fx(x; €} under the
alternative hypothesis, it is otherwise unspecified. Futhermore, when testing for
a class of distributions parameterised by 8, estimates for @ are generally required
as their exact values are unspecified. In general then, the goodness-of-fit problem
consists of null and alternative hypotheses which are both composite. Before
proceeding, a short digression is made to briefly review the theory of hypothesis
testing and define some commonly used terms.

Two general philosophies of hypothesis testing exist, Bayesian and Neyman-
Pearson [131, 112, 157]. Bayesian tests seek to minimise the cost of making a
decision. The necessity of assigning costs to correct and incorrect decisions have
limited the use of Bayesian tests as these costs are difficult to assign and interpret
in practice. For these reasons, Neyman-Pearson tests are the most common and
are used exclusively herein.

A Neyman-Pearson test seeks to maximise the probability of correctly ac-
cepting the alternative hypothesis (or equivalently, correctly rejecting the null
hypothesis) subject to a constraint on the probability of incorrectly accepting the

alternative hypothesis.
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The former probability is known as the power of the test or the probability
of detection, depending on the particular application, and is denoted Pp. A test
is sald to be powerful if its power is large compared to other tests. The latter
probability is known as the false alarm rate or the probability of false alarm and is
denoted Pr4. The constraint placed on P, is Pry < { where ( is set a priori and
is known as the set level of the test. A test which meets this constraint is said to
maintain the set level, if Ppy < ¢ the test is said to be conservative. The decision
is based on the test statistic T'(X7,. .., Xx), a function of the observations.

In a binary test where there are two hypotheses H and K, every possible value
of T(X,...,Xx) is assigned by the test to one of two mutually exclusive regions,
the rejection or critical region R and the acceptance region A. fT(X;,..., Xn) €
R then K is accepted, alternatively, if T(X;,..., Xn) € A then H is accepted.
The regions R and .A are related to the probabilities Pp and Pra as follows,

PHUT(Xy,.. ., Xn) € RIH] = Pra<¢ (3.13)
Pr[T(X1,...,Xx) ER|K] = Pp, (3.14)

where the probabilities are conditioned on which hypothesis is true. The bound-
ary between these two regions is know as the threshold of the test or the critical
value. A test is optimal in the Neyman-Pearson sense if it is the most powerful
among all tests which maintain the set level. The power of a test can always be
increased at the cost of increasing the set level, thereby increasing Pr4. Typically
( is set to an acceptably small value, say 0.05.

In order to formulate an optimal test, the distribution of the observations is
required under the null and alternative hypotheses. In the goodness-of-fit problem
it is only required that the distribution of the observations, G x(z), is not equal
to that under the mull hypothesis, Fx(z; @), but is otherwise unspecified. Hence,
an optimal test cannot be formulated. Instead, tests must be compared in terms
of their power, given they maintain the set level.

Returning now to the question of testing for goodness-of-fit, a survey of the lit-
erature reveals that several techniques exist which attempt to solve this problem.
Generic methods include graphical approaches, chi-squared (x*) and empirical
distribution function (edf) tests, each of which has many variants [38]. Other
tests make use of a property particular to the null distribution [117]. More re-
cently, technigues based on the ecf have been proposed [197]. A brief overview of
these techniques follows with special regard to their application in testing for aS

distributions.
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3.3.1 Graphical Tests

Probability plots are generic graphical tests useful in exploratory work. They plot
a transformation of the ecdf (empirical cumulative distribution function} such
that under the hypothesised distribution a straight line is obtained. Regression
tests or human judgement are then used to measure the fit.

From (3.12) a plot of G3'(Fx(x; 8)) versus z is linear under the null hypothesis
Gx(r) = Fx{(z;8), as is a plot of Gx{x) versus Fx(z;8). The former, a QQ
(quantile-quantile) plot, plots quantiles under the null hypothesis versus empirical
quantiles. The latter, a PP (percentile-percentile) plot, plots percentiles under
the null hypothesis versus empirical percentiles. Empirical estimates for G x{z)

may be obtained from the ecdf,
LN
Gx(z) =+ ;I(Xn <z), (3.15)

where [(-) is the indicator function.

QQ plots are not recommended for heavy tailed null distributions as their
variance may grow very large away from the centre of the distribution. Subjective
judgements are more easily made using PP plots as their variance reaches a
bounded maximum at the 50%* percentile and decreases moving out towards the
extreme percentiles, if necessary variance stabilised PP plots may be used [139,
137].

In Figure 3.1 QQ and PP plots are shown under the null hypothesis where
N = 1000 observations were drawn from a standard SaS distribution with a = 1.
For the QQ plot it is difficult to judge visually whether the observations follow a
straight line except near the centre of the distribution due to the aforementioned
high variance in the extreme quantiles. In contrast, the PP plot appears to
favour the null hypothesis as the observations clearly follow a straight line across
all percentiles. This highlights the unsuitability of QQ plots when testing for a
heavy tailed null hypothesis.

Other graphical techniques compare the fit of the ecdf to the null cdf either
subjectively, or using statistical methods such as the Kolmogorov-Smirnov test.
At least for aS distributions subjective tests of this sort are not recommended
as the ecdf changes rapidly near the mode. Plots of the smoothed empirical pdt
(epdf) versus the pdf have been suggested instead [137, 139].
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Figure 3.1: Testing for Sa.S distributions using QQ plots (left) and PP plots (right)
where N = 1000 observations were drawn from a standard S«.S distribution with

a=1.

3.3.2 Chi-Squared Tests

x* tests group the observations into bins and then compare observed with ex-
pected counts under the null distribution. The test statistic is the squared differ-
ence between counts, suitably normalised such that the asymptotic distribution is
x2. In the literature, corrections to the classical x? statistic can be found for the
case where the distributional parameters must be estimated, as can guidelines for
selecting the bins [38]. In general x? tests are not as powerful as edf tests such

ag the Kolmogorov-Smirnov test.

3.3.3 Empirical Distribution Function Tests

Edf tests are generic procedures which measure the distance between the ecdf
and the cdf under the null hypothesis {38]. In this sense, probability plots and x?
tests can be viewed as special cases of edf tests, but are generally not regarded
as such.

Edf tests may be classified according to the nature of their test statistic, the
most common falling into two classes, those based on supremum statistics and
those based on quadratic statistics.

Supremum statistics measure the vertical difference between the ecdf GCx (x)
and the null distribution Fx(z;8),

Dis = sup (@x(w)—F(w;B)) (3.16)

Dys = sup (F(z;6) —c";X(:c)), (3.17)

T
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the well known Kolmogorov-Smirnov test being based on the statistic
Dys = sup |Gx(x) — F(z; 8)| = max(D¥g, Dgg)- (3.18)

Quadratic statistics, also known as the Cramér-von Mises family of statistics,
measure the weighted integrated squared error between the ecdf and the cdf under

the null hypothesis,
Q=N /_ " (6x() - F(:0)) w(z) dF(z;0), (3.19)

where w(z) is a weighting function. Various quadratic statistics are obtained
through selection of w(z). These include the Cramér-von Mises statistic, Qcu,
where w(z) = 1 and the Anderson-Darling statistic, @4p, where w(z) = (F(z; )
(1-F(z;0)))7" [38].

Evaluation of the test statistics are simplified by using the probability integral
transform, Z, = Fx(X,,;8), which transforms the statistics to a uniform distri-
bution on [0,1], U(0,1), under the null hypothesis. The general problem then
becomes one of testing for a uniform distribution.

The asymptotic null distributions of the edf statistics Dxg, Q@car and Qap are
known when the null distribution is fully specified, while corrections are available
for finite samples. If distributional parameters are estimated, the asymptotic
distributions are incorrect since the Z, are not U(0,1) distributed under the
null hypothesis. In general, the null distributions of the test statistics will then
depend on quantities such as Fix(z;8), the true parameters, the estimator, and
the sample size. Critical values must then be computed through Monte Carlo
simulation [38].

The power of edf tests is dependent on the statistic used and the null dis-
tribution. In general the Kolmogorov-Smirnov statistic is less powerful than the
Cramér-von Mises or Anderson-Darling statistics. Compared to the Cramér-von
Mises statistic, the Anderson-Darling statistic gives more weight to extreme ob-
servations through w{z) and tends to be more powerful at detecting departures
in the tails {38].

3.3.4 Property Based Tests

3.3.4.1 Testing for the Tail Behaviour

One of the first tests for oS distributions was motivated by the need to deter-
mine whether they could model econometric data [117, 47]. The test utilised the
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tail behaviour of aS distributions, as defined in Property 1, with a subjective
judgement being made on whether the observations followed a power law in the

tails. To demonstrate, consider the case 8 = 0. From Property 1,
log(Pr[X > z]) = ag + ay log(z) (3.20)

for @ < 2 as x — oo, where ag = log{(Cyc?) and a; = —a. Under the null
hypothesis a plot of the estimated cdf tails should appear linear on a logarithmic
scale. This technique has been used for exploratory work, though one could carry
out a statistical analysis by ascertaining the fit of the model (3.20) through an
F test based on the residuals of a linear regression. It should be noted that the
data in such a regression is heteroscedastic and correlated. A question that arises
when using such a test is how to define the tail region of the data. How far out in
the tails this property becomes apparent has never been answered satisfactorily,
though very large data sets may be required. Furthermore, the most extreme
samples often have to be excluded as they do not follow (3.20) closely due to
their large, and in some cases infinite, variance.

An example is shown in Figure 3.2 (left) where under the null hypothesis
N = 1000 observations were drawn from a standard Sa.S distribution with o = 1.
Observations between the 90t and 99' percentiles were taken as representative
of the upper tail. Against this is a linear regression for which the estimated slope

was —1.03, very near the theoretical slope of —a = —1.

3.3.4.2 Testing for Infinite Variance

The lack of a finite variance for non-Gaussian «S distributions leads to a test

based on the running sample variance, Y, of the observations,

1w 1 ’
Y=~ ; (Xz- - ;Xj) . (3.21)
For distributions with finite variance, Y, will converge to the population variance
by the law of large numbers as n — oo, but will diverge for distributions with
infinite variance.

As an example, Figure 3.2 (right) shows the running variance for the same
scenario as in Figure 3.2 (left). Note how the running variance continues to in-
crease in sharp jumps. This is due to the occurrence of an observation sufficiently
large in magnitude to dominate the sample, for impulsive noise the probability

of such an occurrence is non-negligible even for large sample sizes.
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Figure 3.2: Testing for .S distributions using the known tail behaviour (left) and the
running variance (right) where N = 1000 observations were drawn from a standard
SaS distribution with a = 1.

3.3.5 Techniques based on the Empirical Characteristic Func-
tion

Goodness-of-fit tests based on the ecf are primarily motivated by the mathe-
matical tractability of the oS cf compared to the pdf or ¢df. Furthermore, the
cf retains the information contained in the latter representations while the ecf
possesses favourable properties such as strong consistency and asymptotic nor-
mality (the terms 'Gaussian’ and 'normal’ are used interchangeably throughout
this thesis), see Appendix A for a brief review of cf and ecf theory.

The goodness-of-fit is based on the degree with which the ecf, dx(w), matches
the cf, ¢x(w), under the null hypothesis. In this respect ecf techniques are similar
in nature to edf tests and hence similar measures of distance are used. For

example, Kolmogorov-Smirnov type measures can be developed,

Px(w) - ¢x ()| (3:22)

sup
or Cramér-von Mises type measures,
SR 2
/ ‘qﬁ(w) — @‘:X(w)‘ v(w) dw, (3.23)
—oc

where v(w) is a weighting function [38]. A Kolmogorov-Smirnov type statistic was
used to test for the Gaussian distribution in (11, 197], while a quadratic siatistic
was used in [69).

A supremum based test for oS distributions was proposed in {28, 29, 200]
where the bootstrap was used to estimate critical values, avoiding the extensive

Monte Carlo simulations otherwise required.



3.3 Goodness-of-Fit Tests 24

Goodness-of-fit tests conceptually similar to the Cramér-von Mises tests have
been developed which measure the quadratic error between the ecf and the cf,
which is known under the null hypothesis, for several values of w. By utilising the
asymptotic Gaussianity of the ecf and its known covariance structure under the
null hypothesis, the quadratic statistic was shown to be asymptotically x* under
the null hypothesis. The case of a simple null hypothesis was considered in [100},
this was generalised to the case when parameters must be estimated under the
null hypothesis in [104].

A comparison between all these approaches appears in Table 3.1. Simpler,
less powerful tests tend to admit non-a.S distributions under the null hypothe-
sis, while more powerful tests require calculation of the cdf and critical values.
For oS distributions calculation of the cdf is a computationally expensive task.
Determining critical values for the edf and ecf tests by Monte Carlo simulation
is very computationally expensive, but less so for the ecf test if the bootstrap is

used.

Table 3.1: Advantages and disadvantages of the various goodness-of-fit tests.

Test type | Disadvantages Advantages
Tail test Admits all distributions whose tails decay Simple
algebraically
Excludes the o8 Gaussian distribution
Subjective
Running Admits all distributions with infinite variance Simple
variance Excludes the a5 Gaussian distribution
Subjective

Probability | Requires cdf and estimators for shape parameters | Moderately

plots QQ plot not recommended for a heavy tailed null | simple
Subjective
x? tests Loses information when grouping observations Quantitative

into bins, selection of bins
Requires cdf and estimators for shape parameters

edf tests Critical values must be found by Monte Carlo Powerful

Requires cdf and estimators for shape parameters

ecf tests Critical values must be found Powerful

Requires estimators for shape parameters
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3.4 Testing for Symmetric Alpha Stable Distribu-
tions using the Stability Property

3.4.1 Proposed Test

The stability property as stated in Definition 2 has been exploited in testing
for aS distributions. The concept is to split the sample into a number of non-
overlapping segments and then to estimate the characteristic exponent when the
segments are sumrmed. Under the null hypothesis of stability the characteristic
exponent is invariant to how many segments are taken, given statistical variations
caused by a finite sample.

In the statistical literature this stability test has been suggested as an ex-
ploratory technique [48, 64, 118] where the characteristic exponents from sums of
2 to 10 segments were compared subjectively [50, 141, 144, 171]. Recently, there
has been some effort towards developing a statistically rigorous stability test.
In [105] a stability test was proposed where the test statistic was asymptotically
x? distributed, contingent on the condition that the imaginary part of the cf was
nonzero. This condition is not met by SaS distributions which are of concern
here. In [143] it was tested whether there was a linear trend in the estimates of «
as the number of segments summed increased, thresholds were calculated using
Monte Carlo analysis. In both [105] and [143] the number of segments required
was chosen heuristically. Here, the stability test is presented in a hypothesis test-
ing framework giving a quantitative statistical test, but first, the question of how
many segments should be used is addressed.

When using the stability test the number of segments to be compared must be
chosen. While an optimal choice might maximise the power of the test, the un-
specified nature of the alternative hypothesis makes this decision difficult. Guide-
lines for the maximum number of segments are considered later, however, the min-

imum number of segments necessary is determined from the following result [196],

Property 3 It is not necessary to ensure that (3.2) holds for all n = 2, rather,

a necessary and sufficient condition for X to have an aS distribution is if

Xi+X, & CX+Dy
X +Xo+X; & X+ Ds, (3.24)

where Cq,C3 > 0, Dy, D3 € R and X, X; and X3 are independent copies of X.
That is, to confirm Definition 2 only forn =2,3.
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The essence of this property is that by repeated application of (3.24) it is possible
to arrive at (3.2) for the general case n > 2. That (3.24) is necessary implies
it must be fulfilled, while sufficiency guarantees that there are no other criteria
which must be satisfied. The property is then complete within itself as a definition
for .S distributions.

Since the characteristic exponents from sums of only 2 and 3 non-overlapping

segments are compared to confirm stability, define

Zy = X1+ X,
Zg = X] + X2 + X3 (325)

and let ax, oy, and oz, be the characteristic exponents of X, Z; and Z3 respec-
tively. Then it follows that ax = @z, and ax = az, given that X is SaS5. To
test for oS distributions, a similar comparison between the skewness parameters
must be made as well.

In a hypothesis testing framework the test for SaS distributions is set up as,

Qg = QX M Gz, — &y

K : oz #ax U az #ox. (3.26)

Under the null hypothesis X has a SaS distribution while under the alternative
hypothesis the distribution is not Sa.S but otherwise unspecified. The hypotheses
suggest the test statistics 7o = az, — ax and T3 = agz, — ax, so that the two
hypotheses T3 = 0 and T3 = 0 comprise the global null hypothesis. To maintain
a global level of significance when the global null hypothesis is comprised of more
than a single hypothesis a multiple hypothesis test (MHT) procedure is used.
MHTSs can also closely maintain the global level when the hypotheses comprising
the global null hypothesis are dependent. A review on the theory of MHTs,

detailing the specific procedures used here, appears in Appendix E.

3.4.1.1 A Note on Multiple Hypothesis Test Procedures for the Stability
Test

For the stability test the global null hypothesis consists of only two individual
hypotheses, H; : Ty = az, — ax=0 and Hy : T3 = az, — ax=0, which simplifies
the MHTSs reviewed in Appendix E. Let the p-values corresponding to H; and H;
be P; and P, respectively and denote the ordered p-values as Py < Pray.

The Bonferroni and Holm procedures accept the global null hypothesis if
Py > /2 and reject it otherwise. The Hochberg and Simes procedures accept
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the global null hypothesis if Py > /2 and Py > ¢, rejecting it otherwise. It can
be seen that the later test must be less conservative due to the extra condition
P2y > {. Hommel’s procedure is the most conservative of all, accepting the global
null hypothesis if Py > (/3 and Pgy > 2(/3, otherwise rejecting it.

The procedures of Hochberg and Simes are then equally most powerful, fol-
lowed by those of Bonferroni and Holm and lastly Hommel. As Hommel’s pro-
cedure was found to be significantly more conservative, it is not considered any

further, only the procedures of Bonferroni and Hochberg are used.

3.4.2 Development of the Test Statistics

To evaluate the test statistics and implement the stability test, several inde-
pendent realisations from the distribution which generated the observations are
required. To obtain these independent realisations the observations are sepa-
rated into segments. There are then two ways the test statistics can be obtained,

consider the statistic T4,

1. Separate the observations into three equi-length segments, then arbitrarily

assign the first segment to X and the others to Z5.

2. Let all the observations represent X and obtain Z; by separating the ob-

servations into two equal segments.

The first approach ensures X, X; and X, are iid. The second introduces de-
pendence between X and X, X,. The resulting dependence between éx and
&z, confounds theoretical analysis and may reduce the power of the test since
the estimates will be correlated, reducing their difference under the alternative
hypothesis. However, the reduced variance of &x counteracts this and, as will be
shown, results in a more powerful test. The same comments apply to 7.

Let X,on (D) = X{((m ~ 1)L +1),l=1,..., L, denote segment m after the iid
observations X(n), n =1,..., N, have been split into M segments of length L =
| N/M ], where |-| denotes the integer part. The separation of the observations
into the M segments is shown in Figure 3.3. Define Z;)s as the elementwise sum

15t segment 274 segment M*™ segment

(D) ] Xinr@) [ - [ae 0 [Xane0) [ Xone@ | [Roar @] [Xaans )] xaae@ [ - | Xnane (00

~ o’

—
L observations

Figure 3.3: Separation of the observations into the M segments.
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of k segments from M. Although arbitrary, the following ordering is used

Zoa(l) = Xio(l) + Xoa()

Zi(l) = Xus(l)

Za(l) = Xapa(l) + Xz3(l)

Zu(l) = Xu(l) + Xas(l) + Xs3(l)

Zu(ly = Xu(l)

Zoall) = XoalD) + XaslD) + Xuel), 1=1,...,1L, (3.27)

giving the four test statistics

Ty = ag,—oax

Toy = Qg — o0z,

Tz = gz, —Qx

T34 = Ogg, — OZy,. ' (328)

The characteristic exponents forming the test statistic must be estimated,
for which a variety of estimators exist. An early approach utilised the algebraic
tail behaviour of «S distributions [47], but was left undeveloped in favour of
superior estimators including those based on ML [23, 27, 39, 42, 140], Bayesian
analysis [32], FLOMs [26, 40, 115, 116], sample fractiles or order statistics [50,
119, 120, 122, 181, 184] and cf domain methods [10, 70, 144, 145, 153, 176].
Koutrouvelis’ method [101] further developed regression based cf domain estima-
tors [10, 153] and offers an excellent compromise between computational cost and
performance in comparison to most other methods. While refinements suggested
in [30, 97, 102] improve performance over some regions of the parameter space,
this mainly occurs for skewed .S distributions. As only Sa.S distributions are of
concern here Koutrouvelis’ original method is used exclusively.

Critical values of the test will be found in two ways. The first follows the
traditional approach of finding the asymptotic distributions of the statistics, in
doing so the asymptotic distributions of Koutrouvelis’ estimator are derived. For
finite samples asymptotic results are likely to be inaccurate, unfortunately the
finite sample distributions are non-trivial, making an analytical approach pro-
hibitively complex. Instead, a computational method known as the bootstrap is

used to estimate the finite sample distributions.
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3.4.3 Evaluation of Critical Values
3.4.3.1 Asymptotic Theory

Koutrouvelis’ estimator is based on the cf domain representation for a SaS ran-
dom variable,

¢x(w) = exp(— |ew|®) . (3.29)
Applying the transformation log(— log |-|*) and using the ecf $x (w) as an estimate
for ¢x{w), o and ¢ are estimated through a linear regression over several points,

Wiy, ..., Wk, in the cf domain,
. 2
log (wlog ’éx(wk)‘ ) = log {2¢*) + alog |wk|, k=1,...,K. (3.30)

Since ¢ x (w) converges to @x (w) with probability one (w.p.1) and the parameters
of an &S distribution are unique, both & and ¢ are strongly consistent.

Koutrouvelis’ estimator was developed for a8 random variables while only
SaS random variables are of concern here. As the SaS cf is real, Re(dx(w))?
is used in place of |¢x(w)|? herein. For finite samples the imaginary part of the
ecf is nonzero, giving |¢x(w)|? an asymptotic variance, as w — oo, twice that of
Re(¢x (w))?. Clearly, taking the real part of the ecf should improve the perfor-
mance of the estimator and this is the approach taken. This requires some minor
modifications to Koutrouvelis’ original procedure in order to optimise perfor-
mance, details and a demonstrated improvement of this estimator are contained
in Appendix B. Use of only the real part of the ecf also makes it possible to
derive the asymptotic distributions of Koutrouvelis’ parameter estimator for the
case of SaS distributions. To clarify, in [103], the asymptotic distributions of
Koutrouvelis’ parameter estimator for a5 distributions, using |¢x (w)[?, were de-
rived under the assumption that the imaginary part of the cf is nonzero. The
condition is necessary because only then is |¢x{w)® asymptotically Gaussian.
If the cf has a zero imaginary part, as for SaS distributions, then |g5X (w)|? is
asymptotically non-Gaussian distributed and the derivation in [103] becomes in-
valid.

Continuing the asymptotic analysis using the regression model
. 2
log (— log Re (qu(wk)) ) = log (2¢") + alog |we| , k=1,....K, (331)

let w = (wi,....wk), @x = (g@x(wl),...,qﬁﬁx(wK))T and 1x be a K-length

vector of ones. Then the regression is represented by

u=V0+e (3.32)
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where u = log(— log Re(¢x)?), V = (1x,log |w|), 8 = (log (2¢*), )" and € is a
K length vector of correlated disturbances. The least squares solution for 0 is

0=vtu, (3.33)

where VI = (VTV)~'V7 is the pseudoinverse of V.

To derive the asymptotic distribution of f), the asymptotic distribution of
log{— log Re(¢px)?) is required. The following theorem regarding functions of
asymptotically multivariate normal (MVN) random vectors is needed ([159] The-
orem 3.3A),

Theorem 1 Given that X = (Xl,...,XK)T ~ MVN(p, X), where ~ stands
for asymptotically distributed as, such that & — 0 as N — oo, let g{x) =
(g1(@), ..., ga(x))" where every g, s a vector valued function with nonzero

derivative at @ = p. Define the Jucobian of the transformation at x = p as

Ogm
DY = — 3.34
D= 52| (334
Then
g(z) ~ MVN(g(n), DTED). (3.35)
From Appendix A the real part of the ecf is asymptotically MVN,
Re(x ) & MVN(Hpu(p) Rreis) (3.36)

with Rpeg) — 0 as N — oo.
Define g, {x) = 9{(z,,) where g(z) = log(—logz?®). The partial derivatives
¢'{z} = 1/(zlog|z|) are nonzero at (uRe(@)k for a SaS cf evaluated at 0 < wy <

oo and it follows from the above theorem that
N 2 a
log (— log Re( b ) ) & MVN(p,, By), (3.37)

where p, = g (uRe(¢)), R, = DQTRRe(@Dg and D, is a diagonal matrix with

(Do) =9 ((P’Re(qi))k)'
From (3.33) it can be seen that & will be asymptotically MVN as it is a linear
transformation of the asymptotically MVN u,

6 & MVN(p,, Ry), (3.38)

where g, = pr,g and Ry = VTRQV‘LT.
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A final transformation of @ yields the asymptotic joint distribution of & and

@,
& = g(f)=(h/2)ih (3.39)
& = g:(8) =0, (3.40)

et

Giving the Jacobian of the transformation at p; as

( 1) (elwo)r /2)1/ 1)z .
D = Hy 21 1 ) , (3-41)
— Gy (€102 /2)/ 40 log(eliohs f2) /(M) 1
so that
( C ) ~ MVN(p2,,, Reo) (3.42)
24

with f1,, = (et /2)/00)2, (10,),)" and Reo = DTRyD.
The estimates & and ¢ are asymptotically normal. The estimator is asymptot-
ically unbiased and for reasonable sample sizes of N > 200 the bias is negligible.
The asymptotic distributions of the test statistics under the null hypothesis
can now be found. Take the test statistic Tg = dz, — &x where the segments
from which dx and &z, were estimated do not overlap, &x and &z, are then

independent with distributions

d'X r(i. N(p‘ax(a'icu W),Uix(a,C,W)), (343)

bz, ~ N(toy, (a,c,w),a§z2 (e, ¢, w)). (3.44)
Since the estimator is asymptotically unbiased,
7, 2 N(o, o2+ 0322) . (3.45)

Likewise, the asymptotic distribution of the test statistic f"3 = Gy, — Gx for

nonoverlapping segments is

T3 % N(O ol + crizg) : (3.46)

» Yy
The hypothesis test is then carried out by testing 7o, = 0 N T3 = 0 using a MHT
procedure.
3.4.3.2 Bootstrap Estimator

The bootstrap is a general statistical method which allows the sampling distri-

bution of a descriptive statistic to be estimated. It replaces complicated, and
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in many cases intractable, theoretical analysis with computational power. Given
that access to increasingly powerful computers is growing, so too is the use of
the bootstrap for estimation of confidence intervals and the related problem of
hypothesis testing. Though the bootstrap makes heavy use of computation, the
validity of its results in terms of such measures as consistency are backed by a
substantial amount of theory. References and further details on the bootstrap
necessary for its use herein are contained in Appendix D.

The motivation for use of the bootstrap is twofold. First, the bootstrap more
closely controls the set level of a test for finite samples as compared to when
thresholds are derived asymptotically. Second, the bootstrap may account for
dependence between the estimates of the characteristic exponents when they are
calculated from overlapping samples. This follows from the plug-in-principle of
the bootstrap espoused in [43, 148]. In essence this principle states that the
statistical relationships between the sample statistics are generally mirrored in
the bootstrap statistics since the mechanism by which they are calculated from a
sample is the same in both cases. The mechanism here is comprised of the method
by which the sample is separated into segments and the estimator employed in
estimating the characteristic exponents of these segments.

When the observations arise from a distribution within the domain of attrac-
tion of a non-Gaussian oS law, standard nonparametric bootstrap resampling
fails to give good estimates for the sampling distribution [148]. Instead, the
parametric bootstrap is used as it is known to behave correctly [43].

The parametric bootstrap assumes that observations are easily generated un-
der the null hypothesis, given any necessary parameters. Unknown parameters
may be estimated from the observations. Observations generated under the null
then comprise the bootstrap resamples and the statistic of interest is recalculated
for each of these bootstrap resamples. A sufficient number of bootstrap statistics
computed in this fashion form the bootstrap estimate for the distribution of the
statistic under the null hypothesis. For the stability test estimates for a and c are
found using Koutrouvelis’ procedure, while SaS random variables are generated
using the computationally efficient method of Chambers, Mallows and Stuck [34].
The parametric bootstrap procedure is shown in Figure 3.4.

