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Abstract 

This paper presents a new robust adaptive filtering method for SINS/SAR (Strap-down 

Inertial Navigation System / Synthetic Aperture Radar) integrated navigation system. This 

method adopts the principle of robust estimation to adaptive filtering of observational data. A 

robust adaptive filter is developed to adaptively determine the covariance matrix of 

observation noise, and adaptively adjust the covariance matrix of system state noise according 

to the adaptive factor constructed based on predicted residuals. Experimental results and 

comparison analysis demonstrate that the proposed method cannot only effectively resist 

disturbances due to system state noise and observation noise, but it can also achieve higher 

accuracy than the adaptive Kalman filtering method. 

 

Keywords: Robust adaptive filtering, adaptive factor, integrated navigation system, Synthetic 
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1 Introduction 

The precision of dynamic navigation positioning system depends on cognition and control of 

disturbances due to dynamic carrier and singular observation. The Kalman filter, which is a 

commonly used filtering method in a dynamic navigation positioning system, uses the 

statistical characteristics of the system model to determine estimates recursively [1, 2]. It does 

not only require accurate system state and observation equations, but it also requires the prior 

knowledge on the statistical characteristics of system state noise and observation noise. 

However, due to the influence of a complex environment, it is difficult to accurately obtain 

the statistical characteristics of system noises, leading to an inaccurate factor to the filter [3]. 
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In particular, the inaccuracy between the theoretical behaviour of the filter and its actual 

behaviour may cause the divergence problem [4]. 

The federated Kalman filter is a method for optimal fusion of multi-sensor data according 

to the principle of information distribution [5]. It provides the fault-tolerant ability for the 

whole system to achieve the overall optimum performance. Although this method overcomes 

the disadvantages of the classical Kalman filter to some extent, it is still based on precise 

mathematical models, and can only deal with dynamic linear systems. It also requires 

real-time calculation of the inverse matrices for each locally estimated error variance matrix, 

without considering the relevance among the filtering outputs of each individual sensor. 

The adaptive Kalman filter is one of the promising strategies for dynamically adjusting 

the filter parameters based on the estimates of the unknown parameters for on-line estimation 

of signals and noise statistics. The popular types of the adaptive Kalman filter include the 

innovation-based adaptive estimation approach, and the adaptive fading Kalman filter 

approach [4]. In the innovation-based adaptive estimation approach [6-9], the noise 

distribution matrices employed in the Kalman filter are adjusted according to the dynamic 

change of observations by using fuzzy logic control. However, the establishment of the fuzzy 

inference rules and selection of the membership function for fuzzy logic control are difficult 

problems [10]. The adaptive fading Kalman filter [11-15] incorporates suboptimal fading 

factors as a multiplier to enhance the influence of innovation information for improvement of 

the tracking capability in high dynamic maneuvering. Although this filter has a simple 

structure, it achieves the filtering convergence with the trade-off of the filtering precision 

[16]. 

In the recent years, the robust adaptive filter has been used in integrated navigation 

system to control the influences due to both system state models and observation singularities. 

Yang et al reported a robust adaptive filter by combining the robust maximum-likelihood 

estimation with the adaptive filtering process to adaptively adjust the weight matrix of 

predicted parameters according to the difference between system observation and model 

information [17, 18]. This filter can be adaptively converted into the classical Kalman filter, 

adaptive Kalman filter, and Sage filter by modifying the weight matrix and adaptive factor. 

However, when the observational information is not sufficient at some epochs, the filtering 
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method is difficult to estimate state parameters at these epochs. They also developed a robust 

adaptive filter with multiple adaptive factors [19]. Although the robustness is improved by 

using multiple adaptive factors, this method causes an extra computational load, as it requires 

the number of observations at all calculation epochs be larger than the number of state 

components. Ding et al reported a process noise scaling method to improve the robustness of 

adaptive filtering [3]. This method monitors the status of the filter operation by using 

covariance matching. However, it cannot optimally distribute noises to each individual source. 

In general, robust adaptive filtering is a challenging research problem [20], and thus its 

application in integrated navigation system is still very limited. 

The SINS/SAR (Strap-down Inertial Navigation System / Synthetic Aperture Radar) 

integrated navigation system obtains the positioning information by using correlated images. 

