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Abstract— We consider the classic problem of exact output
regulation for a linear time invariant plant. Under the assump-
tion that a state feedback output regulator exists, we adapt the
design methods of Schmid and Ntogramatzidis [1] to obtain
a regulator that will track a time-varying reference without
overshoot in the transient response.

I. INTRODUCTION

The problem of output regulation is central to modern
control theory. The basic problem considers a multivariable
linear time invariant (LTI) plant which is desired to track a
known reference signal. The reference signals are modeled
by an independent exosystem. The aim of the problem is to
design a feedback controller which internally stabilises the
plant and ensures the output converges asymptotically to the
desired reference signal. The problem has a long history, and
extensive compilations of results are given in [2] and [3].

Much of the literature has concentrated on the tracking of
step references. For continuous time systems, in [4] it was
shown how to design a two parameter feedback controller for
an LTI plant that renders the step response nonovershooting.
In [5] an eigenstructure assignment method was proposed to
obtain a nonovershooting LTI state feedback controller for
plants with one nonminimum phase zero. In [6] conditions
are given for the existence of a controller to achieve a sign
invariant impulse response, and hence also a nonovershooting
step response. A common limiting feature of these papers is
that they considered strictly proper SISO systems, and that
the system state is assumed to be initially at rest.

These two latter limitations were overcome in [1], where
MIMO systems were considered. The authors gave a linear
state feedback control to design a nonovershooting controller
for a step reference. The method was applicable to both
square and non-square systems, minimum phase and nonmin-
imum phase systems, strictly proper and non-strictly proper
systems, and did not assume that the initial state of the
system is at rest. In [7] the design method of [1] was modified
to achieve a step response for MIMO systems that is both
nonovershooting and nonundershooting.

There have been but few papers addressing the problem of
obtaining good transient response performance in the track-
ing of time varying references. [8] employed the composite
nonlinear feedback (CNF) technique of [9]-[10] and adapted
it to the tracking of a general reference signal generated by
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an exosystem. The authors offered methods for designing the
nonlinear CNF term in the control law that would improve
the transient performance of a linear controller, but did not
guarantee the avoidance of overshoot.

In this paper we seek to adapt the multivariable design
method of [1] to the problem of exact output regulation.
We assume the problem of output regulation by state feed-
back is solvable, i.e. there exists a linear state feedback
controller that internally stabilizes the plant and achieves
output regulation. In this case we show that if there exists
a state feedback controller that yields a nonovershooting
response for a step reference, then a state feedback output
regulator can be obtained to deliver a nonovershooting output
regulation. To the best of the authors’ knowledge, this is the
first design method that achieves multivariable exact output
regulation with a nonovershooting (or nonundershooting)
transient response.

The paper is organised as follows: In Section 2 we
introduce the classic problems of exact output feedback and
discuss its solvability with respect to state feedback. We also
review the nonovershooting state feedback design methods of
[1]. In Section 3, we consider a plant with exosystem and, un-
der the assumption that exact output regulation is achievable,
we offer conditions under which a nonovershooting transient
response can be achieved with linear state feedback. In
Section 4, we apply the method to the XY -table simulation
given in [8]. We develop a state feedback law that allows the
XY -table to draw a circle, with trajectory starting from the
origin. Unlike the CNF control law employed in that paper,
our method succeeds in drawing the circle without overshoot.
This means that the trajectory remains within the circle at
all times. This is achieved without slowing the response
time, or using larger control amplitude than that of the CNF
controller. Finally Section 5 offers some concluding remarks.

Definitions and Notation: The symbol 0n represents the
zero vector of length n, and In is the n-dimensional identity
matrix. For a square matrix A, we use σ(A) to denote its
spectrum. We say that a square matrix A is Hurwitz-stable if
σ(A) lies within the open left-hand complex plane, and it is
anti-Hurwitz-stable if σ(A) lies within the open right-hand
complex plane. A pair (A,B) is stabilizable if there exists a
state feedback matrix F such that A+BF is Hurwitz-stable.
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II. PROBLEM FORMULATION

We consider a linear multivariable plant ruled by the
equation

Σ :

 ẋ(t) = Ax(t) + B u(t)
y(t) = Cy x(t) + Dy u(t)
z(t) = C x(t) + Du(t)