The parametric bootstrap has been successfully employed in carrying out
hypothesis tests on the parameters of an S distribution and in a c¢f domain
goodness-of-fit test for a5 distributions |28, 29, 200]. In both cases the parametric
bootstrap was used to determine the null distributions of a test statistic where,

under the null hypothesis, the observations were a.S.
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Figure 3.4: The parametric bootstrap procedure for the stability test.

The procedure as outlined in Figure 3.4 uses a non-pivotal test statistic. Piv-
oting gives a test statistic that is asymptotically independent of any unknown
parameters and results in a bootstrap procedure which more closely maintains
the set level, see Appendix D for more details. A pivotal statistic was found
by normalising the non-pivotal statistic by an estimate of the standard error.
Though a nested bootstrap procedure may be used for this purpose, Monte Carlo

estimates found offline were used to reduce computational complexity.

3.5 Experiments

Sample sizes of approximately 500 are necessary for the asymptotically derived
thresholds to be accurate, since the observations are separated into at most M = 4
segments, sample sizes of NV = 2000 were used.

Results are shown for each of the individual test statistics T, T33, 753,34
and for the Bonferroni and Hochberg MHTs formed from 733, Thz and Tas, Taa.
The probabilities of false alarm (Pr,4) and detection (Pp) were found from 1000

independent Monte Carlo realisations.

3.5.1 Maintenance of the Set Level
3.5.1.1 Stability Test with Asymptotic Distributions

Figure 3.5 shows the P4 for the stability test when the asymptotic distributions
of the test statistics are used.
When MHTs are not used and the characteristic exponents are estimated

from non-overlapping segments, as for the test statistics T3 and T34, the set level
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Figure 3.5: Probability of false alarm for the stability test using asymptotic statistics.
No MHTs (left) and with MHTs (right).

is closely maintained. An exception occurs when o is near 2 and the Pry is
markedly less than the set level. The cause is a combination of finite sample size
and the rapid change in the variance of & for o near 2. When & is less than the
true o & 2, the estimate of Var[@] is much larger than the true variance, making
the test more conservative. The effect is reduced with increasing sample size and
asymptotically the set level is maintained at o = 2.

When the characteristic exponents are estimated from overlapping segments,
as for the test statistics The and T3s, the set level is not maintained, the tests
being far too conservative. Take 75 = az,, — ax, which has variance Var[Ty] =
Var[oz,,] + Var[ax] — 2Cov(ag,, ax). Under the null hypothesis there is a high
degree of positive correlation between the estimates of these two characteristic
exponents. The asymptotic estimate for the variance, which does not account for
the covariance between the two characteristic exponents, is much larger than the
true value leading to a conservative test.

When MHTs are used the results are very similar to when they are not. MHTs
based on non-overlapping segments maintain the set level except for o near 2,
while MHTs based on overlapping segments are far too conservative. The type
of MHT, Bonferroni or Hochberg, has very little effect on the Pp4, though as
expected Hochberg’s procedure is consistently less conservative than Bonferroni’s

procedure.

3.5.1.2 Stability Test with Bootstrap Distributions

Figure 3.6 shows the Pr4 for the stability test when the bootstrap distributions

of non-pivotal test statistics are used, Figure 3.7 shows the same for pivotal



3.5 Experiments 35

statistics.
; T Bonerron |
OAfe 0.1 H [, . a3
— T, 1 T Hoshberg

T23 3] T34, Bonterroni
T,.M T34, Hochberg

Probability of False Alarm
[=]
o
(4]

Probabilit);) of False Alarm
o
(35,1

Figure 3.6: Probability of false alarm for the stability test using the bootstrap. No
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Figure 3.7: Probability of false alarm for the stability test using the bootstrap with
pivoting. No MHTs (left) and with MHTSs (right).

When non-pivotal statistics are used the Pg4 is close to the set level except for
a near 2, where it can be as low as 2%. Note that this is for both overlapping and
non-overlapping segments, showing that the bootstrap accounts for dependence
between the characteristic exponents estimated from overlapping segments. The
drop in Pr4 for o near 2 is again attributed to the rapid change in variance of &
in this region. The use of a pivotal statistic eliminates this drop in the Pra for
o near 2, so that the set level is always closely maintained.

There does not appear to be a significant change in Pr4 when MHT's are used,
though again Hochberg's procedure is slightly less conservative than Bonferroni’s

procedure.
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3.5.1.3 Empirical Distribution Function statistics

Empirical thresholds for the edf tests were calculated for 0.5 < « < 2 over 10, 000
Monte Carlo simulations. Calculation of the thresholds below a = 0.5 becomes
computationally expensive. The Pp, for the statistics Dgg, Q@onm and Qap are
shown in Figure 3.8. As the empirical thresholds were only found for o > 0.5,
results were limited to o > 0.6 to ensure that & > 0.5. All three tests appear to

approximately maintain the set level.

1 —_—
YT T T T T —=¢

Prabability of False Alarm
o
o
o

Figure 3.8: Probability of false alarm for several edf tests.

3.5.2 Power of the Tests

The tests were evaluated under a variety of alternative distributions:
¢ The chi-squared distribution with 1, 2 and 4 degrees of freedom, X7,
2 2
Xar Xq

Student’s ¢ distribution with 2, 3, 4 and 10 degrees of freedom, ¢, {3,

ty, t10.

The Laplace distribution with zero mean and unit variance, L(0, 1).

The uniform distribution on [—1,1], U(-1,1).

The beta distribution with both parameters equal to 4, 5(4,4).

The e—mix(g, x) distribution for several values of (¢, ).

The Gaussian mixture distribution with pdf

(I—Mk)Q)
T, O, W) w exp| ——— ] -
Fulein z: e (-5
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Three cases of the Gaussian mixture distribution, denoted by GM,,
GM; and GM3, were used, the parameters chosen are shown in Ta-
ble 3.2. All are heavier tailed than the Gaussian, slightly skewed, and

except for GM3z, nonzero mean distributions.

Table 3.2: Parameters of the Gaussian mixture distributions used in assessing Pp.

H o w

GM, | (—0.1,0.2,0.5,1)7 (0.25,0.4,0.9,1.6)" (0.5,0.1,0.2,0.2)"
GM, | (—0.3,0.7,0.8)"  (0.5,0.25,0.4)7 (0.2,0.5,0.3)7
GM; | (=0.2,0,0.2,0.3)7 (0.25,0.4,0.9,1.6)7 (0.5,0.1,0.2,0.2)"

Table 3.3 shows the power of the stability test using asymptotic distributions.
Tables 3.4 and 3.5 show the same using bootstrap distributions for non-pivotal

and pivotal statistics respectively. The power of the edf tests is shown in Table 3.6.

Table 3.3: Power of the stability test using asymptotic statistics.

T N33 Tos N3y

Toy Tos Tis T34 | Bonf. Hoch. Bonf. Hoch.

X3 1.00 1.00 1.00 1.00} 1.00 1.00 1.00 1.00

X 018 011 100 098¢ 1.00 1.00 0.97 097

x3 1.00 1.00 099 0.80| 1.00 1.00 1.00 1.00

ta 0.15 014 036 0.21] 0.25  0.27 0.21 0.22

13 025 0.21 054 0.28) 044 045 030 031

ty 0.28 0.18 053 0291 042 045 030 030

t1o 0.12 0.08 031 0.09% 027 027 009 0.09
L(0,1) 0.97 0.75 1.00 086 1.00 100 092 093
U(=1,1) 0.00 0.00 037 008! 0.17 017 002 0.02
2(4,4) 0.25 015 025 0.09| 030 030 013 0.13
e—mix(0.01,10) [ 0.00 0.03 001 0.01) 001 0.01 001 0.01
e—mix(0.01,100) | 0.01 0.12 0.04 0.16| .02 002 0.18 0.19
e—mix{0.1,10) | 0.01 0.03 0.11 0.09| 0.07 007 0.06 0.06
e—mix(0.1,100) | 0.87 047 0.98 0.65! 097 0.98 0.66 0.68
GM, 1.00 0988 1.00 100, 1.00 1.00 100 1.00

GM, 0.80 0.45 024 0.11| 0.73 0.73 033 035

GM; 1.00 0.91 1.00 0.99 | 1.00 1.00 1.00 1.00
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Table 3.4: Power of the stability test using the bootstrap.

T NT33 Tys NT3

Tye Ty Tis T34 | Bonf. Hoch. Bonf. Hoch.

xi 1.00 1.00 1.00 1.00 ! 1.00 1.00 1.00 1.00

X3 060 033 1.00 098¢ 1.00 1.00 098 098

X 1.00 1.00 1.00 0971 1.00 1.00 1.00 1.00

o 0.51 0.16 060 026 062 063 026 027

i3 0.71 0.17 076 0.28 | 0.81 0.82 0.27 0.28

ty 071 0.16 079 0.25| 0.82 0.83 0.26  0.26

tio 040 006 035 0.06| 037 040 007 0.07
L(0,1) 100 071 1.00 085| 1.00 1.00 090 091
U(-1,1) 0.00 0.00 000 000| 0.00 000 000 0.00
B(4,4) 087 056 083 05| 095 09 071 0.72
e—mix(0.01,10) | 0.04 0.03 0.03 0.03| 0.04 0.04 0.02 0.03
e—mix(0.01,100) | 0.36 0.14 046 0.18 | 043 045 0.20 0.20
¢—mix{(0.1,10) | 0.13 0.03 031 007| 0.26 026 0.06 (.06
e—mix(0.1,100) | 1.00 046 1.00 0.63| 1.00 1.00 0.67 068
GM, 1.00 098 1.00 1.00| 1.00 1.00 1.00 1.00

GM: 093 068 052 024 092 0.93 0.63 0.64

GM; 1.00 093 1.00 1.00 | 1.00 1.00 1.00 1.00

3.5.2.1 Discussion

The stability test based on overlapping segments and asymptotic distributions
cannot be compared to the others fairly as it is conservative and does not maintain
the set level. This particular case is included only for completeness and is not
considered any further.

Some general conclusions can be drawn regarding the power of the statistics

Tz, Tay, Tos, Tas:
e Ty and T3y are more powerful than T35 and Tay.
s The power of T34 exceeds or is comparable to T53.
¢ The power of T3 exceeds or is comparable to Tas.

That T5; and T33 have a higher power than T53 and T34 is not unexpected.
The larger number of samples reduces the error in the estimates of the charac-
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Table 3.5: Power of the stability test using the bootstrap with pivoting.

Toa N 133 To3 N T3

Ty Tos Tz T34 | Bonf. Hoch. Bonf. Hoch.

X% 1.00 1.00 1.00 1.00| 1.00 1.00 1.00 1.00

X3 0.60 0.33 1.00 098 | 1.00 1.00 098 0.98

X3 1.00 1.00 1.00 097 | 1.00 1.00 1.00 1.00

to 0.50 0.16 060 0.26| 062 063 026 0.27

t3 0.71 0.17 0.76 0.28 | 0.80 082 027 027

t4 0.71 016 079 0.25]| 0.82 083 025 0.26

to 0.40 0.06 035 0.07| 0.38 040 0.08 0.08
L(0,1} 1.00 071 1.00 085 1.00 100 0.89 091
U(-1,1) 0.00 0.00 0.00 0.00| 0.00 000 0.00 0.00
3{4, 4} 087 056 0.89 056| 095 095 072 0.72
e—mix(0.01,10) | 0.04 0.04 004 0.03| 0.04 0.04 0.03 0.03
e-mix(0.01,100) | 0.35 0.13 046 0.17| 042 044 020 0.21
e—mix(0.1,10) |0.12 0.02 030 0.07| 026 026 0.06 0.06
g—mix(0.1,100) | 1.00 047 1.00 0.63| 1.00 1.00 0.67 0.68
GM; 1.00 0.98 1.00 1.00| 1.00 1.00 1.00 1.00

GM, 093 0.68 052 0.24| 092 0.93 0.64 0.64

GM; 1.00 0.93 1.00 1.00! 1.00 1.00 1.00 1.00

teristic exponents, reducing the variance of the test statistics under the null and
alternative hypotheses and the error when estimating the threshold.

The latter two points have no simple explanation, but an intuitive reason is
offered. Consider what happens as the number of segments grows very large, but
the number of samples in each stays constant. Assuming that the sum of these
segments converges to a limiting distribution, this limiting distribution is aS by
the GCLT. As the number of segments increases, the difference in power between
a test which uses M and M + 1 segments will diminish. Since in any practical
implementation of the test the number of samples in each segment decreases as
the number of segments increase, the power of the test must drop. This must be
balanced against the use of too few segments, that is, the sum of three segments
may have a distribution, and hence a characteristic exponent, farther from the
original than for two segments.

To summarise, for finite samples there is a trade-off between using few seg-

ments to obtain better estimates of the characteristic exponents whose true values
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Table 3.6: Power of several edf tests.

Drgs Qcm Qap

2 1.00 1.00 1.00

% 1.00 1.00 1.00

2 .00 1.00 1.00

ts 0.05 0.05 0.06

ts 0.05 0.06 0.10

t4 0.07 0.06 0.09

tio 0.07 0.07 0.08
L(0,1) 0.42 027 1.00
U(-1,1) 1.00 1.00 1.00
B(4,4) 1.00 1.00 1.00

e—mix(0.01,10) | 0.04 0.04 0.05
e—mix(0.01,100) | 0.07 0.06 0.06

e—mix(0.1,10) | 0.05 0.05 0.06
e—mix(0.1,100) | 0.24 012 1.00

GM, 1.00 1.00 1.00
GM, 1.00 100 1.00
GM, 1.00 100 1.00

are close, and using many segments to obtain poorer estimates of the characteris-
tic exponents whose true values are farther apart. The attained power shows that
in the majority of cases, the trade-off is in favour of 3 segments as this results in
a more powerful test,

Overall, the MHTs are more powerful compared to the test statistics taken
separately. When using the bootstrap to calculate p-values, the power of the test
based on Ty, T3z exceeds that of 753, Tss. Again, this is due to the larger number
of samples available for estimation of the characteristic exponents. The power of
tests that use Hochberg’s procedure is slightly but consistently greater than when
Bonferroni’s procedure is used. This is to be expected as Hochberg’s procedure
is less conservative than Bonferroni’s.

Pivoting does not appear to have a significant effect on the power of the tests,
a favourable result since pivoting leads to a conservative test for o near 2.

As a final comparison, consider the power of the following tests

1. Ty N T34 using asymptotic distributions and Hochberg’s procedure.
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2. T33 N Ti3 using bootstrap distributions, a pivotal test statistic and Hoch-

berg’s procedure.
3. The Anderson-Darling edf goodness-of-fit test, QQ ap.

Each yielded the best performance in terms of maintenance of the set level and
power for the stability test using asymptotic and bootstrap distributions and the

edf tests, results are shown in Table 3.7.

Table 3.7: Comparison of the three types of test. The stability test using T53 M T34
and Hochberg's procedure with asymptotically derived thresholds (Asymptotic); the
stability test using T5; N T3z and Hochberg's procedure with pivotal statistics and
bootstrap derived thresholds (Bootstrap); the Anderson-Darling edf goodness-of-fit
test (edf).

Asymptotic Bootstrap edf

X% 1.00 1.00 1.00

2 0.97 .00 1.00

22 1.00 1.00 100

ta 0.22 0.63 0.06

3 .31 (.82 0.10

tq 0.30 0.83 0.09

tin 0.09 0.40 0.08
L(0,1) 0.93 100 1.00
U(-1,1) 0.02 0.00 1.00
B(4,4) 0.13 0.95  1.00
e—mix(0.01, 10) (.01 0.04 0.05
e—mix(0.01, 100) 0.19 0.44 0.06
e—mix(0.1, 10) 0.06 0.26 0.06
e—mix(0.1, 100) 0.68 1.00 097
GM, 1.00 1.00 1.00

GM, 0.35 0.93 1.00

GM; 1.00 1.00 1.00

The stability test using bootstrap thresholds is generally the most powerful.
An exception occurs for the U(—1,1) distribution where the edf test always re-
jected the null hypothesis, but the stability test did not. If was found that the
estimated characteristic exponent for this distribution was always near 2, even

for sums of two and three segments. For Sa.S distributions the optimal number
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of points at which to sample the ecf for o & 2 is 2, which meant the ecf was not
sampled sufficiently far out to detect a significant difference between the U(—1, 1)
cf and the SaS cf for & = 2. Increasing the number of points to 10, and hence
sampling the ecf at larger values of w where there is a significant difference be-
tween these cfs, increased the power to approximately 0.98. Of course, a uniform
distribution is easily rejected by cursory examination.

Of more importance is the ability of the test to reject symmetric heavy tailed
alternatives which are very difficult to distinguish from SaS distributions. These
include the ¢, Laplace and e—mix distributions. Here the stability test using

bootstrap thresholds clearly outperforms the edf test.

3.6 Summary

In this Chapter a test for Sa.S distributions was developed based on the stability
property of oS distributions. Thresholds for the test were found from asymptotic
theory and estimated using bootstrap techniques. The bootstrap technique main-
tains the set level of the test while achieving high power in detecting alternative

distributions which possess very similar tail behaviour to SaS distributions.



Chapter 4

Estimation for the Symmetric Alpha
Stable Gaussian Sum Distribution

Your theory is crazy, but i’s not

" crazy enough to be true.
— Niels Bohr

A sum of symmetric alpha stable and Gaussian noise has been proposed as a
realistic model for impulsive phenomena which also includes thermal noise. Just
as in the case of the symmetric alpha stable distribution, the probability density
function of the symmetric alpha stable Gaussian sum distribution does not exist
in closed form while its characteristic function is relatively simple. The difficulty
of evaluating the probability density function has limited the use of the maximum
likelthood estimator in favour of characteristic function domain estimators. An
estimator is proposed for this distribution based on a nonlinear weighted least

squares regression in the characteristic function domain.

4.1 Introduction

Impulsive noise generally enters a system from external sources, in communica-
tions systems the channel introduces impulsive noise. However, the receiver is an
internal source of thermal Gaussian noise. The result is an additive combination
of impulsive and Gaussian noise.

Modelling the impulsive component by a SaS distribution leads directly to
the following model for the total noise X which is said to follow a Sa.S Gaussian
sum (SaSG) distribution,

X = Xgas + Xe. (4.1)

43
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where Xg,5 and X are the SaS and Gaussian components respectively. The
components are assumed to be mutually independent as they arise from not just
physically distinct, but fundamentally different sources. When sampling from
this distribution it will be assumed the samples are iid.

The SaSG distribution has not been investigated as extensively as SaS dis-
tributions or the other common impulsive noise models. Most of the results on
detection can be found in [5, 6, 82, 83, 87, 86] while estimation is addressed in [85].

This Chapter begins by defining the SaSG distribution and describing some
of its properties in Section 4.2. Existing estimators for the SaSG distribution
are reviewed in Section 4.3 before the proposed NWLS estimator is developed in

Section 4.4. Finally, the performance of these estimators is assessed in Section 4.5.

4.2 The Symmetric Alpha Stable Gaussian Sum Dis-

tribution

The SaSG pdf is obtained by convolving a Sa.S pdf and a Gaussian pdf. The
same difficulties which arise with the SaS pdf exist here as well, making cf domain
techniques attractive. The SaS(G distribution is easily defined in the cf domain
as

Px(W) = Pxgus (W)hxa (W) = exp(—7sas [w]* —Y5w?) . (4.2)
vsas > 0 and g > 0 are the dispersions of Xg,s and X respectively. The
dispersions are related to the scale, ¢, of X545 and the variance, o?, of X¢ as
Ysas = ¢* and v = o2 /2 respectively. 0 < a < 2 is the characteristic exponent
of X g,y and controls the rate of decay of the pdf. For o = 2, X has a Gaussian
distribution with variance 2(vgas + v¢). Note that the SaSG distribution is not
a mixture model in the usual sense as the pdf is the convolution of a SaS pdf

and a Gaussian pdf, not the sum.

4.2.1 Properties

In general, the properties of the Sa.SG distribution are similar to those of the
Salb distribution.

4.2,1.1 The Symmetric Alpha Stable Gaussian Sum Pdf

The Sa.SG pdf is obtained from an inverse Fourier transform of the cf,

frlz) =2 / " () cos(aw) d (4.3)
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This integral is not expressible in closed form for o < 2.

4,2.1.2 Fractional Lower Order Moments

The FLOMs, E[|X|°], exist for 0 < p < a. Unlike Sa.S distributions, there is no

simple expression for the FLOMs, but they can be found by numerical integration

P = P “1-éx(w)
E1XP) = 5 o) | = (4.4)

where I'(-) is Euler’s gamma function.

4,2.1.3 Moments

From the existence of the FLOMs, all moments of order 2 and above do not exist

for & < 2. The mean only exists for o > 1.

4.3 Existing Estimators

Existing estimators for SaSG distributions are the moment and integrated MSE
estimators [85]. Maximum likelihood estimators (MLE) are not considered due

to the large computational burden.

4.3.1 Integrated Mean Square Error Estimator

A general method proposed for estimation in the cf domain is to minimise the
weighted integrated MSE (IMSE) between the ecf ¢x(w) and cf ¢x(w;8) with
respect to the parameters @ [70],

~

6= arg;nin /_00 lqjﬁx(w) — px(w; ) ’ W{w) dw. (4.5)

The IMSE estimator has been used with some success on «S distributions [145]
and was implemented for the Sa.SG distribution in [85]. The weighting func-
tion W(w) is used to counteract the poor statistical behaviour of the ecf for
large |w|, namely limj,|—o Var[@(w)] = 1/N. A Gaussian weighting function,
W{(w) = exp(—w?), is suggested so that Gauss-Hermite quadrature can be used for
the numerical integration. When applied to the SaSG distribution this method
suffers from ill convergence due to the presence of many local minima, correct
convergence is only obtained if the initial values are close to the true parame-
ters. Under some conditions IMSE estimates are consistent and asymptotically

Gaussian {176, 53]
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4.3.2 Moment Type Estimator

The moment type estimator is similar to one developed for oS distributions {153]

and is based on the relation [85]

Fay

A —-A
Wyt — Wyt wy

o —~4
— ""')2 o

wé‘—\n — wi\-a _|_ ws—Au _ w:l—Au

log [¢x (wi)|log [¢x (wi )| = log |éx (w2)| log | §x (wj )|

, (4.6
log |$x (wa)| log |¢x (w3 )| — log |¢x (wa)| log |6x (wi )] (46)

where A, = 2 — o Replacing éx(w) with éx(w) and solving the nonlinear

equation in A, gives &. Similarly, the dispersions are found from the relation

{ log dx (w1) ] _ [ |UJ1|Q w% ] [’Ysas ] - (4'7)

log ¢x (w2) |un|® wi e

As any suitable combination of wy,ws,ws,ws can be used, it is suggested to av-
erage the results from all 6 possible combinations. Performance of the estimates
is dependent on where the ecf is sampled. Since w and 1/w are used it is recom-
mended to cluster the points about 1 to avoid the increasing variance of the ecf
for large w. The minimal separation between samples is based on the require-
ment that the matrix in (4.7) not be ill-conditioned. Final selection of the points
was based on the parameters and Monte Carlo performance. When either of the
dispersions are sufficiently far from unity, rescaling by E[|X|P]/? where p < a/2
is required.

An advantage of the moment type estimator over the IMSE estimator is its
reduced computational complexity. Both require large data sets on the order of
10%.

4.4 Nonlinear Weighted Least Squares Estimation

Consider the following expression as the basis of an estimator for the SaSG

distribution,
—log |gz'>X(uJ)|2 = 2795as |w|* + Q. (4.8)

The relation is nonlinear in o, but linear in both dispersions, motivating the
use of a nonlinear regression to determine the parameters. This parallels the
generalisation of the moment estimator for &S distributions [153] to the regression

estimator of Koutrouvelis [101], which greatly improved the performance.
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An improvement is anticipated not only because the ecf can be sampled at an
arbitrary number of points, but since there is no longer auny constraint to cluster
the points about w = 1 and advantage can be taken of the superior performance
of the ecf near w = 0.

Taking a regression over K points and using the same notation as in Chapter 3
gives

u=V(a)y+e, (4.9)

where u = —log |« |2 V(@) = 2(|w|®, |w|?) and ¥ = (Ysas, 7G)" -

The estimates are found by minimising the residual sum of squares (RSS)
l|€])* = ||u — V(a)v||*>. The dimension of this search is easily reduced to one.
For a given a, ~ is a linear function of the true u, so that v = V'(a)u where
Vila) = (VT(CI:')V(O!))_l V(@) [121]. The RSS becomes u'V*(a)u where
Vi(a) = I — V(a)V'(a) is the projection matrix onto the orthogonal subspace

of V. The estimator for « is then the one dimensional minimisation,
& = argmin u' V{a)u. (4.10)
Given this estimate for «, the dispersions are found by linear least squares (LLS},
4 = Vi(&)u. (4.11)

The parameters of a SaSG distribution are unique if & < 2 and since dx (W)
converges to ¢x(w)} w.p.1, the estimator is strongly consistent for o < 2.

Although the elements of the error term & are correlated, the nonlinear least
squares estimator is easily adapted to account for this to give the final nonlinear

weighted least squares (NWLS) estimator. Next, the statistics of & are found.

4.4.1 Covariance
The covariance of % and hence € may be approximated by expanding — log | $(w)[?
about E[|¢(w)|?] in a Taylor series up to first order. From Appendices A and C,

2

Cov U(BX(%') . &X(Wj)lz]

2] E U&X(wj)ﬂ |
(4.12)

2 "
,— log ‘Gﬁx(%)

o[ et

2
]zC

EU@X(W:')

In Figure 4.1 the analytic correlation and covariance are shown for a SaSG

distribution with parameters (o = 1.5, 7545 = 1,7¢ = 1} and a sample size of
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Figure 4.1: The first order Taylor series expansion for the correlation (left) and co-

variance (right) of €.

N =50000. The correlation structure is clearly nonzero off the main diagonal,
while the covariance is dominated by a rapid rise in variance as w increases.
Incorporating this into the estimator will reduce the weighting of points where
the variance is large and lead to improved behaviour.

Figure 4.2 shows the error between the analytic and empirical correlation as
estimated from 1000 independent Monte Carlo realisations. The first order Taylor

series expansion was found to be accurate over a wide range of the parameters.

Error in Analytic Correlation

Figure 4.2: Error between the analytic and empirical correlation of € estimated though

Monte Carlo simulation.

The bias in E[— log |¢(w)|?] was found to be zero up to first order. A second
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order Taylor series expansion gave the bias as O(N~!), which is negligible for
large N. Experiments have shown that accounting for bias does not lead to any
improvement.

Given C, a NWLS estimate is obtained by solving {4.10) and (4.11) with u
and V pre-multiplied by D, D being obtained from the Cholesky decomposition
D'D = C7!. Since C depends on the unknown parameters (@, ¥sase,Ye). an
iterative scheme is employed where at each iteration the parameters and D are
updated once. The NWLS procedure is summarised in Table 4.1. Finally, there

Table 4.1: The NWLS Estimator
Step 1. Obtain initial estimates of the parameters &g, 4, by nonlinear
least squares: Solve {4.10) and (4.11).

Step 2. Set i i+ 1.
Step 3. Calculate D; using &;, ¥;.

Step 4. Obtain updated estimates of the parameters by NWLS:
Solve (4.10) and (4.11) with u replaced by D;u and V(&) by
D,V (&;).

Step 5. Check for convergence: If |9 — Fi—1| < 10~¢ for both ys.s and

~g, then stop, otherwise go to Step 1.

is the question of how to sample the ecf, this is considered next.

4.4.2 Selection of Empirical Characteristic Function Sample

Points

The selection of points at which to sample the ecf is not as straightforward for the
SaSG distribution as it was for the Sa.S distribution. For the latter, rescaling
standardised the observations to a Sa.S distribution with unit dispersion. Esti-
mator performance was then optimised only over o. The SaSG distribution has
two dispersion parameters, (Ysag, Ya), 80 that rescaling cannot standardise both
components simultaneously.

For the moment estimator the observations were rescaled using FLOMs. The
points selected were based on experimental performance and were dependent on
all parameters. Here, the region over which the ecf is sampled will be based on

the variance of w. A similar idea, where the truncation region for Koutrouvelis



4.4 Nonlinear Weighted Least Squares Estimation 50

estimator was based on the variance of the ecf, has proved successful [30]. To
motivate this approach consider Figure 4.3 which shows the analytic variance of u

versus w. The variance of this statistic was always observed to increase with w

1 1
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Figure 4.3: Analytic variance of ¢ for the SaSG distribution with parameters (o =
1.5,9sas = 1,7¢ = 1)} (left) and (a = 0.5,vsas = 10,7¢ = 10) (right).

before reaching a plateau for sufficiently large w. From the Taylor series expansion
this limiting value is 1 — 1/N, which is approximated by 1 for sufficiently large
samples. Including points in the region where the variance can be said to have
attained its limiting value produces poor results.