The SINS information can be used for motion compensation and stable alignment of antennae 

to correct the errors of SAR. In reverse, according to the target information, SAR can also 

correct the errors of SINS, which are increased over time. Due to the complementary nature of 

INS and SAR, SINS/SAR integrated navigation system provides a promising solution for 

achieving high-precision positioning navigation. However, the state model of SINS/SAR 

integrated navigation system has a small process noise and is exponentially unstable. The 

errors caused by the instability of the system state model are accumulated in the navigation 

process, decreasing the accuracy of navigation. Further, due to the influences of system 

instability and environment uncertainty, the statistical characteristics of system state and 

observation noises may not be precisely described, resulting in an inaccurate factor to 

SINS/SAR integrated navigation system [21]. 

This paper presents a new robust adaptive filtering method for SINS/SAR integrated 

navigation system. This method adopts the principle of robust estimation to SINS/SAR 

integrated navigation system for adaptively resisting the disturbances due to system state and 

observation noises. A robust adaptive filter is developed to adaptively determine the 

covariance matrix of observation noise, and adaptively adjust the covariance matrix of system 

state noise through an adaptive factor constructed based on predicted residuals. In order to 

effectively control the influences of observation and model errors on state parameter 

estimation for improving filtering accuracy, the adaptive factor acts on the equivalent 
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covariance matrix of the whole predicted state vector, rather than on the covariance matrix of 

the model errors or the covariance matrix of the estimated state vector at the previous epoch. 

Experiments and comparison analysis have been conducted to comprehensively evaluate the 

performance of the proposed filtering method for INS/SAR integrated navigation system. 

 
 

2 Mathematical Model of INS/SAR Integrated Navigation System 

 

2.1 System state equation 

SINS is used to establish the inertial navigation model. The base coordinate system for 

establishment of the kinematic model is the E-N-U geography coordinate system. The 

continuous state of the SINS/SAR integrated navigation system can be described as 

 

)()()()()( tWtGtXtFtX   (1) 

 

where )(tX  is the system state vector, which includes various kinds of system errors. )(tF  

is the dynamic matrix of the state transition, )(tW  is the system noise, and )(tG  is the 

noise coefficient matrix. 

In order to stabilize the altitude of SINS, the barometric altimeter is introduced into the 

INS/SAR integrated system. Therefore, the system state vector )(tX  can be defined as 

 

)(tX [ , , , , , , , , , , , , , , , ]T
E N U E N U x y z X Y Z bv v v h h                (2) 

 

where ),,( UNE vvv   is the velocity error, ),,( h  is the position error, ),,( UNE   

is the attitude error, ),,( zyx   is the gyro constant drift, ),,( ZYX   is the 

accelerometer zero-bias, and bh is the altimeter bias. 

The system noise )(tW  is defined as 
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( ) [ , , , , , , , , , , , , ]T
x y z mx my mz X Y Z x y z hbW t w w w w w w w w w w w w w             (3) 

 

where ),,( zyx www   
is the observation error caused by the gyro’s constant drift,

 

),,( mzmymx www   is the observation error caused by the first-order Markov drift, 

),,( ZYX www   is the observation error due to the accelerator’s zero deviation, 

),,( zyx www   is the antenna’s attitude angle error of SAR, and hbw  is the error due to 

the altimeter bias. 

 

2.2 System observation equation 

Since both SINS and SAR can output the latitude, longitude and heading angle for the 

position of a dynamic carrier, the observation of SINS/SAR integrated navigation system can 

be treated as the subtraction in the latitude, longitude and heading angle between SINS and 

SAR, i.e., 

 

( ) [ ]I S I S I SZ t           (4) 

 

where Z(t) is the system observation, ),,( III   is the latitude, longitude and heading angle 

of SINS, and ),,( SSS   is the latitude, longitude and heading angle of SAR. 

According to the different significances of the output variables, ( )Z t  may be rewritten 

as 
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where ),,( SSS   is the latitudinal error, longitudinal error and heading angle error of 
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SAR, which are all assumed as a white noise process, and ),,( III   is the latitudinal 

error, longitudinal error and heading angle error of SINS. 

Therefore, the observation of the SINS/SAR integrated navigation system can be further 

described as 

 

( ) ( ) ( ) ( )Z t A t X t e t   (6) 

 

where ( )A t  is the observation matrix, and ( ) [ , , ]T
S S Se t     is the observation white 

noise of SAR. 