(1)

where, for all t ≥ 0, the signal x(t) ∈ Rn represents the
state, u(t) ∈ Rm represents the control input, y(t) ∈ Rp

represents the measured output, z(t) ∈ Rq represents the
controlled output, r(t) ∈ Rρ represents a reference signal,
as shown in Figure 1. All the matrices appearing in (1) are
appropriate dimensional constant matrices.
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Fig. 1. Output feedback control architecture

The reference input r is generated by an autonomous
exosystem ruled by

Σexo :

{
ẇ(t) = S w(t), w(0) = w0

r(t) = Lw(t)
(2)

where, for all t ≥ 0, w(t) ∈ Rn1 , and S and L are also
appropriate dimensional constant matrices. We assume that
all the eigenvalues of S are anti-Hurwitz-stable, i.e., they
all have non-negative real part. This assumption does not
cause any loss of generality, see [3, p. 18]; indeed, if the
closed-loop system (excluding the exosystem) is internally
stable, the vanishing modes of the exosystem do not affect
the regulation of the output. We also assume that the states
of the exosystem are measurable, i.e., they are available to
be used to generate a feedforward action in the control law.

We design a controller with measurement signal y which
generates the control input signal u. Our design objective is
for the reference signal r to be asymptotically tracked by the
output z of the system. As such, by defining the error signal

e(t)
def
= z(t)− r(t),

our objective is to achieve limt→∞ e(t) = 0. We then
consider a new system Σe obtained from Σ by considering
the new output e instead of z:

Σe :

 ẋ(t) = Ax(t) +B u(t), x(0) = x0

y(t) = Cy x(t) +Dy u(t)
e(t) = Ce x(t) +Deu u(t)− r(t)

By defining Dew = −L2, we can re-write Σe as

Σe :


ẋ(t) = Ax(t) +B u(t), x(0) = x0

ẇ(t) = S w(t), w(0) = w0

y(t) = Cy x(t) +Dy u(t)
e(t) = Ce x(t) +Deu u(t) +Dew w(t)

(3)

In order to simplify the derivations of the tracking control
law, we assume Dy = 0. This assumption does not lead
to a significant loss of generality, as shown in [3, p. 16].
For design purposes we will also consider the nominal plant
Σnom which arises when the exosystem is excluded from
consideration. In this case Σe simplifies to the homogenous
system

Σnom :

{
˙̃x(t) = A x̃(t) +B ũ(t), x̃(0) = x̃0

ẽ(t) = Ce x̃(t) +Deu ũ(t)
(4)

For this system, the problem of exact output regulation
consists of driving the system state to the origin from some
arbitrary non-zero initial condition. Next we briefly revisit
some classic results on output regulation by state feedback.
The discussion that follows is based on [3, Chapter 2].
We will only consider the continuous-time case. We note
however that [1] also considered discrete-time systems, and
the results presented here can be adapted to the discrete-time
case with only minor modifications.

A. Output regulation with state feedback
In the case where the controller has access to the state of

the system, as well as to the reference and the disturbance,
we have p = n, Cy = I and y = z. The control input has
the form

u(t) = F x(t) +Gw(t), (5)

which is given by a static state-feedback component Fx(t)
and a static feedforward component Gw(t) that uses the state
of the exosystem. The closed-loop system is

Σcl :

 ẋ(t) = (A+B F )x(t) +BGw(t),
ẇ(t) = S w(t),
e(t) = (Ce +Deu F )x(t) +Dew Gw(t)

(6)

Definition 2.1: (a) A state feedback controller u of the
form (5) is said to achieve exact output feedback regulation
if both the following conditions hold
(I) Internal Stability: The system ẋ(t) = (A+B F )x(t) is

asymptotically stable, and
(II) Output Regulation: For all x0 ∈ Rn, and w0 ∈ Rn1 , the

closed-loop system Σcl satisfies limt→∞ e(t) = 0.
(b) For a given initial condition (x0, w0) of Σe, the control
law u in (5) is said to achieve nonovershooting exact output
feedback regulation for Σe from (x0, w0) if the output e
of Σcl vanishes without changing sign in any component,
i.e., for each i ∈ {1, . . . , p}, ei → 0 and sgn(ei(t)) is
constant for all t ≥ 0. Finally, we say the controller achieves
globally nonovershooting exact output feedback regulation if
e is nonovershooting from all initial conditions (x0, w0).