Consider a standardised set of points wipz <wj, <1, k=1,..., K, which are
scaled by the upper bound wyp so that wrp < wx < wyp where wy = wiwys,
wrp = wigwyrp. The bounds, K and location of the points are determined as

follows.

wrrg: Experience has shown that choosing a region such that at the up-
per bound Var[|¢x(w)l?] is at most 5% its limiting of 1 yields good

performance.

wrg: The lower bound must be set larger than but as close to zero as possi-
ble to avoid numerical problems which arise because — log |¢x (w)[? —

o0 as w — 0, wrp = 0.02 was found to be a reasonable choice.

K: K should be at least 3 to ensure a unique solution. Too large a K
increased computational complexity for little or no gain, K = 10 was

found to be a good compromise.

Location: For a.S distributions, Koutrouvelis showed that there was no gain

by spacing the w; nonlinearly. Preliminary experiments have shown



4.5 Experiments 51

the same to be true here and in the absence of any theoretical moti-

vation for nonlinear spacing the wy are equi-spaced.

4.5 Experiments

The proposed NWLS method was compared with the distance and moment type
estimators of [85] for a variety of parameter sets. Results are shown for ¥ = 50000
over 50 independent Monte Carlo realisations in Tables 4.2 and 4.3.

To ensure the estimates are unique and V{(a) is not ill-conditioned, & was
bounded from above by 1.99. A lower bound of 0.1 was placed on &, this rep-
resenting an extreme impulsiveness unlikely in practice. The dispersions were
limited to ¥sas, 9 € [1078, 107].

For the results in Table 4.2 both dispersions are near unity and rescaling is
not critical. The NWLS estimates appear to be unbiased and possess a smaller
variance than both the IMSE and moment estimators. The only exception occurs
when estimating v for (o = 1.5,7gas = 1,7¢ = 1) where the variance of the
NWLS estimator is 11e-2 compared to 7.7e-2 and 9.0e-2 for the IMSE and moment
estimators respectively.

For Table 4.2 the dispersions are far from unity and rescaling becomes critical.
Again the NWLS estimates are unbiased and yield the smallest variance when
estimating «. The variance of the dispersion estimates are comparable except
when estimating vg for (@ = 0.5,7s4s = 1,7¢ = 1} where the variance is no-
tably larger. Figure 4.4 shows the SaSG cf compared to its SaS and Gaussian
components for this case and (¢ = 1.5,7s05s = 1,7¢ = 1). Note how for the
former parameter set the SaS component is indistinguishable from the SaSG
cf, while the Gaussian component is far from both. Clearly, the Sa.S component
will accurately model observations for this specific SaSG distribution, effectively
concealing the Gaussian component and resulting in poor estimates for yg. Only
for very large w does the Sa:S component become distinguishable from the SaSG
cf, however, very large samples are necessary to ensure the variance of the ecf is
sufficiently small for this difference to stand out.

In Figure 4.5 the MSE of the estimates versus N over 500 independent Monte
Carlo realisations is shown for (@ = 1.5,975.s = 1,7¢ = 1). For N = 2000
the mean and standard deviation of (&, ¥sas,7e) was (1.497,1.117,0.884) and
(0.14, 0.48,0.52) respectively. The estimate of a appears unbiased, though there
is evidence of a small bias in the dispersion estimates.

The ability of the NWLS estimator to cope with small data sets is an advan-
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Table 4.2: Mean and standard deviation for the three estimators with N = 50000

samples.

Method «=1.5 Y8as = 1 Yo = 1

IMSE 1.501 (13e-2) 1.010 (1.0e-1) 0.990 (7.7e-2)

Moment 1.550 (11e-2)  1.100 (1.2e-1) 0.960 (9.0e-2)

NWLS  1.499 (3.5e-2)  1.001 (1.0e-1) 0.999 (1le-2))
a=15 Ygag = 0.0 Yo =1

IMSE 1.490 (19e-2) 0.480 (14e-2)  0.980 (17e-2)

Moment 1.520 {12e-2)  0.480 (46e-2)  0.990 (54e-2)

NWLS  1.502 (4.7e-2)  0.506 {7.1e-2) 0.995 (7.8e-2)
a=105 Ysas = 1 Yo =1

IMSE 0.501 (48e-3) 1.010 (7.6e-2) 0.993 (8.9e-2)

Moment 0.530 (110e-3)  1.070 (4.2e-2}) 0.960 (4.5e-2)

NWLS 0500 (6.9e-3)  1.000 (1.6e-2) 1.004 (2.7e-2)
a=105 YSas = 0.5 Yo = 1

IMSE 0.493 (4.9e-2)  0.498 (4.0e-2) 0.990 (4.7e-2)

Moment 0.488 {11e-2)  0.505 (2.0e-2) 0.995 (2.1e-2)

NWLS  0.501 (0.92e-2) 0.502 (1.1e-2) 0.997 (1.7e-2)
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Figure 4.4: The SaSG cf for (¢ = L.5,vsas = Liye = 1) (left) and (e =
0.5, Ysas = 10,v¢ = 10) (right).

tage over previous estimators. Even for small sample sizes there were not any
convergence problems and initial estimates are not required as for the IMSE es-
timator. The algorithm involves a one dimensional search coupled with weighted

least squares, which may be performed inexpensively.
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Table 4.3: Mean and standard deviation for the three estimators with N = 50000

samples.
a=15 Yo = 10
IMSE 1551 (21e-2) 8.900 (8.0¢-1)
Moment 1.550 (19e-2)  11.30 (1.2) 9.860 (9.6e-1)
NWLS 1501 (2.7e-2) 10.20 (12)  9.710 (18e-1)
o= 1.5 ve = 10
IMSE 1530 (226.2)  4.800 (43¢-2)  10.80 (6.0e-1)
Moment 1.520 (19e-2)  4.780 (43e-2)  10.60 (8.7e-1)
NWLS 1499 (3.4e-2) 5037 (7le-2)  9.973 (9.9¢-1)
a=0.5 Ysas = 10 Yo = 10
IMSE  0.571 (88¢-2) 1141 (16)  8.790 (1.39)
Moment 0580 (11e-2)  13.07 (2.22)  9.560 (2.1)
NWLS 0500 (0.47e-2) 10.00 (0.25)  10.94 (7.2)
a=0.5 v = 10
IMSE 0593 (69¢-2) 5.398 (0.90e-1) 8.490 (0.97)
Moment 0.458 (11e-2)  7.205 (14e-1)  8.400 (1.6)
NWLS 0500 (0.60e-2) 5001 (1.2e-1)  10.10 (1.2)

Figure 4.5: MSE of the NWLS parameter estimates versus sample size N for (a

1.5, vYgas = 1,9 = 1).
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4.6 Summary

The SaSG distribution is a model for impulsive noise which includes the effects
of thermal Gaussian noise. An iterative NWLS estimator for the parameters of
this distribution was developed in the of domain. The NWLS estimator may
be considered as a generalisation of the moment based estimator where the ect
is sampled at an arbitrary number of points, the selection of which was ad-
dressed. The proposed estimator performs well compared to existing IMSE and
moment based estimators. Estimation of «, the defining characteristic of the
level of impulsive behaviour, was consistently superior. The NWLS method is
computationally more efficient than the IMSE estimator and does not suffer from
convergence problems nor does it require initial estimates. Furthermore, because
the NWLS estimator does not suffer from convergence problems, it produces rea-
sonable estimates for smaller sample sizes than is possible when using existing

estimators.



Chapter 5

Detection of Sources in Array

Processing

We cannot learn withoul pain.

— Aristotle

The number of sources impinging on an array is generally required knowledge
for many array processing procedures such as high resolution direction of arrival
estimation. If unknown, the number of sources may be found by determining the
multiplicity of the smallest eigenvalues of the sample covariance. Here, a multiple
test procedure which considers all pairwise comparisons between eigenvalues is
developed. With a view to improving performance for small samples and when
the sources or noise are heavy tailed, the bootstrap is used to estimate the null

distributions of the test statistics.

5.1 Introduction

Detection of the number of sources is usually the first step in array processing
algorithms. Fssentially a model order selection problem, classical techniques
for source detection tend to be based on information theoretic criteria such as
Alkaike’s information criterion (AIC) and Rissanen’s minimum description length
criterion (MDL) [190]. The AIC has seen little use as it is not consistent and
will over-estimate the number of sources, more popular is the MDL which is
known to be consistent. Even so, consistency does not put any guarantee on
the performance for small sample sizes or low SNR, which is often the case of
interest. Since first being suggested, several modifications to the MDL have been

developed to improve performance in these regimes [58].

55
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Another approach to the problem is to use hypothesis tests. Considered first
in the statistical literature, the sphericity test is a hypothesis test for equality of
all eigenvalues {111]. For source detection it is necessary to test in a sequential
manner for equality of subsets of the eigenvalues. Modifications to the original
sphericity test have been developed to account for the presence of eigenvalues
not included in the subset being tested. Unlike the original sphericity test these
modified statistics converge to the correct asymptotic x? density giving higher
detection rates [192].

All the aforementioned methods are based on the assumption of Gaussian ob-
servations, that is Gaussian sources and Gaussian noise. Under non-Gaussianity
their behaviour is uncertain, the best that can be expected is that their perfor-
mance degrades gracefully, though it is known that the distribution of the sample
eigenvalues can be sensitive to departures from Gaussianity [189]. Reformulation
of the AIC, MDL or sphericity tests to deal with non-Gaussian observations may
be possible but the multitude of alternatives makes this approach problematic.

The probtem of source detection for non-Gaussian observations is of inter-
est here, particularly for heavy tailed observations. In the context of impulsive
noise, direction of arrival (DOA) estimation has been addressed when the ob-
servations are modelled by SaS or Gaussian mixture distributions. The general
approach for the SaS model is based on covariation, a FLOM based descriptor
for multivariate dependence valid when « > 1 [156]. The almost exclusive use
of covariation may be attributed to the ease with which it is estimated and that
it yields similar structures to those obtained from second order statistics. This
allows the formulation of DOA estimators from existing subspace techniques by
replacing sample covariance with sample covariation [177, 178, 179, 180, 183, 185].
The use of covariation is not optimal in any sense and so alternate estimators for
dependence have been suggested.

In [168] it was shown that a suitably normalised sample correlation exists
for all SaS distributions, as do normalised sample moments and cumulants, and
that DOA estimates obtained in this way show less variability than covariation
estimators [167, 169]. Preprocessing the observations by passing them through
zero memory nonlinearities to reduce the effects of heavy tailed noise was investi-
gated in [166, 169]. The application of standard second order DOA techniques to
the nonlinearly transformed observations led to improved performance over the
covariation and normalised correlation approaches. While source detection has
not been addressed in any detail, it has been suggested to simply apply existing
techniques such as the AIC or MDL to the eigenvalues of the sample covariation
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matrix [177] or similar estimates of dependence based on the normalised moments
or nonlinearly transformed observations.

For Gaussian mixtures, joint DOA estimation and source detection methods
were developed for the deterministic signal model using Markov chain Monte
Carlo techniques in [91] and for the general case using expectation-maximisation
techniques in [108, 107]. Both take a fundamentally different approach to source
detection. The Markov chain Monte Carlo technique jumps between models
of different orders to determine the most likely number of sources, while the
expectation-maximisation algorithm includes a robust estimate of the covariance
to which the existing MDL criterion is applied.

Here the assumption of Gaussian signals and large sample sizes is removed.
Fundamentally, what is proposed is a hypothesis test for equality of the smallest
eigenvalues, as is the sphericity test. The procedure differs in that all pairwise
comparisons, or differences, of the eigenvalues are considered and then combined
using MHTs.

The null distributions of these statistics are estimated using the bootstrap,
a technique valid for both Gaussian and a large class of non-Gaussian distri-
butions [148, 198]. An additional advantage in using the bootstrap is that the
finite sample, not the asymptotic, distributions are estimated, in contrast to the
asymptotically correct distributions used in the sphericity test. The proposed
procedure then makes minimal assumptions on the distribution of the signal and
behaves well even for small sample sizes.

Bias in the sample eigenvalues can have a significant effect on the proposed
method. This is especially true for small samples or when population eigenvalues
are not well separated, such as at low SNR. Based on an expansion for the
expectation of the sample eigenvalues a bias estimate is proposed which behaves
well in these situations. Two resampling methods for bias estimation, using the
jackknife and subsampling, are also suggested.

This Chapter is organised as follows. In Section 5.2 the signal model is de-
scribed before discussing the detection procedure and the use of MHTs in Sec-
tion 5.3. In Section 5.4 the bootstrap is applied to estimate the null distributions
of the test statistics. Section 5.5 points out the need to correct for bias in sample
eigenvalues and some methods for correction. Finally, Section 5.6 compares the

proposed method against the sphericity test and the MDL.
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5.2 Signal Model

The setting for the source detection problem is as follows, N snapshots of iid zero

mean complex observations are received from a p element array,
T, = ASs, + Un, n=1,...,N, (5.1)

where A is the p X g array steering matrix, s, is a ¢ (g < p) vector valued
white source signal and v, is noise with covariance o*I, this is the narrowband
stochastic signal model. The sources and noise are assumed to be independent,

so that the array covariance is
R =E[z,zl] = AR A" + o1, (5.2)

where R, = E[s,sH] is the covariance of the sources and ()" denotes the Her-

mitian transpose. The ordered eigenvalues of R, the population eigenvalues, are

AlZ"'ZAQ>)\Q+1=”.:)\I)=02? (53)
so that the smallest p — ¢ population eigenvalues are equal. Hence the prob-
lem of detecting the number of sources is one of determining the multiplicity of
the smallest eigenvalues. The ordered sample ecigenvalues {;, ¢ = 1,...,p, are
estimated from the sample covariance

N
- 1 H
R= ﬁ HE=1 Tnl, (54)

and are distinct w.p.1 for finite sample sizes [8],
h>>l>lp>->5L>0 (5.5)

The sample eigenvalues are biased and mutually correlated. Their finite sample
joint distribution is known in the Gaussian case and is represented as a series of
zonal polynomials [89], a form too cumbersome for general use. A mathematically
tractable form for their asymptotic joint distribution does exist in the Gaussian
case [7], though it may be unreliable for the small sample sizes, on the order of
100, considered here. Also, this joint distribution is sensitive to departures from
Gaussianity [189).

5.3 Detection of Sources by Determining Eigen-
value Multiplicity

Whether the source detection scheme is based on information theoretic criteria

or hypothesis tests, the common assumption of Gaussian observations generally
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leads to some variant of the statistic

A
———g;%#h, k=1,...,p—1, (5.6)
which is the ratio of the geometric mean to the arithmetic mean of the smallest
p — k + 1 sample eigenvalues [7, 8, 111, 134, 190, 192, 191].

An intuitive understanding of why this statistic is appropriate follows by sub-
stituting the population eigenvalues into (5.6). Under the null hypothesis of equal
eigenvalues, the geometric and arithmetic means are equal and (5.6) is 1. As the
eigenvalues move apart under the alternative hypothesis (5.6) drops below unity.

This statistic can be regarded as a measure of the degree of sphericity, or
ellipticity, of the subspace corresponding to the smallest p — k + 1 eigenvalues.
For equal eigenvalues the corresponding subspace is composed of iid Gaussian
random variables, so that their multivariate distribution is spherical and (5.6) is
1. In contrast, if the eigenvalues are not all equal, their multivariate distribution
becomes elliptic and (5.6} is less than 1.

This has provided the basis for hypothesis test based methods such as the
sphericity test [192] where (5.6) comprises the test statistic, up to a multiplying
factor. For information theoretic criteria such as the MDL (5.6) enters instead
as the likelihood function of the observations [190, 191]. In a sense, the MDL
can be considered a type of sphericity test where the set level is adaptive. For
non-Gaussian observations this statistic still has relevance, but the performance
of a test based on it is uncertain due to the assumption of Gaussian observations.

As mentioned, (5.3) suggests that g should be estimated by determining the
multiplicity of the smallest ordered sample eigenvalues. This can be accomplished

by considering the following set of hypothesis tests,

Hg . /\1 = s = ’\p
He @ A = - = X (5.7)
Hp_g : )\p—l = )\p

with corresponding alternative hypotheses Ky : not Hy, £ = 0,...,p — 2. Ac-
ceptance of Hy leads to the estimate § = k. A practical procedure to estimate
g starts with testing Hy and proceeds to the next hypothesis test only on rejec-
tion of the hypothesis currently being tested. Upon acceptance the procedure
stops, implying all remaining hypotheses are true. The procedure is outlined in
Table 5.1.
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Table 5.1: Hypothesis test procedure for determining the number of sources.
Step 1. Set k= 0.

Step 2. Test Hy.
Step 3. If Hy is accepted then set § = k and stop.

Step 4. If Hy is rejected and k& < p—1 then set £ — k+ 1 and return to
step 2. Otherwise set § = p — 1 and stop.

By taking the case of Gaussian signals and making simplifications to obtain
an asymptotically correct closed form expression for the distribution of a test
statistic based on (5.6}, the sphericity test is obtained. Similarly, by following an
information theoretic approach the MDL is arrived at.

At this point the sphericity test assumes Gaussianity, here this assumption is
not made. Continuing with the hypothesis testing approach, consider all possible
pairwise differences among the sample eigenvalues. This leads to the following

test statistics
Ty=L—l, i=k+1..,p—-1 j=i+l...p (5.8)

These differences will be small when [; and {; are both noise eigenvalues, but
relatively large if one or both of {; and I; are source eigenvalues. Representing

the pairwise comparisons in a hypothesis testing framework gives

H;‘j . Ai=)\j,
Kz‘j : /\i%)‘ja i=k+1,...,p"l, j=%+1,,p (59)

The hypotheses Hx can then be formulated as intersections between the pairwise

comparisons,
He = MizHiy,
K]c = Ui,jKij; z=k+1,,p—1, _}:Z‘-i‘l,,p (510)

The pairwise comparisons are carried out using a MHT procedure to maintain a

global level of significance, as discussed next.

5.3.1 WMultiple Hypothesis Testing

From Appendix E a critical property of MHT procedures is the degree to which
the family wise error (FWE) rate is controlled. Weak control implies that the set
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level, ¢, is maintained under the global null hypothesis Hg. In this problem the
global null hypothesis is that all eigenvalues are equal, so that when no sources
are present the probability of correctly choosing § = 0 should be at least 1 — (.
Strong control implies that the probability of rejecting any true hypothesis is at
most ¢ regardless of whether other hypotheses are true or false.

Bonferroni’s MHT procedure strongly controls the level when the hypotheses,
or equivalently, the p-values, are independent. Each hypothesis, H;;, is tested at
a level (/h where h = p(p — 1)/2 is the number of hypotheses comprising the
global null hypothesis.

In this problem the p-values are not independent due to correlation between
sample eigenvalues and logical implications between hypotheses. For instance, if
Hi, were true, this would imply all the H;; were true. In this case Holm’s SRB
MHT procedure better maintains the set level and is used exclusively. Although
Hochberg’s MHT procedure can also be used, the difference between these tests
was found to be negligible.

Once the H;; have been tested, all that remains is to step through Table 5.1.
From (5.10) it is evident that Hg is rejected if any of the hypotheses Hy;, ¢ =
kE+1,...,p, 7> i, are rejected. P-values are determined from estimates of the
null distributions which are obtained using the bootstrap, as discussed next. A
similar approach was considered in [199] to find p-values for complicated test

statistics.

5.4 Null Distribution Estimation

Evaluation of the p-values needed to carry out the hypothesis tests requires
knowledge of the null distributions of the test statistics, the pairwise differences
T;; = & = 1;. The bootstrap is used as a nonparametric estimator of the null
distributions {43]. It avoids making assumptions about the distribution of the
signals, an important advantage when working with eigenvalues since their distri-
bution is too complex for general use [89], while asymptotic expansions derived
under Gaussianity [7] may not be valid for the small sample sizes considered.
Asymptotic approximations developed for non-Gaussian cases require knowledge
of the higher order moments of the observations, which are difficult to estimate
for small sample sizes [189, 60]. Next, an application of the bootstrap method to

this problem is presented.
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5.4.1 Bootstrapping Eigenvalues

Here, the bootstrap is used to estimate the distribution of the test statistics
from the sample. Details on the bootstrap principle and its application appear
in Appendix D), however, a brief description of its application to this problem
follows.

The sample is a set of vectors, the array snapshots, collected into the obser-

vation matrix
X = (@1,...,xx). (5.11)

The bootstrap resampling procedure for multivariate cobservations is a simple
extension of the univariate case. First, let the empirical density be given by
unit mass functions located at each snapshot and weighted by 1/N. Resampling
from this empirical density is equivalent to randomly resampling from the original

observations with replacement, giving the bootstrap observations
X =(z},...,xy). (5.12)
The sample eigenvalues of these observations, the bootstrapped eigenvalues, are
§>-->0 (5.13)

From the bootstrapped eigenvalues the test statistics are found. Repeating the
procedure B times gives an estimate of the distribution of this test statistic which
can be used for inference. The bootstrap procedure for eigenvalues is shown in
Table 5.2.

For linear statistics, such as the sample mean, the bootstrap is known to
perform well and is a consistent estimator of the distribution. For complex non-
linear operations such as eigenvalue estimation these properties may not apply.
In [17, 18] the statistical properties of bootstrapped eigenvalues are considered.
It is shown that while the bootstrap converges to the correct asymptotic distri-
butions for distinct eigenvalues, the same is not true for multiple eigenvalues.
Bootstrapping with fewer resamples, M, where M < N, min{M, N) — oo and
M/N — 0, ensures the bootstrap converges weakly to the asymptotic distribu-
tion for multiple eigenvalues with sample size M. The sample sizes considered
here are quite small, being on the order of 100. It was found that to fulfill the
conditions which ensure weak convergence for multiple eigenvalues the decrease
in resample size increased the error in eigenvalue estimation such that the overall
error in the distribution increased.

For large sample sizes subsampling may be used to ensure weak convergence of

the multiple eigenvalues to their asymptotic distributions. The conditions under
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Table 5.2: Bootstrap procedure for resampling eigenvalues.

Step 1. Define the matrix of array snapshots X = (21,...,ZxN).

Step 2. Randomly select a snapshot from X with replacement. Repeat

N times to form the bootstrap observations X™ = (&7,...,Z}).

Step 3. Centre X* by subtracting the sample mean from each row,

zh —ah— &SN @, i=1,...,N.
Step 4. Estimate the sample correlation matrix, R, of the centred X*.
Step 5. The bootstrapped eigenvalues, I3, ..., [;, are estimated from i

Step 6. Repeat steps 2 to 5 B times to obtain the bootstrap set of eigen-
values I3(b),...,h(b),b=1,..., B.

which subsampling is valid encompass a wider range of distributions and more
complex statistics than with the bootstrap [149], a brief review of subsampling
is given in Appendix D). Subsampling essentially means the observations are
resampled M < N times, either with or without replacement. To account for this
decrease in sample size the rate of convergence to the asymptotic distribution
must be estimated. Usually the rate is of the form (M/N)™ where 7 &~ 0.5. The
use of subsampling for null distribution estimation is considered to be outside the

scope of this thesis.

5.4.2 Bootstrap Procedure

Given the bootstrap set of eigenvalues the test statistic of (5.8) is recalculated giv-
ing T} == If — . Repeating this procedure B times gives the set of bootstrapped
test statistics, 77;(b), b = 1,..., B. From these bootstrapped statistics the distri-
bution of T}; under the null hypothesis is estimated as f;';' (b) = T35(b) — Ty [43].
Note that the test statistics are not studentised, preliminary investigations hav-
ing shown the extra computational cost required to be unwarranted. P-values for

the two-sided hypothesis tests are then evaluated in the usual fashion.

5.5 Bias Correction

Distinct sample eigenvalues, or those corresponding to sources, are asymptoti-

cally unbiased. Multiple sample eigenvalues, corresponding to the noise only, are
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asymptotically biased. In the small sample case the bias becomes quite signifi-
cant.

The hypothesis tests upon which the detection scheme rests is based upon
detecting a statistically significant difference between the eigenvalues. Bias in
the multiple sample eigenvalues falsifies the assumption that noise only sample

eigenvalues have equal means. This necessitates some form of bias correction.

5.5.1 Lawley’'s Expansion

Lawley developed an expression for the expectation of the distinct sample eigen-
values by considering the propagation of error from the sample covariance to the

eigenvalues for Gaussian observations [111],

R Y _ .
Efli] =)\i+ﬁj=§#r5’)\j+0(1\7 B, di=1,...,q (5.14)
remembering that the )\; are the unknown population eigenvalues. Hence the
bias in the distinct sample eigenvalues is of order O(N~1). A similar expression
for the multiple eigenvalues does not exist, however extensive experiments have
shown that the bias of multiple eigenvalues is of order O(N=1/2), as discussed in
Sections 5.5.4.2 and 5.5.4.3.

Replacing the population eigenvalues by their sample values gives Lawley’s

estimate for the bias in the ¢ distinct eigenvalues,

— 1 < bl | p—q Lo :
Biasiw(li) = _f\—’jzlzj# eyre o S L (5.15)

where ¢2, the population multiple eigenvalue, is replaced with its maximum like-

lihood estimate under Gaussianity,

1 14
= > 5.16)
& ;- (5.
p—4a J=q+1
After applying the bias estimates of (5.15, 5.16) the corrected distinct eigenvalues
will have a bias of order O(N~?%), while the estimate of the multiple population
eigenvalue is unbiased under Gaussianity. However, this correction cannot be

used in the current problem for the following reasons,

1. The bias estimate is only valid when the difference between successive dis-
tinct eigenvalues is large compared to the sampling errors, which are of
order O(N~Y2). If this condition is not fulfilled and A; = A; for ¢ # j,
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the variance of this estimator increases quickly [111]. This is easily un-
derstood by considering the effect of very close distinct eigenvalues on the

denominator of the summation in (5.15).

2. If ¢ is unknown and multiple eigenvalues are present, application of (5.15)
to all sample eigenvalues gives unpredictable results as the assumption of

well separated population eigenvalues is invalid.

Essentially all problems related to applying the above correction without re-
gard to the eigenvalue multiplicity is a result of the denominator term of (5.15)

becoming very small. Next a simple solution to this problem is proposed.

5.5.2 A Robust Bias Estimate

Based on Lawley’s expansion a bias estimate is proposed which overcomes the
aforementioned problems by taking a binomial expansion in the denominator of
the summand of {5.15) and truncating to a finite number of terms. For simplicity,

assume that all the population eigenvalues are distinct. Then the bias estimate

for {;, 1 =1,...,p, becomes
o 1 Kok 180 KNk
; — ) L) - = , 2
Biase(l;) = ~ Z l; Z ( ii) ~ Zﬁ, ( zj) (5.17)
j=i+l k=0 i=1 k=0

for some suitable K. If required, the upper limit on the outer summation can
be changed from p to ¢ and the term corresponding to multiple eigenvalues
from (5.15) included. The choice of K involves a compromise between the ac-
curacy of the bias estimate and its variance. As K increases the bias estimate
improves, with an attendant rise in variance. Setting K to a moderate value
will retain the bias correction properties while guarding against large increases
in variance when the population eigenvalues are not well separated or multiple
eigenvalues are present. Experience has shown a value between 20 and 30 is
acceptable, K = 25 was used here. %LBE can then be used without any knowl-
edge of the multiple eigenvalues by assuming g to be p, this bias estimate can be
applied blindly to correct all eigenvalues irrespective of multiplicity.

An example with multivariate Gaussian observations is shown in Figures 5.1
and 5.2 where the largest sample eigenvalue is considered and both corrections
are applied. The observations have a diagonal covariance matrix with population
eigenvalues (1.15,1.1,1.05, 1)T. While Figure 5.1 shows the mean value of the
corrected eigenvalues are very similar there is a notable decrease in the variance,

———
as seen in Figure 5.2, when using Bias g For small sample sizes the reduction in
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variance is significant as the separation of population eigenvalues is of the same

order as the standard error.

mean value

10 10° .10
sample size

Figure 5.1: Mean of the largest sample eigenvalue with no bias estimation {—},
E?Es:mw (——) and E@'EELBE (---) versus sample size for multivariate Gaussian ob-
servations, p = 4, with diagonal covariance matrix and population eigenvalues
(1.15,1.1,1.05,1)".

For non-Gaussian signals Lawley’s expansion includes an additive term in the
numerator of (5.14), consisting of the second order cross-cumulant between the
eigenvalues A; and X; [189]. As long as this additive term does not dominate,

————
Bias g is still quite effective for non-Gaussian signals.

5.5.3 Jackknife Bias Estimation

Several alternative techniques for bias correction based on resampling methods
were considered. The advantage of resampling techniques to bias correction in
this case is that they can be applied blindly, with no knowledge of the eigenvalue
multiplicity. The jackknife [43] was found to be the most effective scheme, it
reduced the bias at least as much as (5.15) and did not suffer from any large
increases in variance, even for multiple eigenvalues.