 
 

3 Robust Adaptive Filtering for SINS/SAR Integrated Navigation System 

The robust adaptive filter for the SINS/SAR integrated navigation system is designed based 

on the adaptive Kalman filter by constructing the adaptive factor according to predicted 

residual statistic. 

By applying Taylor series expansion to (1) and (6), the discrete system state equation is 

 

, 1 1k k k k kX X W     (7) 

 

where 1kX  is the state vector at epoch 1kt , , 1k k
 
is the discrete state transition matrix, 

and kW  is the error vector of the kinematic model, whose covariance matrix is 
kW . 

Correspondingly, the discrete predicted state equation may be written as 

 

, 1 1
ˆ

k k k kX X    (8) 

 

where kX  is the predicted state vector at epoch kt , and 1
ˆ

kX   is the estimate of 1kX . 

The observation equation is 
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kkkk eXAZ   (9) 

 

where kZ  is the observation vector, kA  is the observation matrix, and ke  is the 

observation noise vector, whose mathematical expectation value is zero and covariance matrix 

is 

 

 











ji
k

ji

ji
, 0

 (10)

 

Obviously, ke  is a Gaussian noise vector. 

Assume that the residual error equation and predicted residual error equation are 

 

ˆ
k k k kV A X Z    (11)

 

and 

 

KX =V ˆ
k kX X   (12)

 

where kV  is the residual vector, kA  is the observation matrix, and 
KXV  is the residual 

vector of predicted state vector kX . 

According to (11) and (12), the following conditional extremum may be established 

 

min)ˆ(211  
kkkk

T
kXX
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Xkkk

T
kk VZXAVVVV

kkk
  (13)

 

where kk P1  is the equivalent weight matrix of kZ , 
kk XX

P1  is the weight matrix of 

kX , k )10(  k  is the adaptive factor, and k  is the Lagrange multiplier. kP  is the 



8 
 

adaptive estimation of weight matrix 1 kkP , i.e. iiii wpp  , where iw  is the weight 

factor. Therefore, kP  may be written as 
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By letting the derivatives of (13) with respect to kV  and kX̂  are zero, we have 
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and 
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By (15) and (16), we have 

 

kkkV    (17)

 

and 

 

kX

T
k

k
X

kk
AV 

 
1

 (18)

 

where k  is the equivalent covariance matrix of kZ , 
kX is the covariance matrix of 
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kX , and 

 

)ˆ( kkkkk XAZP   (19)

. 

By (16), 

 

0 k
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kk
  (20)

 

Substituting (19) into (20), 
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kk X
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k PVAPV   (21)

 

By applying the matrix transpose operation to (21), 

 

02 
kk X

T
Xkkk
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Substituting (11) and (12) into (22), 
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By solving (23), the following equation may be written 

 

1ˆ ( ) ( )
2 2k k
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Letting 

 

1( )
2 k

T T
k k k k k kXK A P A P A P

    (25)



10 
 

 

and considering 
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(24) may be further written as 

 

1ˆ [ ( )k k k k k kX K Z K A X     (27)

 

Substituting (18) and (19) into (11), 
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By (27), the solution of the discrete robust adaptive filter can be obtained as 

 

 ˆ
k k k k k kX I K A X K Z    (29)

 

where kK  is the gain matrix, which is represented as 
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where 
__

kX  is the equivalent variance matrix of kX , which is represented as 

 

 
1

__

, 1 , 1ˆ

1 1
k k k k

T
k k k kX X X w

k k  
          (31)

 

where 
kw is the covariance matrix of the input noise vector at kt . 

kX is estimated by the classical Kalman filter at kt , i.e. 

 

1
, 1 , 1ˆ

k k k

T
k k k kX X w

       (32)

 

where 
1

ˆ
kX 

 is the covariance matrix of kX̂  at 1kt  . 

To balance the contributions of observations and predicted states to estimated state 

parameters, the robust adaptive factor k  is set as a piecewise decreasing function [18] 
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where 0c  is any value within 1~1.5, and 1c  is any value within 3.0~8.0. kX
~  is 

represented as 

 

 /
k

k k k X
X X X tr      (34)

 

where kX
~

 is the robust solution for the state vector at the current epoch, and  tr  is the 

trace of a matrix. 
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It is not difficult to see that the adaptive factor of the robust adaptive filter acts on the 

equivalent covariance matrix of the whole predicted state vector, i.e.
 