The following theorem gives conditions under which ex-
act output feedback regulation can be achieved by a state
feedback control law of the form (5).
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Theorem 2.1: ([3], Theorem 2.3.1) Assume system Σe in
(3) satisfies the following assumptions
A.1 The pair (A,B) is stabilizable.
A.2 The matrix S is anti-Hurwitz-stable.
A.3 There exists matrices Γ and Π satisfying

ΠS = AΠ+B Γ (7)
0 = C Π+D Γ +Dew (8)

Let F be any matrix such that A + B F is Hurwitz-stable,
and let G = Γ−F Π. Then u as in (5) achieves exact output
feedback regulation for Σe.
These two equations (7)-(8) are known as the regulator
equation. Solvability conditions are given in [3, Chapter 2].

B. Nonovershooting and nonundershooting tracking con-
troller design methods

The paper [1] gave several methods for the design of a
linear state feedback control law to deliver a nonovershoot-
ing step response for systems in the form Σnom, and [7]
extended the design methods to deliver a nonundershooting
step response system, and also a monotonic step response.
Our aim in this paper is to consider how these methods
may be employed to achieve exact output regulation with
a nonovershooting (or nonundershooting) transient response.
We now briefly review these methods.

The design methods assume the system Σnom is a square
system (m = p) and at time t = 0 is at a known initial
equilibrium (uo, x0, y0). The closed loop poles are to be
selected from within a user-specified interval [a, b] of the
negative real line. The algorithm selects candidate sets L of
distinct closed-loop eigenvalues within the specified interval
and then associates them with candidate sets of eigenvectors
V and eigendirections W . These are obtained in terms of the
system matrix pencil

PΣ(s)
def
=

[
A− sIn B

C D

]
(9)

in such a way that only a small number of the closed-
loop modes contribute to each output component. The error
function e(t) is then formulated in terms of the candidate set
of eigenvectors and a test is used to determine if the system
response is nonovershooting in all components. If the test is
not successful, then a new candidate set L is chosen, and the
process is repeated. If it succeeds, then the desired matrix F
can be obtained by applying Moore’s algorithm [11] to the
sets V and W . The tests are analytic in nature, and do not
require simulating the system response to test for overshoot.

Recently the design method of papers [1] and [7] was in-
corporated into a public domain MATLAB R⃝ toolbox, known
as NOUS [12]. The toolbox asks the user to specify their LTI
system in state space form, together with a specified initial
condition and desired step reference. The user is also asked to
nominate a subinterval [a, b] of the negative real line within
which the poles of the closed loop system are to be located.
The NOUS algorithm then seeks to obtain a gain matrix that
will deliver closed-loop poles within the specified interval,
and also a nonovershooting step response.

The method exploits any minimum phase invariant zeros
the system may have; these modes are then chosen among
the closed-loop poles and rendered invisible at the outputs
via pole/zero cancelation. Extensive testing by the authors of
[12] has shown the search method is likely to be successful
if the number of system states, less the number of minimum
phase zeros, is not more than three times the number of
control inputs, i.e. the inequality

n− z ≤ lp (10)

holds true for some l ≤ 3, where z is the number of
minimum phase zeros. Interestingly, the presence of non-
minimum phase zeros does not negatively impact upon the
success of the search. In the paper [13], the NOUS algorithm
was used to obtain nonovershooting (and nonundershooting)
responses to systems with real nonminimum phase zeros.
Moreover, the search algorithm can sometimes be successful
even where (10) requires l = 4 or more. Current research by
the authors of [1] is aimed at obtaining analytic conditions in
terms of the system structure that are necessary and sufficient
to guarantee the existence of a state feedback controller that
will deliver the desired transient response.

III. NONOVERSHOOTING AND NONUNDERSHOOTING
OUTPUT REGULATION

In this section we present the main results of our paper.
We extend the classic problem of output regulation to also
consider the design of linear control laws of the form (5),
to deliver a desirable transient response. Specifically, we
consider the problem of choosing the control laws for Σe

such that e is nonovershooting, for any given (x0, w0). Our
main result indicates that if we can obtain a state feedback
control law ũ(t) = F x̃(t) that achieves nonovershooting
exact output feedback regulation for Σnom, then the state
feedback law u in (5) with this F will achieve nonover-
shooting exact output feedback regulation for Σe.