The effects of non-Gaussianity on the bias are also important. Here the jack-
knife has an advantage over (3.15) which was derived under the assumption of
Gaussianity, for non-Gaussian observations the bias also depends on the cumu-

lants of the underlying distribution [189]. In the non-Gaussian case then, the



5.5 Bias Correction 67

1.8 :
1.4f
1.2},

10° 10
sample size

Figure 5.2: Standard Deviation of the largest sample eigenvalue with no bias es-
timation (—), Bias (——) and Bias.ee (---) versus sample size for multivariate
Gaussian observations, p = 4, with diagonal covariance matrix and population eigen-
values (1.15,1.1,1.05,1)".

jackknife is still valid as it is a distribution free, though not distribution insensi-
tive, method.

Jackknife resampling is reviewed in Appendix D, given the resampled eigen-
values I}{b), b = 1,..., N, the jackknife estimate of bias for I;, i+ = 1,...,p,

18 N
Bias,(li) = (N = 1) (%7 RO zi) : (5.18)

where I; was estimated from the entire sample.

As will be shown in Section 5.3.4.3, the behaviour of mws and Bias ok Were
found to be very similar, even for non-Gaussian distributions. Even though the
former estimate is based on Gaussian observations it proves to be quite robust
with respect to changes in distribution. Computationally, %LBE is also signifi-
cantly more efficient than Bias sk, which increases by approximately n times the

computations needed to estimate a set of eigenvalues.

5.5.4 Subsampling Bias Estimation

In Section 5.4 subsampling was mentioned for distribution estimation as it is

known to be applicable in the case of complicated nonlinear statistics where
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the bootstrap may not converge to the correct asymptotic distribution. Here
subsampling is applied to the problem of bias estimation.

Subsampling generalises the jackknife, removing d samples at a time giving a
subsample of size M = N — d. The number of unique subsamples, N!/(MI(N —
M)!), may be very large, in which case a smaller number of B subsamples are
chosen at random. As subsampling estimates of a statistic are based on a sample
size M < N, any statistic obtained through subsampling must be adjusted for
its dependence on sample size. For example, most statistics have a variance
proportional to 1/7% where 7y is a function of the sample size N, while the
variance of a statistic obtained from a subsample of size M < N is proportional
to 1/7%, hence the need for rescaling. The function Ty is usually of the form N#-
with 5, € (0,1) [148].

The subsampling bias estimate for I;, i =1,...,p, is
' Jre 2 | = -1, 5.19
Biasgys(l) ~ (B ;lz (&) ) (5.19)

where 7(b) is the b'" subsample estimate of the statistic, r = MN/(N — M),
and the approximation sign (=) is used to denote the fact that not all possible
subsamples are used. The reason for using 7. as opposed to Ty is due to the
resampling being done without replacement from a finite sample as opposed to
with replacement from an infinite population, which is assumed with 74, The
ratio 72/73; is known as the finite population correction [148]. When M is much
smaller than N the finite population correction is close to unity and r can be
replaced by M.

Each subsample should also be a unique one from the N!/(MWN — M)!)
possibilities, though in practice it is not necessary to check for this unless N is
very small or M = N. Application of subsampling to this problem is not as
straight-forward as with the jackknife, two parameters need to be set. First,
the subsample size, M, must be decided on and second, the rate, 3., requires
estimation. Next the question of how to appropriately choose the subsample size
is addressed.

5.5.4.1 Choice of subsample size

Guidelines for the appropriate subsample size are generally based on the com-
plexity of the estimator and the true rate. In [148] the following conditions are

given which ensure subsampling is accurate given a large enough sample size,
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1. The statistic is linear and Gaussian: The jackknife, or subsampling with
M =N —1is valid.

2. The statistic is nonlinear and asymptotically normal with 7y = +/N: Both
M and N — M must be large, a suitable choice being M = kN, k € (0,1).

3. The statistic is complex, nonlinear, not asymptotically normal and 7 is not
necessarily v/N: M must be large while M/N is small. A suitable choice is
M= N*ke(01).

In essence the more complex the estimator, the smaller the subsample size
should be. For rate estimation it was found that the rate of convergence of the
bias depends on whether the eigenvalues are distinct or multiple. Due to this
difference in rate, distinct eigenvalues fall into the second category while multiple
eigenvalues fall into the last. This means a small value of M should be used.

The difference in rate for distinct and multiple eigenvalues suggests that 3,
cannot be set just once, but should be estimated for each sample eigenvalue. Next

the rate of convergence for sample eigenvalue bias and its estimation is considered.

5.5.4.2 Rate Estimation For Eigenvalue Bias

Subsampling estimators for the bias of a statistic are dependent on the rate of
convergence 7x. Herein, 7y is assumed to be of the form N A where (3, is referred
to as the rate.

From (5.14) the bias of distinct eigenvalues is O(N™'), so a first order approx-
imation to the rate for the bias of distinct eigenvalues is 1. A similar expression
for the multiple eigenvalues does not exist, though empirical results suggest the
rate is 0.5. Figure 5.3 shows the behaviour of eigenvalue bias with respect to
sample size for uncorrelated (Gaussian observations. The two scenarios shown are
for distinct and multiple eigenvalues. The population eigenvalues chosen in the
distinct case were (4, 3,2, 1)T, this ensures that they behave as distinct eigenval-
ues over the range of sample sizes shown. The multiple population eigenvalues
chosen were (1,1, 1, l)T.

A model for the bias of the eigenvalue I; is Bias(l;, N) = ¢/N?", where ¢ is
a constant. In the figure several curves are fitted to the empirically determined
rate: 3, =1, 8, = 1/2 and 3, being estimated.

The estimated rate for the largest distinct eigenvalue was 0.98 and for the
largest multiple eigenvalue 0.53. Similar values are obtained for the other eigen-
values. Overall, 3, = 1 for distinct eigenvalues and 3, = 0.5 for multiple eigen-

values is a good approximation.
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10' 10° 10

Figure 5.3: Bias of the largest sample eigenvalue versus sample size for distinct
eigenvalues (top) and multiple eigenvalues (bottom). Shown are Monte Carlo {—)
and the fitted models: 3, = 1 (v7), 8, = 1/2 (A) and 3, estimated ((J). The
observations are multivariate Gaussian, p = 4, with diagonal covariance matrix. The
distinct eigenvalues have population values (4,3, 2, 1)-r while the multiple eigenvalues
have population values (1,1,1,1)".

The most important point to note is that the convergence rate is clearly
different for distinct and multiple eigenvalues. Hence any attempt to use the
subsampling estimate for the bias of the eigenvalues should include estimation of
the rate.
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It is proposed to estimate 3, as follows. First, express {5.19) so as to clarify
its dependence on the subsample size M < [V,

Biases(l;) = ;LEE&ESUB(.!,.;M), (5.20)
N

where
Biassus(li; M) ( Z (b ) (5.21)

is found from B subsamples of size M. Clearly, {5.19) explicitly depends on M
and 3,

NP
B?;aSSUB(li;JM) ~ (?) BiCo‘,SSUB(lZ'). (5.22)

Remembering that = is a simple function of NV and M, it can be seen that by
varying M and taking the logarithm of the above equation, 3; can be determined
by least squares.

The result can be understood intuitively by considering subsampling with
size M as an approximation to taking M samples from the entire population, i.e.
subsampling approximates Monte Carlo sampling. Obviously this becomes more
accurate as M decreases and [V increases.

To estimate the rate several estimates of the bias for various subsample sizes
are required. Following the guidelines above, smaller values of M are suggested.

The entire process of rate estimation can in fact be avoided by choosing
M = N/2, in which case the finite population correction becomes unity and

the subsampling bias estimate is not dependent on the rate.

5.5.4.3 Examples of Bias Correction

In Table 5.3 some results on subsampling bias estimators are shown. The ob-
servations are uncorrelated and Gaussian with distinct population eigenvalues
(4,3,2, 1)T and a sample size of N = 100. Two subsample sizes are used, M = 30
and M = N/2 = 50, in both cases B = 100. For M = 30 three corrections
are used, first assuming 8, = 1, then assuming 3, = 0.5 and finally where 3,
is estimated. The subsample sizes used for rate estimation were M = kN with
k = (0.10,0.20,0.30, 0.40,0.50). Corrections using the jackknife are also shown.
The results obtained are for 1000 independent Monte Carlo realisations.
Whether 5. is estimated or not makes very little difference. Even if an incor-
rect 3. of 0.5 is used there is a reduction in bias. The subsampling corrections

are also quite similar to the jackknife corrections. The same observations hold
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Table 5.3: Bias corrected eigenvalues (mean =+ standard error) for uncorrelated Gaus-
sian observations with distinct population eigenvalues (4,3,2,1)T, N = 100. Results
shown are for uncorrected Monte Carlo estimates, the four subsampling corrected

estimates and the jackknife corrected estimate.

Correction I Iy I3 {4
Monte Carlo 4194054 2944037 191+0.26 0.95+0.14
M=30,58=05]395+060 3.01+045 204+£031 1.04+£0.17
M=30,3=10|404+058 3.00£042 200£0.29 1.01x0.16
3, estimated 403+060 300046 2.00+£0.30 1.01+0.16
M= N/2 4.02+£0.57 2.99+£047 2.00£0.30 1.00£0.15
Jackknife 3.96 £0.59 303+049 2014032 100+0.15

for multiple eigenvalues. Since subsampling produces bias estimates very close to
the jackknife [24], only the latter will be used.

Finally note that whichever method of bias correction is used, it must be
applied to both the sample eigenvalues and the bootstrapped eigenvalues. A

summary of the entire detection procedure is given in Table 5.4.

Table 5.4: Bootstrap Detection Procedure.

Step 1. Estimate the eigenvalues, ly,...,[,, from the matrix of array

———

snapshots and apply one of the bias corrections Biasse or

o ——

Bilos .

Step 2. Obtain the B bootstrapped eigenvalue sets as in Table 5.2 and

bias correct each set using the same correction procedure as

above.

Step 3. Calculate the test statistics T}; and the bootstrap estimate of

4

;> as in Sec-

their distributions under the null hypothesis,
tion 5.4.2.

Step 4. Given the level, carry out the multiple hypothesis test as in

Table 5.1.

To demonstrate the behaviour of the bias estimators for the array signal model,
their performance is shown for a specific scenario. The model was a p = 4 ele-

ment array with a single (g = 1) Gaussian source ai 20 degrees (with respect to
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broadside), an SNR of —7dB and heavy tailed Laplacian noise. The associated
population eigenvalues were (1.8,1,1,1)", so that the largest eigenvalue is distinct
from the remaining eigenvalues, which are multiple. Figure 5.4 shows the mean
of the third sample eigenvalue, one of the multiple eigenvalues, versus sample size
over 1000 independent Monte Carlo realisations with no bias correction and after
applying TS’;EELBE, ’ngEEJ.;K and _gzﬁ;sug. As expected, the bias corrections behave
similarly, further experiments have confirmed this. Between the three correc-
tions, the jackknife appeared to yield slightly better bias estimates coupled with
a greater increase in variance. Subsampling gave bias estimates with the small-
est variance, while the performance of the proposed correction was somewhere

between the two.

o
= : .
§0.95 ................ ............. ...;.;., ......................................................... p
c A A
3
£ ;o
0.9 .,! ....................................................................................... o
50 100 150 200
sample size

Figure 5.4: Mean of the third sample eigenvalue with no bias estimation {(—-),
—— ———— ———
Biasige {X), Biasyx (o), Biases {+), versus sample size for a Gaussian source in

Laplacian noise. The population eigenvalues were (1.8,1,1, l)T.

5.6 Experiments

In the following experiments the proposed method is evaluated by comparing
it to the MDL [190] and sphericity test [192] in a variety of scenarios. Some
parameters which remain unchanged throughout the tests are: the number of
resamples, B = 200, the global level of significance, { = 2% and the element

spacing which was one half the wavelength. The signals are also Gaussian, unless
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otherwise stated. All results were averaged over 100 Monte Carlo realisations.
Results using %JCK are denoted by *JCK’ those using %LBE by "LBE’, the
MDL and sphericity tests are denoted by '"MDL’ and 'SPH’ respectively.

The angular resolution, SNR threshold and effect of source correlation are
important indicators of performance for source detection. In the following three
experiments the relative performance of the bootstrap based method against ex-
isting ones is evaluated with respect to these criteria for Gaussian observations.
Angular Separation For Figure 5.5 ¢ = 2 sources impinge on an array with p =4
elements. The first source is fixed at 20 degrees (with respect to broadside) while
the other is allowed to vary between 20 and 36 degrees. Both sources were at
0dB SNR and N = 100 snapshots were taken.

Figure 5.5: Empirical probability of correctly detecting two narrowly separated sources

as the direction of one is varied.

Effect of SNR For Figure 5.6, ¢ = 3 sources at 10, 30 and 50 degrees impinge on
an array with p = 4 elements. The SNR. of the second source is varied from 0 to
20dB while the SNRs of the first and third sources are —2 and 6dB respectively.
N = 50 snapshots were taken.
Correlated Sources For Figure 5.7 ¢ = 2 correlated sources at 20 and 40 degrees
and SNRs of —3 and (0dB respectively impinge on a p = 6 element array, N = 100
snapshots were taken. The correlation coefficient between the two sources is
varied from 0.69 to 0.99.

These three examples show the bootstrap method performing similarly to the

sphericity test when the assumption of Gaussian signals is fulfilled. It should be
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Figure 5.6: Empirical probability of correct detection as the source SNR s varied.
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Figure 5.7: Empirical probability of correctly detecting two correlated sources as the

correlation coefficient is varied.

remembered that the bootstrap method is based on minimal assumptions about
the signal distribution while the sphericity test assumes Gaussian signals. Any
gain attained under Gaussianity are due to the bootstrap estimating the finite
sample distributions as opposed to the asymptotic approximations made in the
sphericity test. Gains in detection rate may then be achieved by removing the
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assumption of Gaussianity and using the bootstrap.

Due to its consistency properties, the MDL approaches a 100% detection rate

as the sample size increases. In this sense it is fundamentally different to the
hypothesis testing approach proposed here, or that of the sphericity test, where
for large sample sizes the detection rate stays below 100%. By reducing ¢ the
detection rate of the bootstrap test can be increased for large sample sizes or
when ideal conditions, such as high SNR or weakly correlated sources prevail.
The reason for this is that under such conditions the distinct eigenvalues are
clearly separated from multiple eigenvalues. Reducing ¢ has the effect of lowering
the false alarm rate while not significantly affecting the correct rejection of the
null hypothesis when the eigenvalues are distinct. This decreases the probability
of an erroneous decision, increasing the detection rate. Contrary-wise, increasing
¢ improves the detection rates when conditions are not ideal. In this sense ¢
can be regarded as a tuning parameter, though is should be keep small (< 5%)
to reduce false detections when no sources are present. However, as the level
decreases more resamples are required to properly estimate critical points and
the computational load increases [43].
Sample Size Maintenance of a high detection rate for small sample sizes is another
favourable property of source detection procedures. In Figure 5.8 the effects of
sample size are demonstrated for Gaussian observations. There were ¢ = 3 sources
at 10, 30 and 50 degrees and at SNRs of —2, 2 and 6dB respectively impinging
on a p = 4 element array. The sample size was varied over 20 < N < 160.

Figure 5.8: Empirical probability of correct detection as the sample size is varied.
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For small sample sizes of 100 snapshots or less the bootstrap method achieves
a consistently higher detection rate than the sphericity test. Further experi-
ments have shown that while the gain is not always so marked the bootstrap still
performs comparably. As already discussed, this is a result of the bootstrap esti-
mating the finite sample distributions in contrast to the asymptotic correctness
of the sphericity test.
Noise Only In Figure 5.9 the probability of correctly accepting the global null
hypothesis is shown when there are ¢ = 0 sources in Gaussian noise. In this case
all the eigenvalues are equal and so this may be interpreted as the probability of
correctly detecting ¢ = 0 sources. The array has p = 4 elements and the sample

size was varied over 20 < N < 160.
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Figure 5.9: Empirical probability of correctly detecting ¢ = 0 sources in a source free

environment as the sample size varies.

In a source free environment the global null hypothesis is in force and the
global level of significance should be maintained close to the set level of { = 2%,
that is, the probability of correctly detecting ¢ = 0 sources should be near 1—¢ =
98%.

Given that the finite number of Monte Carlo realisations induces some vari-
ability in the results, the level of the test does not appear to be dependent on
sample stze. This is a desirable and expected property as the level of the test
should be independent of the array size and the sample size. Note that the MDL
does not have the ability to adjust ¢, instead it is adjusted implicitly so that the
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detection rate approaches 100% under ideal conditions such as large samples.
On average, the attained level for the sphericity test is approximately 2%,
while for the bootstrap with jackknife bias correction it is 3% and 6% when Law-
ley’s modified bias estimator is used. Several sources of error are present which
may account for this, the most obvious being the actual estimates of the null dis-
tribution. Taking a larger number of resamples decreases this, but at the expense
of computation. The logical implications between hypotheses also affect the SRB
procedure. While more powerful tests which are specifically tailored to the impli-
cations among the hypotheses can be developed, they are often complicated [72].
The larger error in the attained level when using —EEEELBE may be attributed
to small sample effects, truncation error and applying the estimator to resampled
eigenvalues. Lawley’s estimator was developed for continuous Gaussian observa-
tions, whereas the resampled eigenvalues can be considered to be generated from
a discrete distribution formed by the array snapshots, thereby introducing an
error. The jackknife estimator overcomes this problem as it is a distribution free
method.
Non-Gaussianity For the next two examples the observations are heavy tailed.
In Figure 5.10 the conditions are the same as in Figure 5.6, except that the
sources are Laplacian and the noise Gaussian, while for Figure 5.11 the sources

are Gaussian and the noise Laplacian.
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Figure 5.10: Empirical probability of correctly detecting Laplacian sources in Gaussian

noise as the SNIR varies.
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Figure 5.11: Empirical probability of correctly detecting Gaussian sources in Laplacian

noise as the SNR varies.

In both cases the bootstrap is an improvement over the sphericity test and
MDL. For low SNR the improvement in detection rate is approximately 10%, or
up to a 5dB gain in SNR threshold. Similar results were obtained for other heavy
tailed distributions such as Gaussian mixtures.

Considering computational load, the bootstrap detector using ’B?@JCK takes
approximately BN times more computations than the MDL or sphericity test,
using EE;,_BE reduces this to B times. The trade-off in using B’EEELBE to decrease
the load is that the set level is not exactly maintained, but is still acceptable. For
small sample sizes of N < 100 and the B = 200 resamples necessary to maintain

a level of a few percent, the increase in computational complexity is easily met.

5.7 Summary

The source detection problem in array processing was approached from a hypoth-
esis testing viewpoint. The proposed test was based on the difference between
eigenvalues, the assumption being that under the null hypothesis of equality this
difference should be small relative to under the alternative hypothesis.

The assumption of Gaussian signals and large sample sizes to enable calcula-
tion of the test statistics’ null distributions was removed. Instead the bootstrap

was used to estimate the null distributions nonparametrically under minimal as-
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sumptions on the signal distribution.

It was shown that for the cases of interest, such as small sample size, bias in
the sample eigenvalues is non-negligible and should be corrected when carrying
out inference on the eigenvalues. A modified improved bias estimate was proposed
based on Lawley’s expansion which overcame the need to know the multiplicity of
the eigenvalues, performing well in spite of their presence. The jackknife was also
presented as a distribution free method for bias correction. Both these estima-
tors perform similarly, though the jackknife, like the bootstrap, makes minimal
assumptions on the signal distribution. The method of bias correction using sub-
sampling was covered, with consideration given to the problems of choosing the
subsample size and the rate, for which an estimator was proposed.

Experiments have shown that the bootstrap based method outperforms the
MDL for small sample sizes, when the observations are heavy tailed or when
the conditions are not ideal, such as for strongly correlated sources or low SNR.
Performance was also comparable to the more powerful sphericity test, with a
demonstrated increase in detection rate for small sample sizes and heavy tailed
observations.

When using the bootstrap, the number of computations is increased by ap-
proximately a factor of B, the number of resamples. This includes the increase
associated with bias correction if the proposed bias estimator is used, which it-
self represents an N-fold reduction in computatidnal complexity over the jackknife
bias estimator. While the overall increase in computational complexity may seem
large, it should be remembered that it is entirely predictable and that the nature
of the bootstrap makes the algorithm amenable to parallel processing. Hence,

the use of the bootstrap is not outside the capabilities of modern processors.



Chapter 6
Robust Estimation and Detection

This isn’t right, this isn’t even wrong.
— Wolfgang Pauli, upon reading
a young physicist's paper.

The problem of estimation in heavy tailed noise is considered using the M-est-
imation concept of robust statistics. An adaptive robust estimator is presented
which while following the M-estimator structure, simultaneously estimates the
score function of the noise directly from the observations. Two schemes are used
to estimate the score function. The first employs a nonparametric kernel density
estimator, an application to multiuser detection in impulsive noise demonstrates
superior performance in very impulsive noise. The second models the score func-
tion as a linear combination of basis functions. Theoretical results show clear
improvements in performance over static schemes such as the minimax estimator

for proper choice of the bases.

6.1 Introduction

The presence of impulsive noise in communications channels has driven the de-
velopment of detectors and associated estimators which perform well in both
Gaussian and impulsive noise, not suffering the rapid degradation in performance
which plagues those based on Gaussian noise or linear statistics, such as the clas-
sical linear correlator detector [1].

A typical approach is to assume a parametric form for the noise distribution,
chosen from among one of the many impulsive noise models and then to develop
an optimal or sub-optimal procedure based on it. Such an approach assumes the
chosen distribution accurately models the noise, of course it is only an approx-

imation to physical reality. How far the model deviates from reality and what

81
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effect these deviations have becomes problematic, it can only be hoped that the
procedure is insensitive to changes in the model.

To decrease the sensitivity of an estimator to the underlying distribution one
may turn to the theory of robust estimation and use M-estimators to implement a
sub-optimal nonlinear detector which is robust to changes in distribution [74, 188].
While M-estimators can be chosen to give a minimal level of performance over a
large set of impulsive models, their performance for any one may be significantly
far from optimal.

In this Chapter the design of adaptive robust procedures is addressed. By
adaptive it is meant that the estimator or detector alters itself to follow changes
in the noise distribution [73]. Two distinct methods based on the M-estimation
concept are considered, both of which extract information from the observations
about the noise distribution and incorporate this into an M-estimator. The first
explicitly estimates the noise density through a nonparametric kernel density
estimator modified for improved performance in impulsive noise. This enables
the detector to adapt to various noise models with minimal a priori information,
at most the density is assumed unimodal and symmetric. The second estimates
the noise density indirectly, a linear combination of bases functions being used to
model the score function of the noise distribution. Originally developed in [170],
improvements are proposed which greatly improve small sample performance.
The asymptotic covariance of the estimator is derived and the small and large
sample performance is analysed. Results show that near optimal performance is
attainable when the bases are suitably chosen.

The organisation of this Chapter is as follows. In Section 6.2 the signal model
is presented. In Section 6.3 the theory of M-estimation is reviewed and the the-
oretical performance under the signal model is derived. The concept of adaptive
robust estimation is introduced in Section 6.4. The nonparametric adaptive ro-
bust estimator is developed in Section 6.5 and results from an application to the
multiuser detection (MUD) problem is shown. The parametric adaptive robust

estimator and associated theoretical results appear in Section 6.6.

6.2 Signal Model

Consider the general signal in additive noise model,

Y = 50 (@) + Zn, n=1,...,N, (6.1)
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where z, is iid noise and the signal, s,, is parameterised by @ = (6y,..., GK)T.
The aim is to estimate the signal parameters € from the N observations y,, as a
priori knowledge required for further processing, such as detection.

Given that the noise density, fx(z), is known, the ML solution is obtained as

- ] N
OmL = argmin Z — log fx (g — sa(8)) (6.2)
g n=1
or equivalently, is found by solving the K coupled equations,
N
‘ 8sn 8
S (o — 5n(8) 222 o, (6.3
n=1
where () = —fi(2)/fx(x) is the location score function of fx(z).

As ML estimators require that fx{z) be known, any associated distributional
parameters must also be known or estimated. It is clear that without a priori
knowledge of fx(z), estimation of & cannot be optimal in the ML sense and
performance is uncertain with respect to deviations from the assumed model.
Furthermore, the computational cost of the MLE can be too high, Sa.S distribu-
tions being a prime example due to the lack of a closed form expression for their
pdf.

6.3 M-Estimation

M-estimators may be viewed as a generalisation of ML in the face of uncertainty
about the noise distribution [46, 81]. Here, the uncertainty stems from the pres-
ence of outliers injected by impulsive noise. In an M-estimator the log-likelihood
function - log fx(z) of the MLE is replaced with a similarly behaved penalty
function, p(z). The penalty function is chosen to confer robustness on the esti-

mator under deviations from the assumed density. @ is estimated from

. ) N

6= arg;mn anlp (yn ~ sa(8)), (6.4)
or alternatively from the K coupled equations,

3sn(9)

Zcp (yn — 5n(6)) =0, (65)
where @(z) = p'(z). When fx(z) is unknown it is unsure how close p(z) is to
1(x). Selection of the penalty function is then of prime importance in ensuring
the performance of the estimator is not highly sensitive to fx{(z) but is robust

over a wide class of noise models.
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6.3.1 Theoretical Performance for Arbitrary ¢

Under some mild regularity conditions such as E[¢(z)] = 0, M-estimates pos-
sess desirable properties such as consistency and asymptotic normality [46, 81].
Herein, fx(z) is assumed to be symmetric so that an antisymmetric ¢{r) is used
to ensure this condition is met.

Let Fx be the distribution (edf} of the noise and Fj be its empirical counter-
part from a sample of size N. Then an estimate of 8 can be defined in terms of
a functional T operating on Fy, T(Fx), while the true parameters are obtained
as T(Fx).

6.3.1.1 Consistency

Let Fy belong to a family of distributions F, then T(Fy ) converges in probability
to T(Fx) as N — oo,

Prl|T(Fn) = T(Fx)| >¢ — 0 as N — oo, Fx e F, (6.6)

for every € > 0.

6.3.1.2 Asymptotic Normality

Define V (T, Fx) to be the asymptotic variance, then
N'Y(T(Fy) = T(Fx)) = N(O, V(T, Fx)), (6.7)

where N(0, 1} is the standard normal distribution.

6.3.1.3 Influence Function

The influence function measures the effect of a deviation from the assumed dis-
tribution on a descriptive statistic, T, in other words, robustness. It is defined as

the change induced in 7" by an infinitesimal contaminant at x,

IF(z; T, Fx) = lim @ -8)Fx ’;EAm) — T(F) : (6.8)

where A, denotes a unit step in the distribution.
The utility of the influence function is that it allows calculation of the asymp-

totic covariance of the M-estimates,
V(T, Fy) = f IF(z; T, Fy)IF(z; T, Fx)T dFx. (6.9)

IF(z; T, Fx) and V(T, Fx) will now be found for the signal model (6.1).
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6.3.1.4 Asymptotic Covariance of M-estimates

The functional corresponding to (6.5) is

/Z { 9(1")))%@} dF =0, (6.10)

where F = IIY_| F, is defined as, F, = Fx(y, — so(0(F))), H =}_ H,, H, =
(1 —&)F, +ed,, . Following the approach in [81], replace F in {6.10) by H,

differentiate with respect to ¢ and evaluate at ¢ =0,

= Z{ (o) 220 o

Applying the product rule first to the term in braces and taking the partial

=0. (6.11)

e=0

differential inside the summation gives

/g % {w(yn - sn(e(ﬁ)))i%g’,@}

The operations of differentiation and integration can be interchanged subject

dF. (6.12)

e=0

to some conditions on the continuity of the integrand [92]. These regularity

conditions are assumed to be fulfilled, see [81} for more details. Since

Bsn(0(H)) Dsa(B(F))
e lemo 6" D5 oo
M IF(y T, Fx), (6.13)
80
where ¥ = (1, - - - ,yN)T, it follows that
3¢(yn — sn(O(H
Ot 0
/ = s (6(F
(Yo — sa(B(F))) - =22 (9( D IF(y;T, Fx). (6.14)
Also,
Ps.(6(H))|  _ sa(6(F)) ‘
W =0 - aGaGT ) IF(y1 T, FX) (615)

Since the estimator is consistent, 8(F) — 8, as N — oo and the redundant

reference to F is dropped. Hence (6.12) becomes

> {f — &' (Yo — 50(0)) dF - asgéf’) [ 95.(0)

o87
025,(8)
86607

n=1

[ ot~ i@ af- } F(yiT, Fy). (6.16)
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Since ¢(z) is antisymmetric and fx(z) is symmetric, the second integral is zero.
Furthermore, the first integral is simply —E[y’(z)], hence (6.12) reduces to

—E[p'(2)] Y Jndn” - TF(3; T, Fx), (6.17)

n=1

where J,, is the gradient of s,(8). Finally, evaluate the remaining term from (6.11),

N _
[ otn-monZgPa{Z} (.19
OH AL (1 —€)Fx(yn — 5(8)) + 24y,
o = S . (6.19)
N
= Z {Ayn - FX( Yn ( ))} Hm#n (ym - Sm(g))
N
= > ALY Fx(ym — sm(6)) — NF. (6.20)

n=1

The second term of (6.20), when substituted back into (6.18), yields zero by
application of (6.5). The first term gives

Z@ — (@) 2280 5™ (g~ 5a(8) (6.21)
Combining {6.17) and (6.21) gives IF(y; T, Fx) as
(s Jadn ) o0y #yn — 52(6)) T
IF(y; T, Fx} = ) : (6.22)

1t is then straightforward to obtain the asymptotic covariance from (6.9} and (6.22)

as

V(T F =M- 3 T B 23
(T, Fx) Ok PIP AN I (6.23)

A similar result was obtained in [59], where the asymptotic behaviour of T(Fn)
was analysed by taking a first order Taylor series expansion of (6.5). The only

n=1

degree of freedom available for minimising the asymptotic variance is the appro-
priate choice of @(z). Tt is then critical to choose ¢(z) such that the asymptotic

relative efficiency (ARE) with respect to Fisher information,

__ E@pP
ARE = E A E @] (02

is maximised over a wide class of ¥(x).
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6.3.2 Selection of the Penalty Function

The penalty and score functions are equivalent representations from the view
of M-estimation, although the later is the more useful for two reasons. First,
estimation is typically performed using ¢(z) by solving equation (6.5) while the
performance and operation of M-estimators are more easily described in terms of
the score function.