__

kX , rather than on the 

covariance matrix of the model errors, i.e. 
kw , or the covariance matrix of the estimated 

state vector at the previous epoch, i.e.
 1

ˆ
kX 

 . Therefore, the proposed robust adaptive filter 

can effectively control the disturbances on state parameter estimation due to singular 

observations and singular model noises, providing reliable results for navigation. 

 
 

4 Computational Analysis and Discussions 

Experiments have been conducted to evaluate the performance of the proposed filtering 

method for INS/SAR integrated navigation system. In order to analyze the performance of the 

proposed filtering method under the flight condition of high velocity, acceleration and 

flexibility, the flight trajectory of the aircraft is selected as Fig. 1, where “H” denotes the 

height, “L” denotes the longitude, and “ ” denotes the latitude. As shown in Fig. 1, there are 

different flight states, such as accelerating, climbing and turning, involved in the flying 

trajectory. The gyro drift is 0.01 / h , the first-order Markov process drift of the gyro is 

0.001 / h  (the relevant time is 1h), and the accelerator zero bias is 410 g . The horizontal 

positioning accuracy of SAR is 50m, the accuracy of the heading angle is '10 , and the output 

period is 5s (Note: the filtering process is updated only with time when there is no output 

from SAR). The accuracy of the altimeter is 60m. The initial position error is 50m, the initial 

velocity error is 2m/s, and the initial angle error of the platform is '50 . The simulation time is 

1500s, and the filtering period is 1s. The velocity and position errors obtained by the robust 

adaptive filtering method are shown in Fig. 2 and Fig. 3, respectively. From Fig. 2 and Fig. 3, 

it can be seen that the proposed filtering method can effectively control the disturbances due 

to observation and model noises, and provide reliable results for navigation. 
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Figure 1. Flight trajectory 

 

The performance of the proposed method has been further evaluated by comparing with 

the adaptive Kalman filtering method [12]. For the purpose of comparison, experiments have 

been conducted under the same conditions as Figs. 2 and 3 by the adaptive Kalman filtering 

method. The velocity and position errors obtained by the adaptive Kalman filtering method 

are shown in Fig. 4 and Fig. 5, respectively. 
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Figure 2. Velocity error obtained by the proposed robust adaptive filtering method 
 
 

Figure 3. Position error obtained by the proposed robust adaptive filtering method 
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Figure 4. Velocity error obtained by the adaptive Kalman filtering method 
 

Figure 5. Position error obtained by the adaptive Kalman filtering method 
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filtering method is within the range of (-10m, 10m), while the position error obtained by the 

adaptive filtering method is within the range of (-30m, 30m). The above experimental results 

demonstrate that the robust adaptive filtering method can effectively improve the positioning 

performance of INS/SAR integrated navigation system. The accuracy achieved by the 

proposed robust adaptive filtering method is significantly higher than that achieved by the 

adaptive Kalman filtering method. The proposed robust adaptive filtering method is also 

stable, and can achieve reliable results even in a complex environment. 

 
 

5 Conclusions 

This paper presents a new robust adaptive filtering method by adopting the principle of robust 

estimation to adaptive filtering for INS/SAR integrated navigation system. This method does 

not only adaptively determine the covariance matrix of observation noise, but it also 

adaptively adjusts the covariance matrix of system state noise through the adaptive factor. The 

adaptive factor constructed based on predicted residuals acts on the equivalent covariance 

matrix of the whole predicted state vector, rather than on the covariance matrix of the model 

errors or the covariance matrix of the estimated state vector at the previous epoch. The 

proposed filtering method cannot only control the disturbances on the state estimates due to 

kinematic model noise and observation noise, but it can also guarantee the reliability of the 

navigation solution in the cases when observations or predicted values are corrupted. The 

accuracy of INS/SAR integrated navigation system achieved by the proposed filtering method 

is also much higher than that by the adaptive Kalman filtering method. 

Future work focuses on the improvement of the proposed method by using artificial 

intelligence. Advanced expert systems and neural networks will be established to intelligent 

control the filtering process without construction of the adaptive factor for robust filtering the 

information of INS/SAR integrated navigation system. 
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