Theorem 3.1: Let (x0, w0) be any initial condition for Σe

in (3). Assume that (A.1)-(A.2) hold and that Π and Γ satisfy
(7)-(8). Assume there exists F such that ũ(t) = F x̃(t) yields
nonovershooting exact output feedback regulation for Σhom

from initial condition x̃0 = x0−Πw0, and let G def
= Γ−F Π.

Then u in (5), with this F and G, yields nonovershooting
exact output feedback regulation for system Σe from the
initial condition (x0, w0).
Proof: The closed-loop system arising from applying ũ =
F x̃ to Σnom is{

˙̃x(t) = (A+B F ) x̃(t), x̃(0) = x̃0

ẽ(t) = (Ce +Deu F ) x̃(t)
(11)

and by assumption we have ẽ → 0 without overshoot. Next
we consider Σe and introduce the change of coordinates
ξ(t) = x(t)−Πw(t). Then ξ(0) = x(0)−Πw(0) = x̃0. We
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obtain

ξ̇(t) = ẋ(t)−Πẇ(t)

= ẋ(t)−ΠSw(t)

= (A+BF )x(t) + (B (Γ− FΠ)−ΠS)w(t)

= (A+BF )x(t)− (A+BF )Πw(t), using (7)
= (A+BF )ξ(t). (12)

Also

(Ce +DeuF )x(t) + (Deu(Γ− FΠ) +Dew)w(t)

= (Ce +DeuF )x(t) + (DeuΓ−DeuFΠ+Dew)w(t)

= Cex+DeuF (x(t)−Πw(t)) + (DeuΓ +Dew)w(t)

= Ceξ(t) +DeuFξ(t) + (CeΠ+DeuΓ +Dew)w(t)

= (Ce +DeuF )ξ(t) (13)

by (8). Hence the closed loop system arising from Σe under
u in (5) with initial condition (x0, w0) is{

ξ̇(t) = (A+B F ) ξ(t), ξ(0) = ξ0,
e(t) = (Ce +Deu F ) ξ(t)

(14)

which is identical to (11), and so e → 0 without overshoot.
Hence u achieves nonovershooting exact output regulation
for Σe from (x0, w0).

Remark 3.1: The significance of Theorem 3.1 is that if
the exact output regulation of Σe can be achieved by state
feedback, then the design methods of [1] can be utilised
to obtain nonovershooting exact output regulation. It is an
immediate corollary to Theorem 3.1 that if ũ = Fx̃ delivers
a nonundershooting, or monotonic, step response for Σnom,
then u with this same F will deliver nonundershooting, or
monotonic, output regulation for Σe.

IV. EXAMPLE

Example 4.1: In [8], the authors considered an application
of the generalized CNF (Composite nonlinear feedback)
technique to the trajectory tracking control of an XY -table.
A pencil attached to the mover of the XY-table is constrained
to move along the x-axis and y-axis of the table and draw
any desired 2-D trajectory onto the paper underneath.

Precision control of an XY-table is an important problem
in manufacturing, and transfer functions for the linear rela-
tion between the x and y components of the motion and the
corresponding motor input currents for the table used in [8]
were given in [14]. Representing these in state space form
and combining them as two decoupled SISO systems yields
a MIMO system Σ1 in the form (1) with

A =


0 1 0 0
0 −2.825 0 0
0 0 0 1
0 0 0 −3.226



B =


0 0

8.034 0
0 0
0 6.774


Ce =

[
1 0 0 0
0 0 1 0

]
, Deu =

[
0 0
0 0

]

The control inputs have saturation amplitudes of 1 A, and the
output displacements are measured in metres. The authors of
[8] considered the tracking of two sinusoidal references

rx = 0.1 cos(.4πt)

ry = 0.1 sin(.4πt)

Thus the problem is for the pencil to draw a circle, com-
mencing from the origin in xy-coordinates. This reference
signal may be generated by the exosystem Σexo in (2) with

S =


0 1 0 0

−ω2 0 0 0
0 0 0 1
0 0 −ω2 0

 , ω(0) =


0.1
0
0
.1ω


L =

[
1 0 0 0
0 0 1 0

]
where ω = 0.4π. The authors of [8] used the CNF technique
to design separate SISO state feedback control laws for the
x and y subsystems. The results were shown in Figures 7
and 9 of that paper. The CNF controller was successfully
able to track both sinusoids, leading to a circular trajectory
being drawn on the XY -table. The authors noted that their
simulation results showed that their generalized CNF control
yielded better tracking performance than a PID controller.
However, the CNF trajectory did exhibit overshoot of approx-
imately 5% in the x-coordinate, and 15% in the y-coordinate.