Many penalty functions are suggested in the literature based on experience,
intuitive reasoning and the optimisation of performance measures such as the

asymptotic variance or ARE.

6.3.2.1 Score Functions Based on Heavy Tailed Distributions

The score functions may be of heavy tailed distributions such as the Cauchy and
Laplace. The reason for such a choice is clear, near optimal performance will be
attained at or near the chosen heavy tailed distribution. Asshown in the literature
this generally results in robust behaviour, avoiding the catastrophic failure of
estimates based on Gaussianity. Furthermore, score functions chosen for their
simple form reduce the computational complexity. The Laplace score function is
particularly simple, being a hard limiter. Figure 6.1 shows the Gaussian, Laplace

and Cauchy score functions. Note their differing limiting behaviour,

Gaussian score : limg . [@(2)] = o0,
Laplace score : limjgoo [¢(2)| = 1,

Cauchy score : limp; . [@(z}| = 0.

The limiting behaviour of a score function is essentially what separates those

which yield robust behaviour from those that do not. A general guide is as follows

Not robust : |@(z)| «x |z|” as |z{ — oo with p > 1. The score function
constantly increases, placing a heavier weight on larger outliers. An
example is any pdf whose tails decay at a rate equal to or greater than

exp(—z?), i.e. a light-tailed distribution.

Mildly robust : |@(z)| o |z|" as |z|] — oo with 0 < p < 1. The score
function constantly increases, but at a decreasing rate. An example

is the generalised Gaussian score function for 1 < v < 2.

Robust : |¢(x)| « |z|” as |z| — oo with p = 0. The score function has a
nonzero limiting value for large z. Equal weight is given to all outliers.

An example is any distribution with Laplacian tail behaviour.
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Figure 6.1: Some typical score functions used in robust estimation, the Gaussian score
(top left), Laplace score or hard limiter (top right), Cauchy score (middle left), soft
limiter (middle right), hole puncher (bottom left) and triangular score (bottom right)

Very robust : |@(z)| x |z|” as |[¢] — oo with p < 0. The score func-
tion redescends to 0, either in the limit or for a finite x greater than
some threshold. An example is any distribution with algebraic tail

behaviour.

Redescending score functions are more suited to very heavy tailed distributions

as they completely remove observations greater than a set value or in the limit.
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6.3.2.2 Generic Score Functions

As noted above, a common trait linking the score functions of heavy tailed dis-
tributions is their limiting behaviour, which is generally |¢(z)| o« |z|® as |z| — o0
with p < 0. The effect of this is to reduce the influence of observations with very
large magnitudes on the estimate, clipping, downweighting or even removing likely
outliers. As |z| — 0 the behaviour tends to be linear, so that observations small
in magnitude are treated as they would be under the Gaussian model. Based
on these general properties many score functions have been suggested for robust
estimation. Some of the more common appear in Figure 6.1. Score functions
derived from heavy tailed distributions, or generic ones such as those just shown,
are used extensively in non-Gaussian detection theory where they appear as the
zero memory nonlinearities of locally optimal, locally suboptimal and generalised
nonlinear correlator detectors [95, 150, 135, 182, 31].

6.3.2.3 Score Functions Based on Optimising Asymptotic Performance

Huber considered estimation of location in a two component mixture model, one
component representing a nominal distribution, the other an unknown contami-
nating distribution [81]. The contaminant, being arbitrary and constrained only
in that it is assumed to be symmetric, may be a heavy or light tailed distribution.
However, its function here is the introduction of outliers and as such is assumed
to possess heavier tails than the nominal.

A minimax criterion is used to obtain an explicit solution for the penalty
function. The criterion being to minimise the maximum asymptotic variance of
the M-estimate over the entire class of contaminating distributions. Another in-
terpretation is to first find the least favourable distribution, that which minimises
Fisher information and then to use the score function of this distribution in the
M-estimator.

For a nominal Gaussian distribution the mixture model is

fx (@) = (1 = &) folz; 08) + efo(a), (6.25)

where fo(z;0%) is the nominal zero mean Gaussian pdf with variance o and
fo(z) is the unknown symmetric contaminant. The minimax solution for ¢(x) is

the soft limiter,

el

, (6.26)
ksgn(zx), for |z| > koZ

= for |z| < kol
p(x) =
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where k is determined from 2fg(kog)/(kog) — 2Fg(—kog) = ¢/(1 —¢) and fo(z)
and Fg(z) are the standard normal pdf and cdf respectively. As explained previ-
ously, the principal of the soft limiter is to clip outliers, reducing their deleterious
effect on the estimator. Given @(z), solutions to (6.5) can be obtained, for ex-
ample, by iteratively reweighted least squares or the iterative modified residual
algorithm [81].

Next, a variation on M-estimation is suggested where the penalty function is

not static but is estimated from the observations.

6.4 Adaptive Robust Estimation

Although the soft limiter score function is well motivated, like any minimax
solution it may be far from optimal for many distributions within the class for
which it was designed. Similarly, near optimal performance cannot be maintained
over a wide class of distributions for specific choices of the score function such as
the Cauchy.

If the penalty function could adapt itself to the observations the estimates
may still exhibit robust behaviour over a wide class of distributions, but with
improved performance. This is what is proposed, instead of using a static penalty
function in the M-estimator, it is estimated from the observations. Score function
estimation is incorporated into any of the standard iterative parameter estimation
procedures used to obtain the M-estimates. At each step the parameters are
updated and the residuals found, these residuals are used to estimate the score
function which in the next step are utilised to update the parameters and so
forth. The algorithm is summarised in Table 6.1.

The most important component of the iterative algorithm is estimation of
the score function. An obvious approach is to find an estimate of the noise
density, followed by analytic or numerical differentiation to find the associated
score function. Another is to estimate the score function directly, as in [170]
where a linear combination of basis functions were used to approximate ¥(z).

The former approach is considered next, based on a nonparametric density

estimator which provides a nonparametric estimate for the score function.

6.5 Nonparametric Adaptive Robust Estimation

The use of nonparametric density estimates in the context of detection was con-

sidered in {194, 195]. There, a training sequence was used to estimate the locally
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Table 6.1: Iterative algorithm for the adaptive robust estimator.

Step 1. Initialisation:

Set ¢ = 0. Obtain an initial estimate of @ based on the Gaussian
assumption or using a simple robust estimator such as an M-

estimate with the soft limiter.

Step 2. Determine the residuals:

Tp = Yn — Sn(éi)-

Step 3. Estimate the score function:

From Z,, estimate the score function p(z).

Step 4. Update the parameter estimates:
Using ¢(z), update the parameters from 8, to 0, by advancing
one step in the iterative solution for a static M-estimator.
Step 5. Check for convergence:

If [(Bi41)k — (8)k| < €l(8:)i| for k = 1,..., K, stop, otherwise
set ¢ — 7+ 1 and go to step 2.

optimum nonlinearity for detection of a signal in impulsive noise. A training
sequence gives a priori information about fx(z), necessary to estimate the dis-
tribution of the observations under the null hypothesis that no signal is present.
Without such knowledge the Neyman-Pearson detector cannot be implemented.

The proposed method as outlined in Table 6.1 requires no training sequence
as it relies on an iterative scheme where the score function and parameters are

estimated jointly. Next the problem of density estimation is addressed.

6.5.1 Density Estimation

The problem of density estimation is as follows, given N iid observations, z,,
n=1,...,N, estimate the density fx{z). Density estimators may be separated
into two broad classes, parametric and nonparametric. The former are based on
parametric density models and imply estimation of any distributional parameters.
Hybrids between parametric and nonparametric density estimators also exist, a

case in point being the Gaussian-mixture distribution with a sufficient number
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of components. Using the expectation-maximisation algorithm to estimate the
distributional parameters, it was shown in [107, 106, 110] that a 4 component
Gaussian-mixture distribution could model a wide variety of distributions includ-
ing the Sa.S. This approach is not pursued any further here, rather, the focus is
on nonparametric methods as they are not constrained by any model, but allow
the most general structure for a density.

A survey reveals many nonparametric density estimators including kernel and
nearest neighbour methods, series estimators and maximum penalised likelihood
estimators. Kernel methods are popular because of their wide applicability and
the properties of the estimates [41, 163, 175]. Various disadvantages are associated
with each of the other estimators. Nearest neighbour methods result in densities
with discontinuous derivatives, which is to be avoided as the derivative is required
for estimation of the score function. Series estimators may yield negative densities
and possible oscillatory behaviour in the tails, accurate estimation of the tails is
of prime importance for robust behaviour in heavy tailed distributions. Penalised
likelihood estimators again specify parametric models for the density and require
the distributional parameters to be estimated.

Here an adaptive kernel estimator is used, which is briefly reviewed before
considering several extensions to cater for specific properties of fx(x) such as
heavy tails, symmetry, unimodality and multimodality.

Fundamentally, kernel methods smooth the empirical density by placing a
kernel at each observation, their sum giving an estimate of fx(z). The adaptive
kernel estimator (AKE} is defined as

; 1 on 1 T — Tpn
o= 2 () (627

where K¢(r) is the kernel function, A is the global bandwidth and the b, are
the local bandwidths. As kernel methods inherit the properties of K(z) it is
recommended that K;(z) be differentiable, non-negative and integrate to one to
guarantee a valid density. A Gaussian kernel was used since it fulfills all these
requirements and gives good results over a wide range of distributions. The local
bandwidths are used to adjust for local structure in fx(x) such as heavy tails,
while the global bandwidth affects fx(z) globally and may be used to control

smoothness.
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6.5.1.1 Bandwidth Selection

The local and global bandwidths are found as follows. First, a pilot estimate for
the density, fﬂ(:r:), is found by setting b, = 1 and choosing to a suitable A, as will
be discussed.

Second, estimate the local bandwidths as b, = (fo(zn)/TI, fol@n) /™) ~?
where 0 < @ < 1 controls the sensitivity to fo(z). A recommended choice is
# = 1/2 since asymptotically the resulting estimator will have a bias of lower
order than when 199 = 0. Division by the geometric mean of the density estimate
at the observations conserves the scale of the density. Finally, evaluate f x(x) at
the required values.

For fixed b,,, an optimal A can be obtained by minimising a measure of distance
between fx(z) and fx(z) with respect to h. An often used measure is the mean
integrated squared error, MISE = E[f* ( fx(z) — fx(z))*dz]. For the special
case of a Gaussian distribution and kernel Ay, = 0.79IQRN -1/5 is obtained,
where IQR is the interquartile range. In general hqy is a reasonable choice even
for non-Gaussian K;(z) and fx(z), however, should fx(z) be multimodal this
choice gives large errors. In this case, or merely to refine h, more intelligent
methods of bandwidth selection such as cross-validation or resampling schemes

such as the bootstrap are required [51, 163].

6.5.1.2 Bandwidth Corrections for Heavy Tailed Distributions

Even with local bandwidth adjustments the AKE may undersmooth and produce
spurious peaks in the tails for heavy tailed distributions. Modes in the tails are
undesirable as they produce a score function which oscillates in the extremities.
This may lead to inaccurate estimates as convergence of the iterative parameter
estimation algorithms depend on the properties of |¢'(z)|, on which more will be
said later.

Possibly the simplest way to remove these peaks is to selectively increase the
local bandwidths. The tails are then corrected while not distorting the estimate
near the mode. First define the tail regions as the lower and upper 1006% of the
observations, £ = 0.25 was found to be adequate. For each tail move from the
extremal observations inwards, adjusting local bandwidths for successive pairs of
observations. If fx(:c) at the midpoint between the observations is less than that
at both observations a local minima is deemed present and the two local band-
widths are increased. The correction is based on the assumption of a Gaussian

kernel. If two Gaussian kernels are separated by a distance of 2A their sum will
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be unimodal if their local bandwidths are at least A/h. The component with the
smaller local bandwidth is assigned this critical value, while the other is assigned
the critical value scaled by the ratio of the original bandwidths to preserve their
original proportionality. It can occur that one of the modified local bandwidths
is less than the original, in which case the greater one is kept. This simple scheme
was found to produce good results, removing spurious peaks when the tails were

heavy.

6.5.1.3 Symmetry

Recall that for {6.5) to give consistent estimates fx(x) should be symmetric and
¥(z) antisymmetric. ¥(z} is ensured to be antisymmetric by imposing symmetry
on fx(z). Let fx(z) be the raw asymmetric estimate, then a symmetric estimate,
Fu(z), is obtained by taking the even part of fx(z), fu(z) = (Fx(z)+ Fx(—z))/2.

6.5.1.4 Unimodality

If fx(z) is known to be unimodal, then incorporating this information into the
estimator will reduce error. To impose unimodality on kernel estimators it is
suggested to increase h, this follows from a result for Gaussian kernels which
states that the number of modes is a decreasing function of & [163]. To check
for unimodality determine the number of peaks in fx(z), should there be more
than a single peak h is increased by a factor 5. The process is then repeated until

unimodality is attained, with # = 1.05 a few iterations was usually enough.

6.5.1.5 Consistency of the Estimates

Pointwise and uniform consistency using the kernel estimators can be achieved
under some mild regularity conditions on fx(z) and Ky(x}, and some further con-
ditions on A, both of which are usually fulfilled. Uniform consistency implies that
Prlsup, | fx(z) = fx(z)] — 0] = 1 as N — o0, more details and other consistency
results can be found in [41, 163, 175].

6.5.2 Application to Multiuser Detection

Present and emerging wireless communications standards such as CDMA2000
(code division multiple access) and WCDMA (wideband code division multiple
access) implement direct sequence spread spectrum CDMA. The primary advan-
tages of CDMA are that it allows multiple users access to the channel, gives a
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soft degradation in performance as the number of users increase and can offer
secure transmission [77, 142}.

MUD techniques are being intensively investigated for CDMA communica-
tions because they have the ability to combat the multiple access interference
caused by the presence of more than one user in the channel. At best MUD
can achieve single user performance by removing multiple access interference al-
together. Most MUD schemes are designed under the assumption of Gaussian
noise and tend to be linear in nature, the decorrelating detector which removes
multiple access interference for high SNR is simply a linear transformation [187].

Impulsive noise can severely degrade the performance of MUD detectors based
on the Gaussian assumption, warranting the design of MUD schemes for impulsive
noise [1, 2, 3].

6.5.2.1 Multiuser Detection Signal Model

Consider a direct sequence spread spectrum multiple access communications chan-

nel where K users transmit synchronously. The received signal is

K
o= (S)Abx+2, n=1...,N (6.28)

k=1
(8)n1 denotes element (n, k) of the matrix S whose columns consist of the nor-
malised spreading codes of the K users, S = (81,...,8k), the codes being of
length N. A; > 0 is the amplitude of user & and b, € {—1,1} is the bit sent by
user k. z, is additive iid zero mean noise. The vector form of the above model,
y = S0+, will be used, where @ = Ab, A = diag(Ay, ..., Ax), b= (br,...,bxk)"
and @, = A,b, denotes element k of @, so that all the unknowns are collected into

0.
Classical least squares (LS) gives fpg as

N K 2
OLs = arg;nin Z (yn - Z(S)nkﬁ'k) : (6.29)
n=1 k=1
for which the solution is
Ous = (878) 18Ty, (6.30)

Existence of (STS)™! is ensured as the columns of the code matrix are linearly
independent spreading codes. The users’ amplitudes and data bits are easily

recovered as

Ay = ék‘ , by = sgn(ék) . (6.31)
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This gives the so called decorrelating detector, aptly named since it decorrelates
the users, removing the multiple access interference [187]. For Gaussian z, the

LS solution for @ is equivalent to the ML solution, obtained by solving

N K
> (S)ux ¥ (mn - Z(S)nmﬁm) =0, k=1.. K, (6.32)

where in general z, has a density fx(z). In impulsive noise of unknown distri-
bution both these methods have severe disadvantages. First, the decorrelating
detector is sensitive to impulsive noise, its performance rapidly degrades as the
level of impulsive behaviour increases. Second, even for known fx(z), the com-

putational cost of ML is often too high.

6.5.2.2 Robust Multiuser Detection

An M-estimator for the MUD problem is obtained by replacing the true score
function ¥(z) in (6.32) by @(z),

N

K
> (Shar (mn - Z(S)nm(?m) =0, k=1,.. K (6.33)

n=1

In [188] a robust MUD was developed using an M-estimator with Huber’s penalty
function and the modified residual method, herein this is referred to as the min-
imax detector. The same approach was used in [151] to develop a robust MUD
for flat fading channels. An alternative was proposed in {14, 15, 13] where adap-
tive chip based nonlinearities were used to mitigate impulsive noise, followed by
adaptive filtering which is needed to combat the multiple access interference.

The adaptive equivalent of the M-estimator based robust MUD uses a non-
parametric density estimator to estimate the score function and is summarised
in Table 6.2, it will be referred to as the nonparametric detector.

The iterative parameter estimation algorithms for both the minimax and non-
parametric detectors will only converge to a unique minimum if the step size, fi,s,
satisfies pys < 1/|¢/(x)| [188]. For the minimax detector the step size is set a
priori to 1/¢%, the inverse noise variance, where it exists or to the noise scale
where it does not. For the nonparametric detector the step size is set adaptively

to
1

= 6.34
e [z, (639

MSS

where ¢ > 1 allows for a margin of error when estimating '(x,), ¢ = 1.25 was

used.
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Table 6.2: Iterative algorithm for the nonparametric adaptive robust estimator as
applied to MUD.

Step 1.

Step 2.

Step 3.

Step 4.

Step 3.

Initialisation:
Set ¢« = 0. Obtain an initial estimate of @ from the decorrelator,
Determine the residuals:

i:y—Séi.

Estimate the score function:

From &, estimate the density, fx (x) and evaluate the score func-

tion estimate as

~

_ Ix(@)
o(z) o)

Update the parameter estimates:

Evaluate z = (&) and update the parameters,

~

9,;4.1 = éi + MSS(STS)_lsTZ,
where s is the step size.

Check for convergence:

If [(8:01) — (0:)k] < €(8:)x| for k = 1,..., K, stop, otherwise
set i — i+ 1 and go to step 2.

6.5.2.3 Experiments

Three detectors are compared here, the classical decorrelating detector, the mini-

max detector and the proposed nonparametric detector, all over a variety of noise

models. Unless otherwise stated all noise models are symmetric and unimodal,

this being incorporated into the density estimator. Bit error rates (BER) versus

SNR are shown for K = 6 users. The spreading codes are shifted maximal length

sequences of length N = 31, meaning density estimation is performed with a

sample size of 31. The amplitude of the first user is at -10dB relative to the

others, BERs are shown for this user. The SNR is defined as A%/0? where A is

the amplitude of the user of interest, the first user, and o2 is the noise variance.

For Sa8 noise, o is replaced by ¢, the scale parameter.
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For Gaussian noise in Figure 6.2 the decorrelator and minimax detectors per-
form similarly. This is expected as for Gaussian noise the influence function for
the minimax detector clips only a minority of the incoming observations, but
appears linear, the optimum shape in Gaussian noise, for the majority. Since the
nonparametric detector estimates the score function it is never perfectly linear

for Gaussian noise, leading to a decrease in performance of approximately 1dB.

I R R R R R R R TR TR RN R TN RN TR

R I N N I R I R EREE TR R R =R

o
&
107
— ecorrelater [ N
~==- minimax detector :
1o - o - nonparametric detector | : :
0 2 8 10

4 &
SNR (dB)

Figure 6.2: Bit error rate versus SNR in Gaussian noise.
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107
— decorrelator s o
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10 x : ”
-5 10

Figure 6.3: Bit error rate versus SNR in generalised Gaussian noise with v = (.5.

SNR (dB)
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Figure 6.3 shows results for a generalised Gaussian distribution with » = 0.5.
The nonparametric detector has the lowest BER up to an SNR of 9dB. There
appears to be a range of # and SNR which favor use of the nonparametric detector,
namely for low v and SNR, a region where accurate detection is difficult. This
suggests that the nonparametric detector is more robust in highly impulsive noise.

Next, results are shown for the £ —mix model with ¢ = 0.01, & = 100 and
e = 0.1, x = 100 in Figures 6.4 and 6.5 respectively. Both the minimax and
nonparametric detectors outperform the decorrelator, while the minimax detector
outperforms the nonparametric detector in the first case but not the second.
Which detector is best depends on how the model parameters affect the accuracy
of the density estimation. In the first case there are a small proportion of very
large noise values, making tail estimation difficult as there are so few observations
in the tail regions. In the second case large noise values occur with a greater
probability, aiding in tail estimation and hence estimation of the score function,
leading to smaller BERs. The nonparametric detector will then perform well

given Ne is sufficiently large to allow accurate estimation of the tails.

4

107'E

TR RN TR RN a [ X LR R TR RN AR R

BER

| — decorrelator

107 ¢
----- minimax detector
- » - nonparametric detector [ !
0 2 4 6 8 10
SNR (dB)
Figure 6.4: Bit error rate versus SNR in & mixture noise with ¢ = 0.01, x = 100.

Next, consider two cases where the noise is SaS. Theoretical motivation for
Sas distributions as a model for impulsive noise in multiuser environments can be
found in [84]. Results for @ = 1.5 and a = 1.0 (Cauchy) are shown in Figures 6.6
and 6.7 respectively. In these cases the nonparametric detector outperforms both

the minimax and decorrelating detectors. Further experiments have shown this



6.5 Nonparametric Adaptive Robust Estimation 100

r.tHI:::l::I::H:H:::::1:::::::i::i1:::::::::‘.::!:::7!

— decorrelator
..... minimax detector
_s|=_* -_nonparametric detector : ~
100 —— '
- 10
SNR (dB)

Figure 6.5: Bit error rate versus SNR in £ mixture noise with ¢ = 0.1, x = 100.

to be true for smaller values of e. This gives more evidence to the suggestion

that the nonparametric detector is more robust to highly impulsive noise.

BER

NI E ]

— decorrelator
----- minimax detector
- » - nonparametric detector |\

0 5 10 15 20 25 30
SNR (dB)

Figure 6.6: Bit error rate versus SNR in Sa5 noise for a = 1.5.

For the final example the noise distribution is symmetric but bimodal, this is
incorporated into the density estimation procedure as outlined in Section 6.5.1.
The bimodal density is composed of two Gaussian densities with means of %1

and a variance of ¢2 = 0.01.
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Figure 6.7: Bit error rate versus SNR in Sa.S noise for o = 1.0.
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Figure 6.8: Bit error rate versus SNR in symmetric bimodal noise generated from a

two component Gaussian mixture model where the components have a mean of =1

and a common variance of 0.12.

Figure 6.8 shows results for this scenario. The nonparametric detector is able

to adapt itself to the bimodal nature of the noise and outperforms the other

methods at low SNR.

To briefly comment on computational complexity, it was found the nonpara-
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metric detector took on average 4 iterations to converge while the minimax de-
tector took 2.

6.6 Parametric Adaptive Robust Estimation

The nonparametric adaptive robust estimator makes minimal assumptions about
the noise and as such can adapt to a fairly broad range of models. The flexibility
of nonparametric methods is countered by a drop in performance relative to
parametric ones, suggesting the use of a parametric model for the score function.
In [170] an adaptive robust estimator was proposed which modelled the score

function parametrically as a linear combination of basis functions,
&
z) = aug,(z) = alg(x), (6.35)
g=1

where @ = (a1,...,ag)" are the weights and g(z) = (¢:1(z), ... ,go(z))" are the
bases.

The bases are chosen for their ability to approximate ¥(z). For instance, the
9,(z) can simply be a set of score functions obtained from distributions known to
be close, in some sense, to fx(z). The weights can then be chosen to minimise
some measure of distance between ¢(z) and ¥(z) or to maximise the performance
of the estimator.

A sensible measure of distance between (x) and ¢(x} is the MSE, from which
the weights are determined as

a = argmin E[{p(z) — P(z))?]. (6.36)

a

Given that the following condition holds
lim g,(x)fx(2) =0, (6.37)
a is obtained as the solution to the normal equations,
E(g(z)g"(z)] @ = Elg'(2)]. (6.38)

Estimates of the weights obtained in this fashion are referred to as the MMSE

(minimum MSE) solution,

a=E[g(z 3:)] Elg’'(z)]. (6.39)
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In practice expectation is replaced with an empirical mean. An alternate inter-
pretation for the solution (6.39) was developed in [170]. Consider the expression
for the ARE with p(z) = a"g(z),

aTEg@)Eg@ e 1
aTE[Q(IEJQ(SC)T] a ER@?)

ARE = (6.40)

then estimating the weights according to (6.39) also maximises the above expres-
sion for the ARE, or equivalently, minimises the asymptotic variance. Since this
approach attempts to minimise the asymptotic variance it can be expected to
improve upon the minimax solution when the set of basis functions model the
true score function satisfactorily.

This estimate of the score function is then incorporated into the adaptive

robust estimator show in Table 6.1, the algorithm is summarised in Table 6.3.

Table 6.3: Iterative algorithm for the parametric adaptive robust estimator,

Step 1. Initialisation:

Set i = 0. Obtain an initial estimate of 8, 8;.

Step 2. Determine the residuals:
:‘E‘n =UYn — Sn(éi)-

Step 3. Estimate the score function:
From &,, estimate the weights,

a= (Z g(:“cn)gT(:’?:n)) Z g'(n),

T

the score function estimate is then p(z) = & g(z).

Step 4. Update the parameter estimates:
Using ¢(z), update the parameters from 8, to 8;,, by advancing
one step in the iterative solution for a static M-estimator.

Step.5. Check for convergence:

If [(8i31)e — (8:)x] < €(8;)i] for k = 1,..., K, stop, otherwise
set ¢ — ¢4 1 and go to step 2.
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6.6.0.4 Existence of the Minimum Mean Square Error Solution for a

To estimate the weights using (6.39) the two expectations, E[g(z)g"(z)] and
E[g'(z)] must exist. Their existence depends on the limiting behaviour of both
the noise distribution and the bases. To gain some insight into this, consider
distributions with algebraic tails such as the Sa.S or Pareto distributions which

have the limiting behaviour
.fX(x) x |$|—a—1 ’ |:’[’-| - GO, (641)

where a > 0. These are the heaviest tails which can be expected in practice. The

limiting behaviour of the bases will be modelled as
9,(z) o< sgn(a) || 77, Ja] = oo, (6.42)

where p, is the limiting rate of decay of the basis function go(x). There are three
regimes for the limiting behaviour of g,(x) depending on the sign of the decay

rate,

pq<0 : gQ(:E)_}OOa
pe=0 : g,(z) — ¢, aconstant,

Pg >0 1 go(z)— 0. (6.43)

Element (3, j) of E[g(z)g" (x)] will exist if

/;w gi(z)g; (x) fx(z) dx < oo. (6.44)

As the bases are antisymmetric and the noise pdf symmetric, the expression inside

the integral is even and so becomes

2 [ a@n (@)@ (6.45)

which will exist if
i, [ 0iz)os (o) fx(z) de < . (6.46)

For sufficiently large z, the approximations (6.41) and (6.42) may be substituted
into the above integral, vielding

lim [ 7Pz Pz~ 1dr < o0

LT—00

lim z777P7% < o0

T—00

pit+p; > —o (6.47)
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Since « > 0, the final condition for existence of the integral and hence the expec-
tation is p; + p; > 0. If p is the smallest limiting rate of decay across all bases,
E[g(x)g" (x)] will exist if p > 0.

The ¢g*® element of Elg'(z)] will exist if,

/_00 go(x) fx (x) dz < co. (6.48)

o0

Following a similar argument as above leads to p, > —a — 1 as the condition for
existence of the integral. It follows that E[g’(x)] will exist when p > —1.
Combining these two requirements gives p > 0, so that provided every basis
has a non-increasing limiting behaviour, a solution will exist. The soft limiter is
an example for which p = 0.
By the strong law of large numbers the empirical expectations are consistent

estimates of the statistical expectations if

Elgi(z)g;(z)] < oo, (6.49)
E[g;(z)] < oc, (6.50)

that is, p > 0.

6.6.0.5 Inclusion of the True Score Function in the Basis Set

Let the set of bases contain the true score function ¥{x). Then the estimated
score function y(z) is asymptotically equal to ¥'(z).
T
Proof: Without loss of generality define g{z)" = (1!)(3:), go(a:)T) where go(z)

does not contain /(). The weights are obtained by solving the normal equations,

a = Elgl)g)]  Elg'(2)
= Elg(0)g@)"] ER()g (o)
Ep2@)]  E[¢(2)ge(@)" ( E[* ()] )

il

E[¢(z)go(z)] E|go(z)go(z) E[4(z)gy()]

_ G Gu" ) [ G . (6.51)
Gy Goo Gyo

By the partitioned matrix inversion formula this becomes

Gu Gz Gy (6.52)
Gy Ga Gyo |’
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where

Gi = (Guyp— Gy GeiGuo)™

Gz = —(Cuy — G GetGyo) Gyo'Gag

G = (G GuGidGu’) ' Gy

Gn = (Gw—GuGuGu')™ (6.53)
so that

-1
a= GllGll B _ 1 (6‘54)
G2 (Gyo ~ GGy yGyy) 0

and finally,

o(@) = aTg(@) = (1 07) ( o ) = (o), (6.5
0

given that the inverses exist.

6.6.1 Small Sample Performance

To gain some insight into the small sample performance a simulation study was
carried out using the expression for the ARE (6.40) as a performance criterion.
a was estimated from a finite sample and substituted into the expression for the
ARE, results were averaged over 1000 realisations. The benefit of such a criterion
is that it is independent of any signal parameters, so the results can be regarded
as representative.

The e—mix distribution was used with parameterse = 0.01, xk = 10 and o = 1.
The bases were eé—mix score functions with parameters {1 = 0.1,x; = 100),
(g2 = 0.1, 52 = 10), (g3 = 0.01, k3 = 100), (g4 = 0.01, x4 = 10).

Results are shown in Figure 6.9 for the MMSE estimator where the perfor-
mance measure is referred to as the ‘efficiency’. Even though this measure can-
not strictly be interpreted as information loss, it gives a good approximation and
clearly should be as near unity as possible. For large sample sizes performance
does appear optimal, though the MMSE solution performs quite poorly for small
sample sizes.

Several methods were assessed in an attempt to reduce this small sample
effect. A weighting function introduced into the MSE criterion of (6.36) in an
attempt to arrive at a weighted least squares solution gave unpredictable results.
Consistently improved performance was attained by constraining the weights,
that is, by solving the normal equations of (6.38) subject to linear constraints

on a. First the constraint @ > 0, was imposed. The reasoning being that for
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Figure 6.9: Small sample performance of the MMSE estimator for the weights.

small sample sizes it is possible for negative values of a, to allow the estimated
score function to become negative for x > 0 or visa-versa, an undesirable solution
corresponding to a multimodal distribution. Second, the constraint ZQQ=1 ag =1
was imposed since the score function only needs to be known to within a constant
of proportionality. Combining these two constraints gives the constrained MMSE
(CMMSE) estimator. In Figure 6.10 the performance of the CMMSE estimator
is shown under the same conditions as in Figure 6.9 for the MMSE estimator.
Clearly, the small sample performance has been greatly improved by using the
CMMSE estimator. As is shown next, the attendant loss of the CMMSE for large

sample sizes is very small.

6.6.2 Large Sample Performance

Consider estimation when the noise follows an e—mix distribution and there
is uncertainty about the model parameters ¢ and . Figure 6.11 shows the
ARE of the proposed CMMSE estimator relative to Huber’s minimax esti-
mator as the parameters of the e—mix distribution are varied over the region
0.01 < e <£0.1, 10 < & < 100. This region covers the parameter space most
likely to be encountered. The 4 bases chosen for estimation of the score func-
tion were (e; = 0.01,k; = 10), (g3 = 0.02,5y = 100), (g5 = 0.1,x3 = 50),
(e, = 0.1, k4 = 100). The CMMSE estimator is superior to the minimax es-

timator over this range of parameters, its efficiency is up to 15% higher. The
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Figure 6.10: Small sample performance of the CMMSE estimator for the weights.
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Figure 6.11: ARE of CMMSE estimation relative to minimax estimation.

ARE of the the CMMSE, MMSE and minimax estimators with respect to ML
are shown in Figures 6.12, 6.13 and 6.14 respectively over the same region of the
£—mix parameter space and for the same bases as in Figure 6.11. The MMSE
estimator looses least of all, at most 0.8%, next comes the CMMSE estimator
with a 2% loss relative to ML, finally, the minimax estimator looses up to 15%
relative to ML. It follows that for large samples the CMMSE and MMSE estima-
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tors yield near optimal performance over a large range of the parameter space.
The effects of the location of the bases on the ARE curves of Figures 6.12

ARE of CMMSE to ML
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Figure 6.12: ARE of CMMSE estimation relative to ML estimation.
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Figure 6.13: ARE of MMSE estimation relative to ML estimation.

and 6.13 is, in general, complicated and cannot be predicted easily. What can be
predicted is the location of local maxima where the ARE is 1. Recall the result
of Section 6.6.0.5 where it was shown that including the true score function in

the basis set led to the estimated score function asymptotically equaling the true
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Figure 6.14: ARE of minimax estimation relative to ML estimation.

score function. From this result it follows that the ARE of both the CMMSE and
MMSE estimators takes the maximum value of 1 at points in the parameter space
where an e—mix basis function is placed, that is, a local maximum exists. These
points can also be regarded as global maxima, their multiplicity being determined
by the number of £—mix bases used. Note though, that if none of the bases is
proportional to the true score function over the parameter space of interest of the
noise distribution, the ARE will not reach its maximum value of 1 over the chosen
parameter space. Global or local maxima may still exist, but their location is not
easily found.

Asymptotically, the efficiency of the CMMSE estimator with respect to Fisher
information can be forced arbitrarily close to unity by increasing the number of
bases in the parameter space of interest. Likewise, including the score functions of
other impulsive noise models in the set of bases yields near optimal performance

for those impulsive noise distributions.

6.7 Summary

A generic adaptive robust estimator was proposed for the general signal in ad-
ditive noise model. The influence function of the M-estimator corresponding
to the signal model was derived, from which the asymptotic covariance of the

M-estimates was found. Based on the M-estimation concept, the estimator adap-
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tively estimates the score function of the noise distribution directly from the ob-
servations. Both a nonparametric and parametric approach are taken to estimate
the score function.

The first approach uses a nonparametric adaptive kernel density estimator
modified for use with heavy tailed distributions. Assumptions on the noise dis-
tribution are minimal, including symmetry and unimodality, which are likely
in practice. Experiments in the context of MUD in impulsive noise show the
nonparametric estimator can outperform the minimax M-estimate for very heavy
tailed distributions. When the noise is slightly impulsive performance is improved
relative to the decorrelating detector, the least squares solution. For complicated
noise models, such as for multimodal densities, the nonparametric detector is able
to adapt to the noise distribution.

In the second approach, the score function was approximated in a parametric
fashion by a linear combination of bases, the weights being found by minimis-
ing the MSE between the estimated and true score functions. For small sample
sizes the MMSE estimate of the weights was found to perform poorly. Several
constraints on the weights were proposed which improved performance for small
samples with a negligible loss in efficiency for large samples. Using the £—mix
distribution as an example it was shown that careful selection of the bases gives
near optimal performance over the parameter space of practical interest, surpass-

ing the minimax solution.



Chapter 7

Conclusion

A witty saying proves nothing.

— Voltaire

This thesis dealt with some problems associated with signal processing in heavy
tailed noise. The first part concentrated on both validation and parameter estima-
tion for the noise model. The second part considered two specific signal processing
problems, source detection and signal estimation for heavy tailed models.

The SaS distribution is a popular heavy tailed model motivated by theoreti-
cal and empirical results. Goodness-of-fit tests for SaS distributions tend to be
qualitative or exhibit low power against heavy tailed alternatives. In Chapter 3
a goodness-of-fit test for SaS distributions was developed based on their unique
stability property. Null distributions were derived using asymptotic theory and
estimated with the parametric bootstrap. Results show the bootstrap procedure
has a higher power when detecting heavy tailed alternatives compared to asymp-
totic theory or edf tests, while accurately maintaining the set level. In conjunction
with this work optimal sampling of the ecf for SaS parameter estimation using
Koutrouvelis’ cf domain procedure was addressed.

From a practical standpoint, an inadequacy of the SaS model is the lack
of a Gaussian component to describe thermal noise. The SaSG distribution,
which results from the sum of independent Se.S and Gaussian random variables,
has appeared in the literature in reply to this. In Chapter 4 an estimator the
SaSG distribution was developed based on NWLS in the cf domain. The NWLS
estimator performs well compared to existing methods. In particular, estimation
of the characteristic exponent, which describes the level of impulsive behaviour,
was much improved.

Source enumeration is an important precursor to advanced array processing
techniques such as high resolution DOA estimation. Chapter 5 presented a source

112
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enumeration procedure which determines the multiplicity of the smallest sample
cigenvalues of the array covariance matrix. A hypothesis testing framework was
developed to compare all pairs of eigenvalues for equality, which are combined
using MHTs. The bootstrap was used to estimate the null distributions of the
test statistics. Improvements over traditional techniques such as the MDL and
sphericity tests were demonstrated for small sample sizes and heavy tailed models
for the sources and noise.

Robust estimators are designed to be insensitive to changes in the statistical
model and have been widely used when outliers or impulsive noise are present. A
generic adaptive robust estimator was proposed in Chapter 6 based on the concept
of M-estimation, but with the score function of the noise distribution being esti-
mated directly from the observations. This allows a greater flexibility over static
M-estimators and leads to improved performance. Two estimates for the score
function was considered. First, a nonparametric density estimator was proposed
which performed well in very heavy tailed noise compared to robust procedures
hased on the minimax M-estimator. The second modelled the score function as
a linear combination of basis functions, constraints were proposed which greatly
improved small sample performance and still gave significant improvements over

minimax M-estimation for large samples.

7.1 Future Directions

7.1.1 Testing for Symmetric Alpha Stable Distributions

Optimising the number of segments: Though the minimal number of segments
necessary to determine stability were used, the power of the test may be increased
by using more. As discussed in Chapter 3 the power of the single tests can be
expected to decrease when the number of segments is increased beyond a certain
number, this number being determined by the rate of convergence of sums of the
random variable to its limiting distribution and the sample size. For instance,
the increase in power when using three as opposed to two segments was relatively
large for the £~mix(0.01,100) and £¢—mix(0.1, 10) distributions.
Testing for univariate and multivariate S distributions: Subject to some modifi-
cations, the stability property is a definition for both univariate and multivariate
a8 distributions, hence the stability test can be generalised to these cases.

The stability property for univariate oS distributions states that sums of

ild a8 random variables are also aS with the same characteristic exponent and
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skewness parameter. The test is then

H : ax=az N ax = ag,, Bx = Bz, N Bx = Bz,

K : ax =az U ax = oz, Bx =Bz, U Bx = Bz, (7.1)

and is a simple extension of the stability test for SaS distributions. Estimates
of & and 3 are obtained using Koutrouvelis’ procedure and the bootstrap is used
to estimate the null distributions of the test statistics which are combined using
a MHT. Alternatively, the asymptotic distributions of the test statistics can be
found. Edf tests for a8 distributions are difficult to implement because of the
associated computational complexity involved in evaluation of the aS cdf and
estimation of the thresholds for the edf statistics over a suitable range of @ and
3.

Multivariate @S distributions have a more complex structure, the skewness
and scale parameters being combined into a finite measure on the unit sphere.
Perhaps the most straightforward approach to testing for multivariate oS dis-
tributions was suggested in {137, 139] and is based on the following theorem
(Theorem 2.1.5 [156]).

Let X be a d-dimensional random vector in BY, X is a 1) strictly aS, 2)
SaS, 3) a8 random vector in R if all linear combinations of the components of
X are 1) strictly S, 2) SaS, 3) oS with a > 1.

If follows that to test for either of these three cases, every linear combination
must be assessed using a univariate test. In practice only a finite number of
directions along which to project the random vector are chosen.

The advantage of this approach is that only univariate tests and hence esti-
mators are required. A general multivariate approach would require estimators
for the characteristic exponent of a multivariate a5 distribution, for which only
a few limited techniques exist [153].

Effect of estimator on stability test: It is emphasised that the performance of
the stability test is largely dependent on the performance of the estimator for o,
hence ML estimates could be used to improve the power of the test at the cost

of increased computational complexity.

7.1.2 Estimation for the Symmetric Alpha Stable Gaussian
Sum Distribution

Optimal sampling of the ecf: Just as the asymptotic distribution of Koutrou-

velis’ estimator for the Sa.S distribution was found, so too can the asymptotic



7.1 Future Directions 115

distributions for the parameters of the SaSG distribution based on the estimator
presented in Chapter 4. Again, this would allow optimal selection of the points
at which to sample the ecf, based on minimising the asymptotic MSE of the
estimates.
Testing for SaSG distributions: Specific tests for SaSG distributions have yet to
be considered. For a SaSG null hypothesis versus an open alternative hypothesis,
that is, a goodness-of-fit test for SaSG distributions, ecf methods similar to those
of [200] can be developed. '

Another useful test determines whether impulsive noise is present in addition
to thermal noise. In this case the test is for a Gaussian null hypothesis versus a
SaSG alternative hypothesis. The classical likelihood or generalised likelihood
ratio test is disadvantaged by problems associated with numerical evaluation of
the SaS and SaSG densities. Simpler ¢f domain techniques are envisioned moti-
vated by the k-L procedure [53]. The concept rests on the ecf being asymptotically
MVN, with a mean and covariance easily determined from the parametric cf un-
der each hypothesis. Consider the above problem, a test for the Gaussian versus
SaSG distributions. For several points in the cf domain, let éG be an estimate
for the parametric cf under the null hypothesis and éﬁ be the ecf. Then under the
null hypothesis, C(q?) — @g) ~ MVN(0, I}, where C' is the Cholesky decomposi-
tion of the inverse covariance matrix of the ecf. A similar result holds under the
alternative hypothesis from which it follows that a generalised likelihood ratio
type test can be implemented based on the asymptotic normality of the ecf.

7.1.3 Detection of Sources in Array Processing

Alternate measures of dependence: Throughout Chapter 5 the sample covariance
was used in the source detection algorithm. Improvements in performance were
observed for non-Gaussian observations where the sample covariance is not an
optimal estimate because of the flexibility of the bootstrap in estimating the null
distributions of the test statistics.

A SaS model for either the sources or noise poses a problem as the analytic
covariance no longer exists. Even though the sample covariance will always be
finite, it is a very poor estimate of the true dependence structure, itself possessing
infinite variance.

Alternate measures of dependence with acceptable performance such as the
sample covariation should then be used. While the sample covariation is specific
to the Sa.S distribution for & > 1, it is still a useful measure for distributions

which are not «S. If generic measures are sought, a multitude of robust estimators
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for dependence also exist and may be applied under any heavy tailed model
including Sa8 observations with o < 1.

Use of these estimators in conjunction with existing techniques such as the
MDL and sphericity test should improve performance when the observations are
heavy tailed. Though well motivated, it should be remembered that both are
based on the asymptotic statistics of the covariance matrix for Gaussian obser-
vations and that in dropping these assumptions unknown losses are incurred.

It is here that bootstrap source detection has an advantage, still estimating
the finite sample distributions of the test statistics regardless of the measure
of dependence used or the distribution of the observations. Under the same
observation model and using identical estimators for dependence, the bootstrap
method should offer an improvement over the MDL and sphericity test.

Further extensions include application of bootstrap source detection to the

wideband and deterministic signals model.

7.1.4 Robust Estimation and Detection

Kernel selection: It has been suggested that the kernel should match the noise
model, so that a Cauchy kernel should be used when the noise is Cauchy. However,
the Cauchy kernel results in heavy tail estimates even for light tailed distributions,
hence this is not recommended. Instead, an automatic kernel selector is needed.
Given a repertoire of possible kernels a scheme can be envisaged where a goodness-
of-fit criterion is minimised with respect to the kernel, using for instance, cross-
validation or resampling methods. The set of kernels need not be very large but
must capture the essential characteristics of the distributions expected, so that
kernels with heavy tails should be included to cater for heavy tailed distributions.
Bandwidth selection: Existing automatic bandwidth selection methods based on
cross-validation or the bootstrap assign equal weight across the entire density.
In goodness-of-fit tests a weighting function is used so that different regions of
the density contribute more or less to the final decision. When testing for heavy
tailed distributions more weight is placed on the tail regions by using a weight-
ing function concentrated away from the mode. This idea can be incorporated
into cross-validation and bootstrap IMSE bandwidth selection methods, produc-
ing bandwidths favoring good estimation of the tails, possibly leading to better
estimates for heavy tailed distributions. Alternatively, adaptive kernel density es-
timators can be developed which use the nearest neighbour distance to determine
local bandwidths.
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Alternate pdf estimators: Nonparametric kernel density estimators were consid-
ered here due to their favourable properties, nevertheless, other estimators ex-
ist. A promising alternative mentioned in Chapter 5 is to use the expectation-
maximisation algorithm to estimate the parameters of a Gaussian-mixture dis-
tribution. As shown in [107, 106, 110] a Gaussian-mixture distribution with only
4 components can accurately model a wide variety of distributions including the
SasS.

Rank based score functions: The nonparametric estimator explicitly includes es-
timation of the noise scale, while the parametric estimator does not. Many tech-
niques exist for joint estimation of the scale and signal parameters. An alternative
approach is the use of rank based score functions, analogous to the rank based
zero memory nonlinearities used in nonparametric detection theory. As rank
based functions are invariant to changes of scale the problem of scale estimation
is neatly avoided.

Alternate nominal distributions for minimaz estimation: Robust minimax esti-
mators can be developed for any nominal symmetric distribution. By using one
of the heavy tailed distributions as the nominal performance may be improved
for very heavy tailed distributions.

Basis selection: Although a large number of bases enable accurate modelling of
a wide range of noise distributions, two problems may arise. First, too many
bases will result in the signal being modelled in addition to the noise, second,
computational complexity is increased. Given a repertoire of basis functions, a
parsimonious model selection procedure is required. When subsets of the same
cardinality are chosen, a criterion based on the MSE between the estimated and
true score functions is feasible.

The estimated score function can also be related back to a distribution, so
that likelihood procedures can be developed both for estimation of the weights
and model selection. In this case the Kullback-Leibler information criterion can
be used to choose between subsets with the same cardinality [158], otherwise the

more general AIC and MDL criterion are required.
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Characteristic Functions

There are three kinds of lies: lies,
damn lies, and statistics.
— Benjamin Disraeli

The characteristic function (cf) of a random variable X with pdf fx(x) is defined

as the Fourier transform of fx(z),
Px{w) = / fx(@)e™ dz = E[e*¥], —oo<w < o%. (A.1)
The inverse transform is
1 o0
fx(z) = 2—/ Gx{w)e™ dw. (A.2)
m —0Q

There is a one to one correspondence between the cf and pdf, so the cf retains
all the information present in the latter description. Furthermore, the ct always

exists. The cf is a bounded function,
0<ipx(w) <1 (A.3)

and so all of its moments exist regardless of whether the same is true of X. This
is one advantage of using cf domain techniques.
A comprehensive coverage of cf theory may be found in [114], for a concise

overview see [44] and the references therein.
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A.1 The Empirical Characteristic Function and its

Statistical Properties

Let X,,, n=1,..., N, be iid observations of the random variable X. An estimate
of ¢px(w) is given by the empirical characteristic function (ecf)

N

Bxw) = 5 Do e (A4)

n=1

A.1.1 Pointwise Convergence

For a fixed w, ¢x(w) is an average of bounded iid random variables with means

¢x(w). By the strong law of large numbers ¢x(w) converges to ¢x(w) w.p.1 [54]

Pr[ lim |fx(w) - éx(w)| =0 =1. (A5)

A.1.2 Uniform Convergence

The ecf does not converge over the entire real line, but only over a finite region.
Take T' < oc, then

pr| ym sup () — (0 ~o| -1 (4.6)

0 T
Exceptions where convergence is uniform over the entire real line are when X is
a purely discrete random variable or when a kernel cf estimator, subject to some

conditions, is used in place of the ecf {54].

A.1.3 Asymptotic Distribution

Consider Yy{w) = NV%(dx(w) — ¢x(w)) which has zero mean and covariance
structure Cov[Yn(w;), Ya{w;)] = dx(w; —w;) — dx{wi)dk (w;). Let Y (w) be a zero
mean complex Gaussian process with the same mean and covariance structure as
Yy{w) and satisfying Y*(w) = ¥ (—w). Then subject to some conditions [37]

Theorem 2 Yy(w)} converges in distribution to Y(w) over every finite interval

of the real line.

This result originally appears as Theorem 3.1 in [54], but is incorrect in its
stated generalisation. However, for finite dimensional distributions the result
does generally hold. Define ¢y = (g@x(wl),...,agx(wK))T for K < co. ¢y has
mean iy = (dx(w),. .., dx{wk))T and covariance (Rg)i; = 1/N(¢x(wi —w;) —
dx (widex™ (w;))-



Appendix A 120

Theorem 3 By the multidimensional CLT
N'2(§x — ¢x) = CMVN(0, NRy) (A7)

and hence
®x ~ CMVN(¢x, Ry) . (A.8)

Only the real part of the ecf is used here, for which the asymptotic distribu-
tion is MVN with mean (fgeg)i = E[Re(@x(w:))] and covariance (Rgre(g))i; =
Cov[Re(dx (w:)), Re(dx (w;))],

Re(x ) % MVN(Hre(g); Broi) - (A.9)

A.1.4 Statistics of Re(dx(w))

The following results, {A.10, A.11, A.13, A.14), are stated without proof in [101].
The proofs are shown here for completeness.

A.1.4.1 Mean

Since ¢x(w) is an unbiased estimator of ¢x (w),
E [Re (qSX @)] = Re(px(). (A.10)

A.1.4.2 Covariance

Cov[Re(dx () - Re(dx(ws)) |
= E[Re(éx(wi)) Re(ffgx(wj))] - E[Re(ﬁg’}f(wi))] E[Re(qg){(wj))}

N N
= % Z Z E[cos( Xnw;) cos(Xpw;)] — Re(¢x{w;)) Re(dx (w;))

= é—;-v—-E{cos(X(wz— — w;)) + cos(X (w;i + w;))]

N -1
+

E[cos{Xw;)] E[cos(Xw;)]
— Re(¢x (wi)) Re(dx (ws))

= % {(Re(dx(w; ~ wy)) + Re(dx(wi +w;)) — 2Re(dx (w;)) Re(gx (w;)))
(A.11)

It follows that the variance of Re(@x{(w)) is

Var [Re(9x(w))] = % (1+ Re(¢x(2)) - Re(éx(@))?) (A1)
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A.1.5 Statistics of |q?)x(w)|2

A.1.5.1 Mean
Z 2 1 = X ne! —3 X mw

E[’qﬁx(w)” - E N:Z;BJ NZe

— N2§THZ_:E eJ(Xn-Xm)u NQEEE B‘?ane Jme]
m=n m#EN
1 N-1

- L e
= |ox(@) + /N1 — |¢x (@)[*). (A.13)

A.1.5.2 Covariance

The covariance is tedious but straightforward,

T =elfoseaf foxeaf |-

2 -
,’¢x(wj)

Cov “éx(u’i)

E Uﬁgx(wi) 2] E { x(w;)

Taking the first term on the RHS gives

1 N N N N
E E eJanz'§ :e-JXmWiE :eJXIWj§ :e—JXij

n=1 m=1 =1 k=1 i

N N N N

1 E E § E E I X ni e‘Jmez EJXJ ] e .?kag] .

n=1m=1 {=1 k=1
There are several possible relationships between the indices of the sums which

result in distinct expressions giving the following,

1
n=m=I[l=k =3
n=m=1[ # k N — 2

2 wj)|
n=m=%k # | N
n=k=10 # m
m=k=1[ # n
N -1
n=m # l=k RE
N -1
n=k # m=l S (b —wp)f
N-1
n=I 74 m==k —Né——lé(wi-ij)'z
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n#gm n£l m#£l n=k (N_lj)v(fmz)cb(wi—wj)é*(wa:)é(wj)
n#m n#l m#l m=k (N_ﬁif(jv_2)¢*(wa+wj)¢(w¢)¢(wj)
nEm ntl m#AL =k (N—lji,(f_z)lrb(wi)lz
nim oagk mik n=t SEUEZD g0 00w
négm n#k m#Ak m=I (N_I)N(jv_2)¢*(w¢—~wj)¢(wa-)¢*(wj)
m#£l m#k 4k n=m (N_1)1.,\}3:?\[_2)Iqt'(%‘)l2

n#m n#l n#tk m#l m#Zk 1#£k
(N —1)(N —2)(N-3)

e o (wi)l* [¢(wy)I” -

After some simplifications,

Cou| [6xtn]| (]| = Tt (otes + )+ (s = )
2l el loxw) + 2D (e o+ sl (w)ox () -

Re(¢x (wi — w;)d% (wi)éx (wy) — 2 |¢X(wi)|2 |¢X(Wj)|2) . (A14)
It follows that the variance of |¢x(w)|? is

Var Uéx(w)lz] = % (Ipx(2w)> +1—2 |¢5X(w)|4) +

b R)rgN 2 (Re(¢h (2w)d% (@) + [dx (W) (1 = 2|¢x(w)*)) . (A.15)

If px(w) is real valued, such as when X is a symmetric random variable with zero

mean or location, then

COV[ dx (wi) : | 16 (wj) 2] = % (0% (wi + wy) + % (wi — w;)
— 2% (wi) % (wy)) + 2N 2§N —2) ¢x (wi)ox (wy) (dx (wi +wy)+
bx (wi — w;) — 2¢x(wi)ox(w;)) (A.16)
and

Var {’g@x(w)!zJ = I_\%;i (6% (2w) +1 — 2¢%(w)) +

2N — ]1\)T£N =252 () (6x(20) + 1= 2¢%(w)) . (A.17)
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Optimal Sampling of the Empirical
Characteristic Function for
Symmetric Alpha Stable Parameter

Estimation

No, no, you’re not thinking;

you’re just being logical.
— Niels Bohr

The points at which the empirical characteristic function is sampled determine
the performance of Koutrouvelis' estimator for the parameters of the alpha sta-
ble distribution. An optimal solution in the mean square error sense samples the
empirical characteristic function at points which minimise the mean square error
of the characteristic exponent and scale estimates. For K points in the charac-
teristic function domain, wy, & = 1,..., K, this is a K-dimensional optimisation
problem. The optimal set also depends on the characteristic exponent «, the scale
¢ and the sample size N. Koutrouvelis takes a simplified approach to minimising
the mean square error and selects the points through a Monte Carlo study, here

the theoretical asymptotic mean square error is used.

B.1 Koutrouvelis’ Estimator

Koutrouvelis’ approach was to determine the optimal set of points given a, ¢ and

N. The estimator was structured as follows:

1. Find initial estimates &g, &y.

123
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2. Select the optimal set of points based on &g, cg.

3. Estimates of the characteristic exponent and scale parameter, & and ¢, are

found using this set of points.

Since ¢ is a scaling constant, the optimal set is found only for ¢ = 1. The
data is then standardised using &, or uses a standardised set of points wy/éy. An
interpercentile range estimate, ((2x(0.72) — Q)x(0.28))/1.654, where Qx(g) is an
estimate of the ¢*® percentile, was suggested for &, [49, 101]. An initial value for
o was then obtained using (3.33), after standardisation, with the predetermined
set of points wy = wk/25, K = 11.