We used the NOUS toolbox to design a linear state
feedback controller for the nominal system Σnom in (4). The
system has no invariant zeros, n = 4 states and m = p = 2
control inputs and outputs. Thus it satisfies (10) with l = 2,
and hence a successful search was anticipated. We sought
to obtain closed loop poles within the interval [−8,−10]T ,
in order to obtain a response time similar to those of the
linear component of the CNF control law, and hence also
use similar control input amplitudes. The search was indeed
successful, requiring only a few milliseconds of runtime. The
control law obtained is

F =

[
−9.1413 −1.7818 0 0

0 0 −12.9452 −2.2944

]
yielding closed-loop poles L =
{−8.5105, −8.6294, −8.7749, −9.9934}. Solving
(7)-(8) for Σ1 yields

Π = I4, Γ =

[
−0.1966 0.3516 0 0

0 0 −0.2331 0.4762

]
and finally

G =

[
8.9447 2.1334 0 0

0 0 12.7121 2.7706

]
Then applying the control law u in (5) to Σ1 yields system
outputs (x, y), reference signals (rx, ry), and tracking errors
(ex, ey) shown in Figure 2. We observe that, in contrast with
the CNF controller performance given in [8], neither the x
nor the y component overshoot their reference signals.

The control inputs (ux, uy) are shown in Figure 3. Both
control input amplitudes remain less than the saturation
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Fig. 2. System outputs, references and tracking errors for Σ1 using F .

constraint of 1 A, and lie within the range of −0.1 A to
0.3 A for most of the transient, similar to those shown in
Figure 7 of [8]. The settling times in both components are
of about 0.5 seconds, approximately equal to those in [8].

When the outputs are drawn in xy-coordinates, simulating
the trajectory of the pencil on the XY table, we obtain the
curves in Figure 4. We observe the trajectory of the pencil
asymptotically approaches the circle circumference without
ever going outside of it. This is in contrast with the trajectory
shown in Figure 9 of [8], which showed that under CNF
control, the pencil trajectory went outside the circle.

The state feedback controller of [8] was implemented
with a reduced order observer. In [15] it was shown that
the design method of [1] for tracking a constant step ref-
erence could be successfully implemented in conjunction
with full and reduced order observers. This was extended
to the tracking of time-varying references with dynamic
measurement feedback in [16]. Provided the initial observer
error is sufficiently small, the nonovershooting properties
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Fig. 3. Control inputs for Σ1 using F .
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Fig. 4. The drawn circle using F .

of full state feedback control are preserved. In the present
example, the initial states of the augmented system (namely
the plant and exogenous reference generators) are known
precisely. As the NOUS method uses a linear controller, by
the Separation Principle, we know that the outputs obtained
using an observer scheme are identical to those observed
when state feedback alone are used, since the observer
dynamics are zero. Consequently in the present simulation
we did not implement the state feedback law in conjunction
with an observer.

The example simulations give further insight into the
performance of the CNF technique implemented in [8]. In
that paper the authors compared their performance against a
PID controller and used the improved performance to justify
the use of their nonlinear technique. The present example
shows that superior transient performance can in fact be
obtained with a linear controller, when the design method of
[1] is used to obtain the gain matrix for the state feedback
law.
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V. CONCLUSION

We have revisited the design method for a linear state
feedback tracking controller given in [1] within the out-
put regulation framework to extend it to accommodate the
nonovershooting tracking of time-varying signals. The output
regulation framework can also be used for the asymptotic
rejection of known time-varying disturbances; further details
are provided in [16]. Examples were given to show that the
design method can offer superior transient performance to the
CNF method of [8]. To the best of the authors knowledge,
this paper presents the first linear control scheme for the
tracking of time-varying signals without overshoot.
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