The difficult K-dimensional optimisation problem was avoided by choosing K
equi-distant samples separated by 7/25, wy = 7k/25. The reasoning being:

e A lower limit of /25 was recommended since log(~ log|¢x(w)|*) — —co

and log |w| - —cc as w — 0, causing numerical problems.

e In general the variance of the ecf increases with |w|, while for a given w and
¢, it increases with . It follows that as o decreases, the ecf can be sampled

farther from 0 with comparable variance at wg.

o A nonlinear relation between k& and w, i.e. non-equal spacing, was not found
to significantly affect the variance of the estimator. From the previous point,
the width of the region, wg —w; and hence K, was found to be the dominant

factor in estimator performance.

A limited Monte Carlo study was performed for a standard Sa.S distribution using
several values of @ and N, from which the number of samples K that minimised
the MSE of the estimates was found. K(a, N) is then found by interpolating a
lockup table.

Though an iterative scheme can be envisioned where the parameters and K
are updated in an alternating fashion, estimator performance was found to not
improve significantly while convergence problems may arise. It is therefore sug-

gested to use only one iteration [101].

B.2 Selection Based on Asymptotic Theory

A similar approach to the one above will be followed, except that the optimal
number of points will be based on the asymptotic MSE of & and ¢ as found in
Chapter 3. Figure B.1 shows the optimal K for estimation of o, K,. Figure B.2
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shows the same for estimation of ¢, K,. The scenario chosen was for N = 1000
observations following a standard Sa.S distribution, though the curves were not
found to differ significantly for N > 100. There are several interesting points to

note regarding the shape of these curves.

200

150

300

50f

Figure B.1: Optimal K for estimation of a for N = 1000 observations with a standard
SaS distribution.

50 : ; ;
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Figure B.2: Optimal K for estimation of ¢ for N = 1000 observations with a standard
SeeS distribution.
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First, K, and K, differ, suggesting that the ecf should be sampled at differ-
ent points depending on whether o or ¢ is being estimated. It was found that
estimating o using K, increased its asymptotic MSE by up to 80% above that
obtained using K, for 0.2 < o < 2. Estimating ¢ using K, gave a corresponding
increase of up to 3% only. Since « is the parameter of interest here, K, will be
used exclusively.

Second, Figure B.2 shows that K is constant for values of a below approxi-
mately 0.8. This effect is caused by the presence of local minima in the function
of the MSE of ¢ versus K and a. For values of a greater than approximately 0.8
two minima exist, the global minimum occurring at lower values of K than the
local minimum which occurs near K = 45 regardless of a. As o decreases from
2 to 0.8, the global minimum occurs at increasing values of K, until, at approx-
imately o = 0.8, the global and local minima meet. For o below approximately
0.8, a single minimum exists at K = 45.

Third, although not clearly visible in Figure B.1, as o — 2, K5, K. — 2,
while Koutrouvelis uses K = 9 for a > 1.9. The effect on the MSE of & is quite
significant, there being a large reduction near a = 2, the effect on ¢ is negligible.
Near o = 2 the modified procedure yields estimates of @ with a much smaller
variance compared to Koutrouvelis’ procedure.

Finally, the stepped nature of these curves is caused by K being a discrete

parameter,

B.2.1 Performance for Finite Samples
B.2.1.1 Example 1

Figures B.3 and B.4 show the variance of & and é respectively for 0.2 < a < 2
compared to asymptotic theory. The modified estimator was used with K and
cp set a priori to their optimum values, K = K, and ¢y = ¢ = 1. Results were
obtained over 10000 Monte Carlo realisations for a sample size of N = 1000.
Finite sample performance generally agrees with asymptotic theory, regardless of
how the w;, are selected.

Figures B.5 and B.6 show the CRB of & and ¢ respectively for 0.5 < a <
2 compared to the variance obtained using asymptotic theory for the modified
estimator with K, ¢ = 1 and a sample size of N = 1000. A smaller range for o
was chosen due to the difficulty in evaluating the SaS pdf for small values of c,
all other parameters are the same as in Figures B.3 and B.4. For both a and ¢, it

can be seen that the estimator variance as found from asymptotic theory follows
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Figure B.3: Var[a] using the modified estimator with K, for c = 1. The experimental

curve was taken over 10000 independent Monte Carlo realisations for a sample size
of N = 1000.
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Figure B.4: Var[¢] using the modified estimator with K, for ¢ = 1. The experimental

curve was taken over 10000 independent Monte Carlo realisations for a sample size
of N =1000.

the same shape as the CRB.
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Figure B.5: CRB of & compared to Var[&] obtained using asymptotic theory for the
modified estimator with K, ¢ = 1 and a sample size of N = 1000.

— CRB

Figure B.6: CRB of ¢ compared to Var[¢] obtained using asymptotic theory for the
modified estimator with K,, ¢ =1 and a sample size of N = 1000.

B.2.1.2 Example 2

Figures B.7 and B.8 show the variance of & and ¢ respectively for 50 < N < 2000
compared to asymptotic theory. Results are shown for @ = 1.5, all other condi-

tions being the same as in Example 1. There is close agreement with asymptotic
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theory down to sample sizes of N = 100, though bias does become non-negligible
for small sample sizes.
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Figure B.7: Var[&] using the modified estimator with K, for ¢ = 1. The experimental

curve was taken over 10000 independent Monte Carlo realisations for o = 1.5.
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Figure B.8: Var|[¢] using the modified estimator with K, for ¢ = 1. The experimental

curve was taken over 10000 independent Monte Carlo realisations for ov = 1.5.

It was found that if K, Koutrouvelis’ choice for K, was used with the modified

estimator, similar results to Koutrouvelis’ estimator are obtained. This suggests
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that selection of the wy is more critical than whether Re(¢x (w))? or [¢x (w)|? is
used. Likewise, asymptotic theory for the modified estimator compares well with

the experimental performance of Koutrouvelis’ estimator.

B.2.1.3 Example 3

To gauge the improvement in performance, Figures B.9 and B.10 show the effi-
ciency of Koutrouvelis’ estimator with respect to the modified estimator of & and

¢ respectively. The scenario is the same as in Example 1.

1 , ,

et

08 b ...................... ........................... ......................... -

o
D
¥

------- Theory

Efficiency

i
~
M

0.0k T s S

0.5 1 1.5 2

Figure B.9: Efficiency of Koutrouvelis' estimator using K, with respect to the mod-
ified estimator using K, for &. The experimental curve was taken over 10000 inde-

pendent Monte Carlo realisations for a sample size of N = 1000.

The asymptotic theory curve is based on the modified estimator only and
therefore cannot be interpreted as the asymptotic theoretical efficiency for this
scenario, even so, it gives a very close approximation to the experimental result.
There is a uniform improvement in the estimation of @, particularly near a = 2.
As the modified estimator used K, to estimate ¢, there is not a uniform improve-
ment over Koutrouvelis’ estimator, though over 0.2 < a < 2 the performance of
the two are comparable.

The computational complexity of Koutrouvelis’ estimator and the modified
one is approximately proportional to the value of K used in both. For instance,
when a = 1.5 and N = 1000, Koutrouvelis’ estimator uses K = 11, while the

modified one uses K = 13. Hence, the modified estimator may be up to 20% less
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Figure B.10: Efficiency of Koutrouvelis' estimator using K, with respect to the mod-
ified estimator using K, for & The experimental curve was taken over 10000 inde-

pendent Monte Carlo realisations for a sample size of N = 1000.

computationally efficient. Likewise, when o = 0.5 the modified estimator may be

up to 55% more computationally efficient.

B.2.1.4 Example 4

Figures B.11 and B.12 show the distributions of & and é respectively using the
modified estimator with K. Results are shown over 10000 independent Monte
Carlo realisations for a sample size of N = 1000, the true parameters were o =
1.5,e=1.

The finite sample distributions of & and ¢ agree well with asymptotic theory
down to sample size of approximately 500. Apart from some skewness in & near

a = 2 the agreement appears uniform over a.

B.2.1.5 Example 5

Finally, both estimators are compared when ¢y and K are not provided, but
are determined from initial estimates. Figure B.13 shows the variance of & for
0.2 €< @ < 2 and ¢ == 1. Results were obtained over 10000 independent Monte
Carlo realisations for a sample size of N = 1000. At worst, the modified estimator

does as well as Koutrouvelis’ estimator.
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Figure B.11: Distribution of & for the modified estimator using K,, o = 1.5,¢ = 1.

The experimental curve was taken over 10000 independent Monte Carlo realisations

for a sample size of N = 1000.
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Figure B.12: Distribution of ¢ for the modified estimator using K, @ = 1.5,¢ = 1.
The experimental curve was taken over 10000 independent Monte Carlo realisations

for a sample size of ¥ = 1000.
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Figure B.13: Var[d] for both estimators, ¢ = 1. Results are over 10000 independent
Monte Carlo realisations for a sample size of N = 1000.
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Taylor Series Expansions of Random

Variables

Computer, compute to the last digit
the value of pi.
— Spock (Wolf in the Fold)

Let X and Y be random variables with means px and uy respectively for which
all moments exist. Also, let g(x) and h(y) be continuously differentiable functions
with nonzero first order derivatives at uy and py respectively. Expand g(X) and
R(Y) in a Taylor series up to first order about their respective means {159],

9(X) = glpx)+9'(ux)(X - px), (C.1)
MY) = hiuy)+ R (pr)(Y — py). (C.2)

A first order approximation for the expectations of g(X) and A(Y') are

Elg(X)] =~ g(px), (C.3)
E[r(Y)] = hAluy). (C.4)

A first order approximation for the covariance of g(X) and A(Y') is

Cov[g(X),A(Y)] = E[(g(X) - E[g(X)])(A(Y) — E[A(Y)])]
~ Elg (ux)(X — )R (ur)(Y — pv)]
= g/(ux)h' () Cov[X, Y. (C5)
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The Bootstrap

Insanity: doing the same thing over and over

again and expecting different results.
— Albert Einstein

A very general statistical problem is that of finding the sampling distribution of a
statistic 7(X) formed from a sample X = (X;,..., X ~)'. The sample is drawn
from a distribution £x which may be multivariate. Knowledge of the sampling
distribution allows one to carry out inference, typically involving hypothesis tests
or confidence intervals.

Sampling distributions can be exceedingly difficult to find, which necessitates
the use of approximations, usually of an asymptotic nature, to obtain workable
expressions. The accuracy of inference based on such approximations in the finite
and especially small sample cases is understandably reduced. A lack of knowledge
concerning Fx merely compounds the problem further.

The bootstrap solves this problem by replacing complex theoretical analy-
sis with computational power. In an ideal world samples would be continually
drawm from Fx until the distribution of T is known to sufficient accuracy. Re-
peating the experiment in such a fashion is untenable in practice. The bootstrap
paradigm is to instead continue drawing from the empirical distribution Fy, cre-
ating bootstrap samples X*. The bootstrap test statistics, 7*(X™), obtained by
recalculation of the test statistic for each of the bootstrap samples, then estimate
the sampling distribution of T(X). More succinctly, the ‘real’ and ‘bootstrap’

worlds can be compared as follows,

Real World  Fx - X — T(X)
Bootstrap World : Fy — X* — T*X").

A concise overview of the bootstrap and its application to real problems can be
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found in [148, 198], for a more thorough treatment see [43].

The bootstrap is usually applicable whenever Fx is a consistent estimate for
Fx. The general procedure of drawing from Fx to estimate a sampling dis-
tribution is called resampling. There are many types of resampling procedure

depending on how E'y is obtained and how resamples are drawn.

D.1 Bootstrap Resampling

Bootstrap resampling takes for Fy the edf, from which N samples are drawn.
Each cbservation has an equal probability of being drawn and may be drawn
more than once in a single bootstrap resample. B bootstrap resamples of size N
are drawn in this way, where B is chosen sufficiently large to ensure the bootstrap
resamples adequately model the sampling distribution.

Instead of the edf, a kernel edf estimator may be used, which leads to the
smoothed bootstrap. Using a smoothed bootstrap means drawing from a con-
tinuous distribution so it is possible to obtain values not present in the original
sample. The improvement offered by smoothing is usually negligible given the
added complexity and the smoothed bootstrap is not considered any further here.

If Fx is known to within a family parameterised by 8, the parametric boot-
strap is used. Given that consistent estimates, @, are available, the parametric

bootstrap draws N samples from Fx(6). In this sense, the former two resampling

procedures comprise the nonparametric bootstrap.

D.1.1 Subsampling

The bootstrap may fail in certain situations, for example when T is the sample
mean and Fy is within the domain of attraction of an aS distribution. The
solution is to draw from the edf only M < N times, creating B resamples.

The jackknife is a special case, occurring when M = N — 1 and resamples are
drawn without replacement giving subsamples of the original sample. Drawing
without replacement means that once a sample has been drawn, it cannot be
drawn again for the same subsample. This gives B = N unique subsamples of
size M. This idea is generalised in the delete-d jackknife where d = N — M,
M < N, giving B = NI/{MI(N — M)!) possible unique subsamples.

For M << N the number of unique subsamples becomes unwieldy and a sub-
set B < NI/(M!(N — M)!) is chosen instead. Additionally, it makes little ditfer-

ence whether the draws are made with or without replacement, so that bootstrap
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resampling with a resample size M << N and subsampling are essentially the

same. An extensive treatment of subsampling theory appears in [149}.

D.2 Hypothesis Testing

Consider a test for the null hypothesis H : T(Fx) = Ty against the alternative
hypothesis K : T(Fx) # Tu, where T(Fx) is the true value of some descrip-
tive statistic as obtained from Fx. Assuming a symmetric distribution for the
sample statistic T{X), the null hypothesis is rejected if for the test statistic
7| = |T(X) — Tul, |T| 2 F7'(1 - {/2), where Fy is the distribution of 7 under
the null hypothesis and ¢ is the probability of false alarm.

F; can be estimated using the bootstrap by resampling the test statistic
under the null hypothesis. Denote the empirical distribution of the bootstrap test
statistics T = T*(X) — T(X), by F’T, F. is then an approximation to Fi. The
test is carried out by inverting 13’1:, so that the null hypothesis is rejected if |T| >
13",;1(1 —(/2). Alternatively, an estimate for the p-value is % S22, I(|T*| > |'f’|),
the null hypothesis being rejected if P < (. B > 10/¢ is generally a sufficient
number of resamples for accurate estimates, this placing at least 10 of the T* in
the critical region, though it has been suggested that only B > 1/ is necessary.
Further guidelines can be found in [68].

D.2.1 Pivotality

The accuracy of the bootstrap can be improved by using statistics which are
asymptotically pivotal. Asymptotic pivotality implies the asymptotic distribution
of the statistic is independent of any unknown parameters. Accuracy is improved
in the sense that the error between the attained and set levels is O(N™'), as
compared to O(N~1/2} without pivotal statistics or using asymptotic methods [66,
67).

Asymptotic pivotality may be achieved through variance stabilising trans-
forms or studentisation. Studentisation scales the statistic by the square root of
its variance or an available estimate &, giving a test statistic 7' = (7(X) — Tu)/&
and bootstrap statistics 7% = (T*(X) — T(X)}/é*. Note that for each of the
bootstrap statistics, 4 must be found anew. In the absence of an estimate for
the variance another round of resampling is required. The sample variance of the
bootstrap statistics obtained in the second round is then used as an estimate for

the variance and is known as the iterated or nested bootstrap. More details can
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be found in [43, 148, 198].
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Multiple Hypothesis Tests

I think I speak for everyone

when I say "huh?’
— Buffy

Multiple hypothesis tests (MHT') are employed when several hypotheses are being
tested and a global level of significance must be maintained [72]. Given a set of
hypotheses H = {H; : i = 1,...,n} consider a test for the global null hypothesis

Hp formed by the intersection of every element in H,
Ho = {"|{H:}- (E.1)

Ho is rejected if at least one of the {H;} are rejected. The probability of Type I er-
ror, that of incorrectly rejecting the global null hypothesis, should be maintained
at or below the global level of significance (.

When testing multiple hypotheses there is usually interest in testing not only
for the global null hypothesis, but also for non-empty subsets H* = {H} : T C
{1,...,n}} of H where the null hypothesis is formed by the intersection of every
element in H*,

HE = [ {H3}- (E.2)
In this case the Type I error is generalised to be the probability of incorrectly
rejecting H, irrespective of which {H}} are true.

A MHT procedure is said to weakly control the family wise error (FWE} rate
if

Pr[Reject Ho | Ho] = Pr[Reject any H; | Ho] < ¢, (E.3)

while strong control implies
Pr[Reject Hf | H3] = Pr[Reject any element of H3 |Hj] < ¢. (E.4)
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Strong control is the more powerful condition and tests which strongly control
the FWE rate are favoured over those which do not.
The most basic MHT procedure follows from Bonferroni's inequality on the

upper and lower bounds for the probability of a union of events £; : i =1,...,n,

> OPrE] = > 0> PrEiNEj] < PUL E) < Y PriE). (E.5)

i=1 i< i=1
Letting F; be the event that H; is rejected given Hg is true, the centre term in the
above equation is then the FWE rate under the global null hypothesis. Define P;
as the p-value corresponding to H;, then reject H; if P; < {;. From the Bonferroni
inequality [193],

Pr[Reject any H;|Hy] = Pr[Ul;Reject H;|Ho]
= PrlUL,P; < G| He

< Z Pr[P; < & [Hol. (E.6)
i=1

Given that the p-values are U(0,1) under Hy the last line becomes ) 5, ¢ so
that the FWE will be weakly controlled if >_:  (; < ¢. The simplest choice
is to set {; = (/n so that all the H; are tested at the same level, this is the
original Bonferroni MHT procedure. Clearly, the Bonferroni MHT procedure
strongly controls the FWE rate. If it is further assumed that the p-values are
independent, the exact FWE rate under Hy can be found

PF[U:;;l’Pi < Ci l HO] = 1- Pr[ﬂ?zlﬂ > Ci I HQ]
= 1-—TII2,Pr[P; > ;| Hel
= 1-IL,0 - &) (E.7)

Setting this equal to ¢ and allowing the {; to be the same gives {; =1—(1~¢ yim,

Since ¢; = ¢/n+ O((¢/n)?) and ¢ << 1, the change in FWE rate and power by
testing the H; at this level as opposed to {/n is usually negligible.

Let the ordered p-values be Py < --- < Py, with corresponding hypothe-
ses, Hu), ..., Hmy- When testing for Hy using Bonferroni’s MHT procedure it is
sufficient only to compare the smallest p-value, Py, with {/n. Py always con-
tains the strongest evidence for rejecting Hy and since the {; are equal, no other
p-values need to be compared should Py < {/n. Alternatively if Py > (/n Hp
is accepted since this implies all other p-values are greater than {/n. Bonferroni’s

MHT procedure is summarised in Figure E.1.
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P(i} <{/n Yes Reject H(,-)

No

l Accept Hg;y |

Figure E.1: Bonferroni's MHT procedure.

Dependence between the hypotheses has a more serious effect on Bonferroni’s
MHT procedure, leading to a conservative test with reduced power. MHT pro-
cedures exist which improve on Bonferroni’s by moving the FWE closer to the
global level for dependent hypotheses.

Two tests for the global null hypothesis are the simultaneous procedures of
Hommel and Simes. Hommel’s MHT procedure rejects Hy if any Py < i¢/(nCh),
where C,, = 3°7 , 1/4, and weakly controls the level [78]. Simes’ MHT procedure
is the same but with C,, = 1, making it less conservative. In general this procedure
does not weakly control the level, but does so for a wide range of test statistics
or for independent hypotheses [164]. Hommel's MHT procedure exhibits weak
control and has been extended for tests on individual hypotheses in which case
the control is strong [79]. The procedures are shown in Figures E.2 and E.3

respectively.

g 1
foranyi=1,...,n

No

Accept Hp l

Figure E.2: Hommel's MHT procedure.

; Yo
foranyi=1,...,n

No

' Accept Hy

Figure E.3: Simes' MHT procedure.

Holm’s sequentially rejective Bonferroni (SRB) MHT procedure is a stepwise
procedure which rejects H; if P; < (/(n— 35+ 1) for j = 1,...,4, as shown



Appendix E 142

in Figure E.4. Though less conservative than Bonferroni’s MHT procedure, it
strongly controls the level. A slightly less conservative test is obtained by replac-
ing (i) = ¢/i with 1 — {1 — ¢{)*%. The generalised SRB MHT procedure replaces
Py by Ppy/cy and ¢ by ¢/ 377, €(j), it also strong controls the level. If a par-
ticular hypothesis is considered more important it is given a larger weight c;, this

increases the power of that test at the cost of the others [76].

l Puy < (/n }—*{NO Accept H(l},...,H(n)J
[ Reject Heyy J—i Yes
[p(z} <{/(n *92{ Accept Hgy, ... ,H(n)J

Reject Hynoqy Yes
No
[ Py < ¢/1 H Accept Hy,) j
Reject Hyy, Yes

Figure E.4: Holm's MHT procedure.

A stepwise MHT procedure which is less conservative than Holm’s SRB MHT
procedure was proposed by Hochberg, it rejects H; for j = 1,...,1if P; < {/(n—
i +1). Based on an extended version of Simes’ MHT procedure, it strongly

controls the level [71] and is shown in Figure E.5.

Py <¢/1 }_.‘Yes Reject H(ﬂ),...,H(lﬂ
(Accept Hay j-———— No
[ Pin-1y < C/QJE—(Reject Hine1ys - - ,H(l)]

Accept Hg) No
Yes
[ Puy < ¢/n H Reject Hyy j
Accept Hyy) No

Figure E.5: Hochberg's MHT procedure.
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Improvements in power over Holm’s SRB MHT procedure can be obtained
by taking into account any logical implications between the hypotheses. Shaffer
used Holm’s generalised MHT procedure, modifying the weights according to the
maximum number of hypothesis that may still be true at each stage. Strong
control is implicit as it is a version of Holm’s generalised MHT procedure [160].
Further improvements over Shaffer’s MHT procedure subject to positive orthant

dependence of the test statistics appears in [75].



Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

The secret to creativity is knowing

how to hide your sources.
— Albert Einstein

B. Aazhang and H. Poor. Performance of DS/SSMA communications in

impulsive channels-part [: Linear correlation receivers. IEEE Transactions
on Communications, COM-35(11):1179-88, November 1987.

B. Aazhang and H. Poor. Performance of DS/SSMA communications in im-
pulsive channels-part II: Hard-limiting correlation receivers. IEEE Trans-

actions on Communications, 36(1):88-97, January 1988.

B. Aazhang and H. Poor. An analysis of nonlinear direct-sequence correla-
tors. IEEE Transactions on Communications, 37(7):723-31, July 1989.

R. Adler, R. Feldman, and M. Taqqu, editors. A Practical Guide to Heavy
Tails: Statistical Techniques and Applications. Birkhiduser, 1998.

S. Ambike and D. Hatzinakos. Three receiver structures and their perfor-
mance analysis for binary signaling in a mixture of Gaussian and « stable
impulsive noises. In Proceedings of the IEEF International Conference on
Acoustics, Speech and Signal Processing, volume 4, pages 173-6, Adelaide,
Australia, April 1994.

S. Ambike, J. Illow, and D. Hatzinakos. Detection for binary transmission in

a mixture of Gaussian noise and impulsive noise modeled as an alpha-stable
process. IEEE Signal Processing Letters, 1(3):55-57, March 1994.

T. Anderson. Asymptotic theory for principal component analysis. The
Annals of Statistics, 34:122-48, 1963.

T. Anderson. An Introduction to Multivariate Statistical Anelysts. John
Wiley, 2™ edition, 1984.

144



Bibliography 145

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

D. Andrews and C. Mallows. Scale mixtures of normal distributions. Jour-
nal of the Royal Statistical Society, Series B, B-36:99-102, 1974.

R. Arad. Parameter estimation for symmetric stable distribution. Inierna-
tional Economic Review, 21(1):209-20, February 1980.

M. Arnold, D. Tskander, and A. Zoubir. Testing Gaussianity with the char-
acteristic function. In Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing, volume 3, pages 2012-2015,
Detroit, USA, May 1995.

A. Banerjee, P. Burlina, and R. Chellappa. Adaptive target detection in
foliage-penetrating SAR images using alpha-stable models. IEEE Transac-
tions on Image Processing, 8(12):1823-31, December 1999.

S. Batalama, M. Medley, and D. Pados. Robust adaptive recovery of spread-
spectrum signals with short data records. In Proceedings of the Defence
Applications of Signal Processing (DASP)} Workshop, pages 19-24, LaSalle,
USA, August 1999.

S. Batalama, M. Medley, and D). Pados. Robust adaptive recovery of spread-
spectrum signals with short data records. IEEE Transactions on Commu-
nications, 48(10):1725-31, October 2000.

S. Batalama, M. Medley, and I. Psaromiligkos. Adaptive robust spread-
spectrum receivers. JEEE Transactions on Communications, 47(6):905-17,
June 1999.

S. Bates and S. McLaughlin. The estimation of stable distribution param-
eters. In Proceedings of the IEEE Signal Processing Workshop on Higher
Order Statistics, pages 390-4, Banff, Canada, July 1997.

R. Beran and M. Srivastava. Bootstrap tests and confidence regions for
functions of a covariance matrix. The Annals of Statistics, 13(1):95-115,
1985.

R. Beran and M. Srivastava. Correction: Bootstrap tests and confidence
regions for functions of a covariance matrix. The Annals of Statistics,
15(1):470-471, 1987.

L. Berry. Understanding Middleton’s canonical formula for class A noise.
IEEE Transactions on Electromagnetic Compatibility, EMC-23(4):337-44,
November 1981.



Bibliography 146

20]

[21]

22)

[23]

[24]

[25]

[26]

[27]

[28]

[29]

K. Blackard and T. Rappaport. Measurements and models of radio fre-
quency impulsive noise for indoor wireless communications. IEEE Journal
on Selected Areas in Communications, 11(7):991-1001, September 1993.

T. Blankenship, D. Krizman, and T. Rappaport. Measurements and sim-
ulation of radio frequency impulsive noise in hospitals and clinics. In Pro-
ceedings of the IEEE 47 Vehicular Technology Conference. Technology in
Motion., volume 3, pages 1942-6, Phoenix, USA, May 1997.

R. Blum, R. Kozick, and B. Sadler. An adaptive spatial diversity receiver
for non-gaussian interference and noise. IEEE Transactions on Signel Pro-
cessing, 47(8):2100-11, August 1999

J. Bodenschatz and C. Nikias. Maximum-likelihood symmetric a-stable pa-
rameter estimation. JEEE Transactions on Signal Processing, 47(5):1382-4,
May 1999.

R. Brcich and A. Zoubir. Resampling based techniques for source detection
in array processing. In Proceedings of the 11" IEEE Workshop on Statistical
Signal Processing, pages 26-9, Singapore, August 2001.

L. Breiman. Probability. Society for Industrial and Applied Mathematics,
1992.

P. Brockwell and B. Brown. High-efficiency estimation for the positive
stable laws. Journal of the American Statistical Association, T6(375):626—-
31, September 1981.

B. Brorsen and S. Yang. Maximum likelihood estimates of symmetric stable

distribution parameters. Communications in Statistics: Simulation and
Computation, 19(4):1459-64, 1990.

C. Brown. Goodness-of-Fit and Detection Problems in Impulsive Interfer-
ence. PhD thesis, Australian Telecommunications Research Institute and
School of Electrical and Computer Engineering, Curtin University of Tech-
nology, 2000.

C. Brown and S. Saliu. Testing of alpha-stable distributions with the char-
acteristic function. In Proceedings of the IEEE Signal Processing Workshop
on Higher Order Statistics, pages 224-7, Caesarea, Israel, June 1999.



Bibliography 147

[30]

31]

[32]

[33)

[34]

[35]

[36]

[37]

[38]

[39]

[40]

C. Brown and A. Zoubir. On the estimation of the parameters of a-stable
distributions using linear regression in the characteristic function domain.
In Proceedings of the ¥ IEEE Workshop on Statistical Signal and Array
Processing, pages 4236, Portland, USA, September 1998.

C. Brown and A. Zoubir. Locally suboptimal and rank-based known sig-
nal detection in correlated alpha-stable interference. In Proceedings of the
IEEFE International Conference on Acoustics, Speech and Signal Processing,
volume 1, pages 53-6, Istanbul, Turkey, June 2000.

D. Buckle. Bayesian inference for stable distributions. Journal of the Amer-
ican Statistical Assoctation, 90(430):605-13, June 1995.

S. Cambanis and G. Miller. Linear problems in p* order and stable pro-
cesses. SIAM Journal of Applied Mathematics, 41(1):43-69, August 1981.

J. Chambers, C. Mallows, and B. Stuck. A method for simulating sta-
ble random variables. Journal of the American Statistical Association,
71(354):340~4, June 1976.

S. Chandrasekhar. Stochastic problems in physics and astronomy. Reviews
of Modern Physics, 15(1):1-89, January 1943.

E. Conte, M. Di Bisceglie, M. Longo, and M. Lops. Canonical detec-
tion in spherically invariant noise. /EEE Transactions on Communications,
43(2/3/4):347-353, February/March/April 1995.

S. Csorgd. Limit behaviour of the empirical characteristic function. The
Annals of Probability, 9(1):130-44, 1981.

R. D'Agostino and M. Stephens, editors. Goodness-of-Fit Techniques. Mar-
cel Dekker, 1986.

X. Dan, Z. Huimin, and Y. Yang. Fast and efficient estimation of the
symmetric alpha-stable impulsive signal or noise parameters. In Proceedings
of the 3¢ International Conference on Signal Processing, volume 1, pages
213-6, Beijing, China, October 1996.

C. Dance and E. Kuruoglu. Estimation of the parameters of skewed o-
stable distributions. In Proceedings of Heavy Tails 99, Applications of
Heavy Tailed Distributions in Economics, Engineering and Statistics, pages
TAILS-12, Washington, DC, June 1999,



Bibliography 148

[41] L. Devroye. A Course In Density Estimation. Birkhauser, 1937,

[42] W. DuMouchel. On the asymptotic normality of the maximum-likelihood
estimate when sampling from a stable distribution. The Annals of Statistics,
1(5):948-57, 1973.

[43] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman
and Hall, 1993,

[44] T. Epps. Characteristic functions and their empirical counterparts: Geo-
metrical interpretations and applications to statistical inference. The Amer-
ican Statisticien, 47(1):33-8, February 1992.

[45] R. Kapoor et. al. UWB radar detection of targets in foliage using alpha-
stable clutter models. IEEE Transactions on Aerospace and Electronic Sys-
terns, 35(3):819-34, July 1999.

[46] P. Rousseeuw F. Hampel, E. Ronchetti and W. Stahel. Robust Statistics,
The Approach Based on Influence Functions. John Wiley, 1986,

[47] E. Fama. Mandelbrot and the stable Paretian hypothesis. Journal of Busi-
ness, 36(4):420-9, October 1963.

[48] E. Fama. The behaviour of stock-market prices. The Journal of Business,
38:34-105, January 1965.

[49] E. Fama and R. Roll. Some properties of symmetric stable distribu-
tions. Journal of the American Statistical Association, 63:817-36, Septem-
ber 1968.

[50] E. Fama and R. Roll. Parameter estimates for symmetric stable distribu-
tions. Journal of the American Statistical Association, 66{334):331-8, June
1971.

[51] J. Faraway and M. Jhun. Bootstrap choice of bandwidth selection
for density estimation. Journal of the American Statistical Association,
85(412):1119-1122, December 1990.

[52] W. Feller. An Introduction to Probability Theory and its Applications, vol-
ume II. John Wiley, 2°¢ edition, 1971.

[53] A. Feuerverger and P. McDunnough. On the efficiency of empirical charac-
teristic function procedures. Journal of the Royal Statistical Society, Series
B, 43(1):20-7, 1981.



Bibliography 149

[54]

[55]

[56]

[57]

[58]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

A. Feuerverger and R. Mureika. The empirical characteristic function and
its applications. The Annals of Statistics, 5(1):88-97, 1977.

Richard P. Feynman. QED, The Strange Theory of Light and Matter.

Princeton University Press, 19388,

Richard P. Feynman. “Surely You're Joking Mr. Feynman!”: Adventures
of a Curious Character. W. W. Norton & Company, 1997.

B. Fielitz and E. Smith. Asymmetric stable distributions of stock price
changes. Journal of the American Statistical Association, 67(340):813-4,
December 1972.

E. Fishler and H. Messer. Order statistics approach for determining the
number of sources using an array of sensors. IEEE Signal Processing Letters,

6(7):179-82, July 1999.

J. Friedmann, H. Messer, and J-F. Cardoso. Robust parameter estimation
of a deterministic signal in impulsive noise. IEEE Transactions on Signal
Processing, 48(4):935-42, April 2000.

Y. Fujikoshi. Asymptotic expansions for the distributions of the sample
roots under nonnormality. Biometrika, 67(1):45-51, 1980.

Galileo Galilei. Dialogue Concerning the Two Chief World Systems. Modern
Library, 2001 (originally published 1632). Translated by Stillman Drake.

J. Gallardo, D. Makrakis, and L. Orozco-Barbosa. Use of a-stable self-
similar stochastic processes for modeling traffic in broadband networks.
Performance Evaluation, 40(1/3):71-98, 2000.

B. Gnedenko and A. Kolmogoerov. Limit Distributions for Sums of Inde-
pendent Random Variables. Addison Wesley, 1968.

C. Granger and D. Orr. "Infinite variance” and research strategy in time se-
ries analysis. Journal of the American Statistical Association, 67(338):275-
85, June 1972.

P. Hall. A comedy of errors: The canonical form for a stable characteristic
function. Bulletin of the London Mathematical Society, 13:23-7, May 1980.

P. Hall. On the number of bootstrap simulations required to construct a
confidence interval. The Annals of Statistics, 14(4), 1986.



Bibliography 150

[67] P. Hall and M. Martin. On the bootstrap and two-sample problems. Aus-
tralian Journal of Statistics, 30A:179-92, 1988.

[68] P. Hall and D. Titterington. The effect of simulation order on level accuracy
and power on Monte Carlo tests. Journal of the Royal Statistical Society,
Series B, 51(3):459-67, 1989.

[69] C. Heathcote. A test of goodness of fit for symmetric random variables.
Australian Journal of Statistics, 14(2):172-81, 1972.

[70] C. Heathcote. The integrated squared error estimation of parameters.
Biometrika, 64(2):255-64, 1977.

[71] Y. Hochberg. A sharper Bonferroni procedure for multiple tests of signifi-
cance. Biometrika, 75(4):800-2, 1988.

[72] Y. Hochberg and A. Tamhane. Multiple Comparison Procedures. John
Wiley, 1987.

73] R. Hogg. Adaptive robust procedures: A partial review and some sugges-
tions for future applications and theory. Journal of the American Statistical
Association, 69(348):909-27, December 1974.

[74] R. Hogg. Statistical robustness: One view of its use in applications today.
The American Statistician, 33(3):108-15, August 1979.

[75] B. Holland and M. Copenhaver. An improved sequentially rejective Bon-
ferroni test procedure. Biometrics, 43:417-23, June 1987.

[76] S. Holm. A simple sequentially rejective multiple test procedure. Scan-
donavian Journal of Statistics, 6:65-70, 1979.

[77] H. Holma and A. Toskala, editors. WCDMA for UTMS: Radio Access for
Third Generation Mobile Communications. John Wiley, 2000.

(78] G. Hommel. A stagewise rejective multiple test procedure based on a mod-
ified Bonferroni test. Biometrika, 75(2):383-6, 1988.

[79] G. Hommel. A comparison of two modified Bonferroni procedures.
Biometrika, 76(3):624-5, 1989.

[80] H. Hsu, R. Storwick, D. Schlick, and G. Maxam. Measured amplitude distri-
bution of automotive ignition noise. IEEE Transactions on Electromagnetic

Compatibility, EMC-16(2):57-63, May 1974.



Bibliography 151

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[88]

[89]

190]

[91]

P. Huber. Robust Statistics. Wiley, 1981.

J. llow. Signal Processing in Alpha-Stable Environments: Noise Modeling,
Detection and Estimation. PhD thesis, Electrical and Computer Engineer-

ing, University of Toronto, December 1995.

J. llow and D. Hatzinakos. Detection in alpha-stable noise environments
based on prediction. International Journal of Adaptive Control and Signal
Processing, 11:555-68, 1997.

J. llow and D. Hatzinakos. Analytic alpha-stable noise modeling in a Pois-
son field of interferers or scatterers. IEEE Transactions on Signal Process-
ing, 46(6):1601-11, June 1998.

J. llow and D. Hatzinakos. Applications of the empirical characteristic
function to estimation and detection problems. Signal Processing, 65:199—
219, March 1998.

J. Ilow, D. Hatzinakos, and A. Venetsanopoulos. Detection for binary trans-
mission based on the empirical characteristic function. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing,
volume 5, pages 2487-90, Atlanta, USA, May 1996.

J. llow, D. Hatzinakos, and A. Venetsanopoulos. Performance of FH SS
radio networks with interference modelled as a mixture of Gaussian and
alpha-stable noise. JEEE Transactions on Communications, 46(4):509-20,
April 1998.

J. llow and H. Leung. No evidence of stable distributions in radar clutter.
In Proceedings of the IEEE Signal Processing Workshop on Higher Order
Statistics, pages 264-267, Banff, Alberta, July 1997.

A. James. The distribution of the latent roots of the covariance matrix.
The Annals of Mathematical Statistics, 31:151--8, 1960.

A. Janicki and A. Weron. Can one see « stable variables and processes?
Statistical Science, 9(1):109-26, 1994.

B. Kannan, W. Fitzgerald, and E. Kuruoglu. Joint DOA, frequency and
model order estimation in additive a-stable noise. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing,
volume 6, pages 3798-3801, Istanbul, Turkey, June 2000.



Bibliography 152

[92]

[93]

[94]

[95]

[96]

[97]

98]

[99]

(100]

101]

(102]

[103]

W. Kaplan. Advanced Calculus. Addison Wesley, 1969.

A. Karasaridis and D. Hatzinakos. On the modeling of network traffic and
fast simulation of rare events using a-stable self-similar processes. In Pro-
ceedings of the IEEE Signal Processing Workshop on Higher Order Statis-
tics, pages 268-72, Banff, Canada, July 1997.

A. Karasaridis and D. Hatzinakos. Bandwidth allocation bounds for alpha-
stable self-similar internet traffic models. In Proceedings of the IEEE Signal
Processing Workshop on Higher Order Statistics, pages 214-218, Caesarea,
Israel, June 1999,

S. Kassam. Signal Detection in Non-Gaussian Noise. Springer-Verlag, 1988,

S. Kogon and D. Manolakis. Signal modeling with self-similar a-stable
processes: The fractional Lévy stable motion model. IEEE Transactions
on Signal Processing, 44(4):1006-10, April 1996.

S. Kogon and D. Williams. A4 Practical Guide to Heavy Tails: Statistical
Techniques and Applications, chapter Characteristic Function Based Esti-

mation of Stable Distribution Parameters. Birkhéauser, 1998.

A. Kolmogorov. On the approximation of distributions of sums of inde-
pendent summands by infinitely divisible distributions. Sankhya Series A,
25:159-74, 1963.

K. Kolodziejski and J. Betz. Detection of weak random signals in 11D non-
Gaussian noise. [EEE Transactions on Communications, 48(2):222-230,
February 2000.

I. Koutrouvelis. A goodness-of-fit test of simple hypotheses based on the
empirical characteristic function. Biometrika, 67(1):238-40, 1980.

I. Koutrouvelis. Regression-type estimation of the parameters of stable
laws. Journal of the American Statistical Association, 75(372), 1980.

1. Koutrouvelis. An iterative procedure for the estimation of the parameters
of stable laws. Communications in Statistics: Simulation and Computation,
10(1):17-28, 1981.

I. Koutrouvelis and D). Bauer. Asymptotic distribution of regression-type
estimators of parameters of stable laws. Communications in Statistics:
Theory and Methods, 11(23):2715-30, 1982.



Bibliography 153

[104]

[103]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

113]

[114]

L. Koutrouvelis and J. Kellermeier. A goodness-of-fit test based on the em-
pirical characteristic function when parameters must be estimated. Journal
of the Royal Statistical Society, Series B, 43(2):173-6, 1981.

I. Koutrouvelis and S. Meintanis. Testing for stability based on the empir-
ical characteristic function with applications to financial data. Journal of
Statistical Computation and Simulation, 64:275-300, 1999,

R. Kozick, R. Blum, and B. Sadler. Signal processing in non-gaussian noise
using mixture distributions and the em algorithm. In Conference Record of
the 1% Asilomar Conference on Signals, Systems and Computing, volume 1,
pages 438-42, Pacific Grove, USA, November 1998.

R. Kozick and B. Sadler. Maximum likelihood array processing in non-
Gaussian noise with Gaussian mixtures. IEEE Transactions on Signal Pro-
cessing, 48(12):3520-35, December 2000.

R. Kozick and B. Sadler. Robust subspace estimation in non-Gaussian
noise. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, volume 6, pages 3818-3821, Istanbul, Turkey,
June 2000.

E. Kuruoglu. Signal Processing In «-Stable Noise Environments: A Least
l,-Norm Approach. PhD thesis, Department of Engineering, University of
Cambridge, 1998.

E. Kuruoglu, W. Fitzgerald, and P. Rayner. Near optimal detection of
signals in impulsive noise modeled with a symmetric a-stable distribution.
IEEE Communications Letters, 2(10):282-4, October 1998.

D. Lawley. Tests of significance for the latent roots of covariance and cor-
relation matrices. Biometrika, 43:128-136, 1956.

E. Lehmann. Testing Statistical Hypotheses. Springer-Verlag, 2™ edition,
1997.

E. Lehmann and G. Casella. Theory of Point Estimation. Springer-Verlag,
24 edition, 1998.

E. Lukacs. Characteristic Functions. Griffin, 2" edition, 1970.



Bibliography 154

[115]

[116]

[117]

118]

119]

[120]

[121]

[122]

[123]

[124]

[123]

X. Ma and C. Nikias. On blind channel identification for impulsive signal
environments. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, volume 3, pages 1992-5, Detroit,
USA, May 1995

X. Ma and C. Nikias. Parameter estimation and blind channel identification
in impulsive signal environments. [EEE Transactions on Signal Processing,
43(12):2884-97, December 1995.

B. Mandelbrot. The variation of certain speculative prices. Journal of
Business, 36(4):394-419, October 1963.

B. Mandelbrot. The variation of some other speculative prices. The Journal
of Business, 40:393-413, October 1967.

S. Maymon, J. Friedmann, E. Fishler, and H. Messer. Estimation of the pa-
rameters of a stable distribution based on order statistics. In Proceedings of
Heavy Tails '99, Applications of Heavy Tailed Distributions in Economics,
Engineering and Statistics, pages TAILS-37, Washington, DC, June 1999.

S. Maymon, J. Friedmann, and H. Messer. A new method for estimating
parameters of a skewed alpha-stable distribution. In Proceedings of the
IEEFE International Conference on Acoustics, Speech and Signal Processing,
volume 6, pages 3822-5, Istanbul, Turkey, June 2000.

P. McCullagh and J. Nelder. Generalized Linear Models. Chapman and
Hall, 2°¢ edition, 1989.

J. McCulloch. Simple consistent estimators of stable distribution pa-
rameters. Communications in Statistics: Simulation and Computation,
15(4):1109-36, 1986.

J. McCulloch. Statistical Methods in Finance, volume 14 of Handbook of
Statistics, chapter Financial Applications of Stable Distributions. Elsevier,
1996.

J. McCulloch. A Practical Guide to Heavy Tails: Statistical Technigques and
Applications, chapter Numerical Approximation of the Symmetric Stable
Distribution and Density, pages 489-500. Birkhauser, 1998.

K. McDonald and R. Blum. A statistical and physical mechanisms-based
interference and noise model for array observations. IEEE Transactions on
Signal Processing, 48(7):2044-2056, July 2000.



Bibliography 155

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]
135]

[136]

[137]

[138]

P. Mertz. Model of impulsive noise for data transmission. IRE Transactions
on Communications Systems, CS-9(2):130-7, June 1961.

James A. Michener. The Source. Random House, 2002.

D. Middleton. Statistical-physical models of urban radio-noise environments
- part 1: Foundations. IEEE Transactions on Electromagnetic Compatibil-
ity, EMC-14(2):38-56, May 1972.

D. Middleton. Statistical-physical models of electromagnetic interference.
IEEE Transactions on Electromagnetic Compatibility, EMC-19(3):106-27,
August 1977.

D. Middleton. Canonical and quasi-canonical probability models of class A
interference. IEEE Transactions on Electromagnetic Compatibility, EMC-
25(2):76-106, May 1983.

D. Middleton. An Introduction to Statistical Communication Theory. IEEE
Press, 1996.

D. Middleton. Non-Gaussian noise models in signal processing for telecom-
munications: New methods and results for class A and class B noise models.
IEEE Transactions on Information Theory, 45(4):1129-49, May 1999.

J. Miller and J. Thomas. Detectors for discrete-time signals in non-Gaussian
noise. IEEE Transactions on Information Theory, IT-18(2):241-50, March
1972,

R. Muirhead. Aspects of Multivariate Statistical Theory. John Wiley, 1982.

C. Nikias and M. Shao. Signal Processing with Alpha-Stable Distributions
and Applications. John Wiley, 1995.

J. Nolan. Numerical calculation of stable densities and distribution func-
tions. Communications in Statistics: Stochastic Models, 13(4):759-74, 1997.

J. Nolan. Parameter estimation and data analysis for stable distributions.
In Conference Record of the 31%¢ Asilomar Conference on Signals, Systems
and Computing, volume 1, pages 443-7, Pacific Grove, USA, November
1998.

J. Nolan. A Practical Guide to Heavy Tails: Statistical Techniques and
Applications, chapter Univariate Stable Distributions: Parameterizations
and Software, pages 527-33. Birkh&user, 1998.



Bibliography 156

[139] J. Nolan. Fitting data and assessing goodness of fit with stable distri-
butions. In Proceedings of Heavy Tails '99, Applications of Heavy Tailed
Distributions in Economics, Engineering and Statistics, pages TAILS-42,
Washington, DC, June 1999.

[140] J. Nolan. Lévy processes. Theory and applications., chapter Maximum Like-
lihood Estimation and Diagnostics for Stable Distributions, pages 379-400.
Birkhauser, 2001.

[141] R. Officer. The distribution of stock returns. Journal of the American
Statistical Association, 67(340):807-12, December 1972.

[142} T. Ojanperé and R. Prasad, editors. WCDMA: Towards IP Mobility and
Mobile Internet. Artech House, 2001,

[143] M. Paolella. Testing the stable paretian assumption. Mathematical and
Computer Modelling, 34:1095-112, 2001.

[144] A. Paulson and T. Delehanty. Modified weighted squared error estimation
procedures with special emphasis on the stable laws. Communications
Statistics: Simulation and Compulation, 14(4):927-72, 1985.

[145] A. Paulson, E. Holcomb, and R. Leitch. The estimation of the parameters
of the stable laws. Biometrika, 62(1):163-70, 1975.

[146] A. Petropulu, J. Pesquet, X. Yang, and J. Yin. Power-law shot noise and
its relationship to long-memory a-stable processes. IEEE Transactions on
Signal Processing, 48(7):1883-92, July 2000.

[147] R. Pierce. Application of the positive alpha-stable distribution. In Proceed-
ings of the IEEE Signal Processing Workshop on Higher Order Statistics,
pages 4204, Banff, Canada, July 1997.

[148] D. Politis. Computer-intensive methods in statistical analysis. IEEE Signal
Processing Magazine, pages 39-55, January 1998.

[149] D. Politis, J. Romano, and M. Wolf. Subsampling. Springer-Verlag, 1999.

[150] H. Poor. An Introduction to Signal Detection and Estimation. Springer-
Verlag, 1988.

[151] H. Poor and M. Tanda. Multiuser detection in flat fading non-gaussian
channels. JEEE Transactions on Communications, 50(11):1769-77, Novem-
ber 2002.



Bibliography 157

[152]

[153]

[154]

[155]

(156

[157]

[158]

[159]

160]

(161]

162]

[163]

[164]

[165]

S. Press. Applied Multivariate Analysis. Holt, Rinehart and Winston, 1972,

S. Press. Estimation in univariate and multivariate stable distributions.
Journal of the American Statistical Association, 67(340):842-6, December
1972.

S. Press. Multivariate stable distributions. Journal of Multivariate Anolysis,
pages 444-62, 1972.

Carl Sagan. Cosmos. Random House, 2002.

G. Samorodnitsky and M. Taqqu. Stable Non-Gaussian Random Processes:
Stochastic Models with Infinite Variance. Chapman and Hall, 1994.

L. Scharf. Statistical Signal Processing : Detection, Estimation, and Time
Series Analysis. Addison Wesley, 1991.

M. Sckine and Y. Mao. Weibull Radar Clutter. Peter Peregrinus, 1990.

R. Serfling. Approzimation Theorems of Mathematical Statistics. John
Wiley, 1980.

J. Shaffer. Modified sequentially rejective multiple test procedures. Journal
of the American Statistical Association, 81{395):826-31, September 1986.

R. Shepherd. Measurements of amplitude probability distributions and
power of automobile ignition noise at HF. IEEE Transactions on Vehicular
Technology, VT-23(3):72-83, August 1974.

R. Shepherd, J. Gaddie, and D. Nielson. New techniques for suppression
of automobile ignition noise. IEEE Transactions on Vehicular Technology,
VT-25(1):2-12, February 1976.

B. Silverman. Density Estimation for Statistics and Data Analysis. Chap-
man and Hall, 1986.

R. Simes. An improved Bonferroni procedure for multiple tests of signifi-
cance. Biometrika, 73(3):751-4, 1986.

B. Stuck and B. Kleiner. A statistical analysis of telephone noise. The Bell
System Technical Journal, 53(7):1263-1320, September 1974.



Bibliography 158

[166]

[167]

[168]

[169]

[170]

171]

172)

[173]

174]

175]

A. Swami. Non-Gaussian mixture models for detection and estimation in
heavy-tailed noise. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, volume 6, pages 3802-3805,
Istanbul, Turkey, June 2000.

A. Swami and B. Sadler. TDE, DOA and related parameter estimation
problems in impulsive noise. In Proceedings of the IEEE Signal Processing
Workshop on Higher Order Statistics, pages 273-7, Banff, Canada, July
1997.

A. Swami and B. Sadler. Parameter estimation for linear alpha-stable pro-
cesses. IEEE Signal Processing Letters, 5(2):48-50, February 1998.

A. Swami and B. Sadler. On some detection and estimation problems in
heavy-tailed noise. Signal Processing, 82:1471-88, 2002,

A. Taleb, R. Brcich, and M. Green. Suboptimal robust estimation for signal
plus noise models. In Conference Record of the 34™ Asilomar Conference
on Signals, Systems and Computing, volume 2, pages 837-41, Pacific Grove,
USA, October 2000.

J. Teichmoeller. A note on the distribution of stock price changes. Journal
of the American Statistical Association, 66(334):282-4, June 1971.

A. Teschioni, C. Sacchi, and C. Regazzoni. Non-Gaussian characterization
of DS/CDMA noise in few-user systems with complex signature sequences.
IEEE Transactions on Signal Processing, 47(1):234-7, January 1999,

A. Tesei, R. Bozzano, and C. Regazzoni. Comparison between asymmetric
generalized Gaussian {AGG) and symmetric-a-stable (SaS) noise models
for signal estimation in non-Gaussian environments. In Proceedings of the
IEEE Signaol Processing Workshop on Higher Order Statistics, pages 259—
63, Banff, Canada, July 1997.

A. Tesei and C. Regazzoni. The asymmetric generalized Gaussian function:
a new HOS-based model for generic noise pdfs. In Proceedings of the IEEE
Signal Processing Workshop on Higher Order Statistics, pages 210-3, Corfu,
Greece, June 1996.

J. Thompson and R. Tapia. Nonparametric Function Estimation, Modeling,
and Simulation. Society for Industrial and Applied Mathematics, 1990.



Bibliography 159

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

J. Thornton and A. Paulson. Asymptotic distribution of characteristic
function-based estimators for the stable laws. Sankhya: The Indian Journal
of Statistics, 39(Series A, Pt. 4):341-54, 1977.

P. Tsakalides. Array Signal Processing with Alpha-Stable Distributions.
PhD thesis, Electrical Engineering, University of Southern California, 1995.

P. Tsakalides and C. Nikias. Maximum likelihood localization of sources in
noise modeled as a stable process. IEEE Transactions on Signal Processing,
43(11):2700-13, November 1995.

P. Tsakalides and C. Nikias. The robust covariation-based MUSIC (ROC-
MUSIC) algorithm for bearing estimation in impulsive environments. [EEE
Transactions on Signal Processing, 44(7):1623-33, July 1996.

P. Tsakalides and C. Nikias. A new model for non-Rayleigh clutter: Space-
time adaptive processing in stable impulsive interference. In Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, volume 5, pages 3517-20, Munich, Germany, April 1997.

G. Tsihrintzis and C. Nikias. Fast estimation of the parameters of alpha-
stable impulsive interference using asymptotic extreme value theory. In
Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, volume 3, pages 1840-3, Detroit, USA, May 1995.

G. Tsihrintzis and C. Nikias. Performance of optimum and suboptimum
receivers in the presence of impulsive noise modelled as an alpha sta-
ble process. IEEE Transactions on Communications, 43(2/3/4):904-14,
Feb/March/April 1995.

G. Tsihrintzis and C. Nikias. Data-adaptive algorithms for signal detec-
tion in impulsive noise modelled as a sub-Gaussian, alpha-stable process.
In Proceedings of the 8 IEEE Workshop on Statistical Signal and Array
Processing, pages 238-41, Corfu, Greece, June 1996.

G. Tsihrintzis and C. Nikias. Fast estimation of the parameters of al-
pha stable impulsive interference. IEEE Transactions on Signal Processing,
44(6):1492-1503, June 1996.

G. Tsihrintzis and C. Nikias. Data-adaptive algorithms for signal detec-
tion in sub-Gaussian impulsive interference. IEEE Transections on Signal
Processing, 45(7):1873-8, July 1997.



Bibliography 160

[186]

[187]

[188]

[189]

[190]

[191]

192]

[193]

[194]

[195]

[196]

[197]

[198]

K. Vastola. Threshold detection in narrow-band non-Gaussian noise. IEEE

Transactions on Communications, 32(2):134-9, February 1984.
S. Verdu. Multiuser Detection. Cambridge University Press, 1998.

X. Wang and H. Poor. Robust multiuser detection in non-Gaussian chan-
nels. IEEE Transactions on Signal Processing, 47(2):289-304, February
1999,

C. Waternaux. Asymptotic distribution of the sample roots for a nonnormal
population. Biometrika, 63(3):639-45, 1976.

M. Wax and T. Kailath. Detection of signals by information theoretic
criteria. JEEE Transactions on Acoustics, Speech and Signal Processing,
ASSP-33(2):387-92, April 1985.

M. Wax and [. Ziskind. Detection of the number of coherent signals by
the MDL principle. IEEE Transactions on Acoustics, Speech and Signal
Processing, 37(8):1190-6, August 1989.

D. Williams and D. Johnson. Using the sphericity test for source detection
with narrow-band passive arrays. JEEE Transactions on Acoustics, Speech
and Signal Processing, 38(11):2008-14, November 1990.

K. Worsley.  An improved Bonferroni inequality and applications.
Biometrika, 69{2):297-302, 1982.

S. Zabin and G. Wright. Nonparametric density estimation and detection
in impulsive interference channels-part I: Estimators. IEEE Transactions
on Communications, 42(2/3/4):1684-1697, February/March/April 1994.

S. Zabin and G. Wright. Nonparametric density estimation and detection
in impulsive interference channels-part II: Detectors. IEEE Transactions
on Communications, 42(2/3/4):1698-1711, February/March/April 1994.

V. Zolotarev. One-dimensional Stable Distributions, volume 65. American
Mathematical Society, 1986.

A. Zoubir and M. Arnold. Testing Gaussianity with the characteristic func-
tion: The 1.i.d case. Signal Processing, 53:245-55, 1996.

A. Zoubir and B. Boashash. The bootstrap and its application in signal
processing. IEEE Signal Processing Magazine, pages 55-76, January 1998.



Bibliography 161

[199] A. Zoubir and J. Béhme. Bootstrap multiple tests applied to sensor location.
IEEE Transactions on Signal Processing, 43(6):1386-96, June 1995.

[200] A. Zoubir and C. Brown. Testing for impulsive behavior: A bootstrap
approach. Digital Signal Processing, 11(2):120-32, April 2001.



Vision without action is dreaming.
Action without vision is passing the time.

Action with vision can change the world.



	14245_downloaded_stream_14245
	14246_downloaded_stream_14246
	14247_downloaded_stream_14247
	14248_downloaded_stream_14248
	14249_downloaded_stream_14249
	14250_downloaded_stream_14250
	14251_downloaded_stream_14251
	14252_downloaded_stream_14252
	14253_downloaded_stream_14253
	14254_downloaded_stream_14254

