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Abstract: This paper considers the problem of using inexact outpwt ttaestimate the values of unknown state-delays in a
general nonlinear time-delay system. We formulate thelprotas a nonlinear optimization problem in which the stagkxygs

are decision parameters and the cost function penalizesghted sum of the mean and variance of the least-squares erro
between actual and predicted system output. Our main relsolts that the gradient of the least-squares cost functiorbe
computed by solving an auxiliary time-advance system bac#tvin time. On this basis, the state-delay estimation prabl
can be solved efficiently using standard gradient-basedhizattion algorithms such as sequential quadratic progranrg. We
conclude the paper by testing this approach on a dynamic lnnbdecontinuously-stirred tank reactor with recycle loop.
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1 Introduction tice, as it is impossible to guarantee perfect precisionnwvhe
measuring the output of a real system.
In this paper, we address this limitation by developing a

applications, including purificgtion_processes [1], iatign new gradient-based optimization method for time-delay es-
channels [2], aerospace engineering [3], and ChromatOgraﬁmation that explicitly caters for uncertainties in thessy

phy processes [4]. Control techniques for such systema 01Etetem output data. We consider a general time-delay dynamic
depend heavny on ac.cura_te kpowledge of the .tlme-dglaysmodel consisting of a set of coupled delay-differentialaqu
Hence, time-delay estimation is one of the key issues in the[ions with state-delays (i.e., time-delays in the state-var

study of time-delay systems [5]. ables). These state-delays are unknown and must be “tuned”

The_ time-_delay estimation problem can be formulated asoy comparing the system output predicted by the model
an opfimization problem in which the time-delays are de- with the real system output. To allow for possible mea-

cision variables chosen to minimize a cost function that urement errors in the system output data, we view the out-

prtra]nallz?s dtze ri(:]eV|a)t(|onrirt;etnwteen ntgethrealrs()j/istteg OUtter'Eut data points as random variables, rather than fixed con-
(measured during experiments) a € predicted Syster, s, Thus, the actual and measured system output could

output (generated by t_he mgthematlcal_model). I:)Opu'differdueto measurementinaccuracies. With the outpiat dat
lar approaches for solving this problem include methods

C T . - . .. points as random variables, our state-delay estimatiob-pro
based on finite-dimensional approximations of the infinite-

di ional time-del del 16 intelli | lem is formulated as atochastic optimization problem in
imensional ime-detay mode [6], or swarm INEIgence al \ hich the cost function penalizes both the expectation and
gorithms such as particle swarm optimization [7, 8]. Re-

the variance of the least-squares error between actual and

cently_, anew gradlent—based o_pt|m|zat|z_3n apprpach, Whlcrbredicted system output. We develop a computational algo-
combines nonlinear programming techniques with novel al'rithm for solving this problem and then examine its perfor-

gorlthmsd f_or cfomputlng 9thilco_ls_';]_funct|on S ﬁrad'ent’ Was manceona dynamic model of a continuously-stirred tank re-
proposed in references [9-11]. This approach was ploneeregctor with recycle loop. The results show that our approach

n [11] for systems in which each _nonlmear term contallns Acan successfully determine optimal state-delay estimates
single delay, and then extended in [9] to general nonllnear[he presence of inexact output data

time-delay systems. In [10], this approach was applied to
a more difficult time-delay estimation problem in which the 2 Problem Statement
dynamic system contains both state- and input-delays, and
the input function is discontinuous.

The gradient-based optimization methods in [9-11] usu-
ally converge quickly to the optimal time-delay estimates,  ;(¢) = f(x(t),@(t — 11),...,2(t — 7)), t >0, (1)
even for highly nonlinear systems. However, these meth-
ods are based on the assumption that the output data used in z(t) = (), t <0, )
the cost function igxact (recall that the cost function penal- wherez(t) € R" is thestate vector; 7;, i = 1,...,m, are
izes the discrepancy between predicted and measured SySte(ﬁbstatedelays; andf : RO"1n 5 R™ andep : R — R™
output). Of course, this assumption is often violated ircpra 5 given continuously differentiable functions.

q _ L
This work was supported by the National Natural Science Hation The outputy(t) € R of system (1) (2) IS given by the

of China (International Young Scientists Research Fund0130208) and foIIowing equation:
the State Key Laboratory for Industrial Control TechnolaatyZhejiang
University, China (Open Research Project ICT1301). y(t) =g(x(t)), t>0, (3)

Time-delay systems arise in a multitude of real-world

Consider the following nonlinear system with state-
delays:




whereg : R™ — R? is a given continuously differentiable Problem P. Choose a candidate state-delay vector v € I' to
function. minimize the following cost function:

The state-delays;, i = 1,...,m, in equation (1) are un- _
known and need to be estimated using experimental data. Gly) =EB{J()} + aVar{J(v)},
Let a; andb; denote the lower and upper bounds of itte where E{-} denotes expectation, Var{-} denotes variance,
state-delay, respectively. Thene R™ is called acandi- and « > 0 isagiven weight.
plate state-delay vec_tor !f its components satisfy the follow- 3 An Equivalent Problem
ing bound constraints:

For simplicity, we writey(-) instead ofy(-|y). Then the

a; <7vi <b, i=1...,m. (4)  least-squares error functiok{~) can be written as follows:
p
LetI" denote the set of all such candidate state-delay vectors:. T Sl T SENT ok
J = t tr) — 2 tr

Obviously, the real state-delay vector= [, ...,7,,]" is ) ; {y( k) yte) =2097) y(t) +(@7) 9 }
an element of . » » »

For each candidate state-delay veetoe T, consider the — y(ti) Ty(ts) — 2 ) Ty(ts) + 95Tk
following parameterized system in which the components of ; ( (t) ;( ( ;(
~ are used as the state-delays in (1)-(2): Hence,

m(t>:f(m(t>am(t7’y1>aam(tiry’m>>a t>07 (5) P T P kT

E{J(v)} = y(tr) y(tx) — 2 E{yg"} yl(t
m(t) — ¢(t>; t<0. (6) { ( )} ]; ( k) ( k) ; { } ( k) (8)
p
Let «(-|y) denote the solution of (5)-(6) corresponding to T E{ (o) T ok
~ € I'. Furthermore, let ; (@) 97
y(thy) = g(=(thy), t=0. (7 and )

Our goal is to determine, the real state-delay vector, by Var{J(v)} = 4Var{ Z(Qk)Ty(tk)}
comparing the predicted system output from (5)-(7) with the k=1
actual system output measured during experiments. Intu- P T ko
itively, if the predicted outpug(-|) is close to the measured + Var Z(y )y (©)
system output, they will be a good approximation of . kzlp ,

Let {tx}?_, be a set of sample times, where 3 4C0v{ S5 Ty(t) Z(QI)TQI}

k=1 =1

0<ty <tg < o <tpoq < tp. )
where Coy\-, -} denotes covariance.

Furthermore, lef)* denote the actual system output at sam-  Note that

ple timet = t;. In references [9-11], we assumed tiét P
k = 1,...,p, can be measured exactly. However, this as- Var{ Z(@)k)Ty(tk)}
sumption is idealistic; due to system noise and measurement k=1
errors, the true system output will often differ from the mea P P
. . N _ ~k\T ~INT
sured system output. Thus, in this paper, we assumgthat = COV{ > @) Ty(te), > (@ y(tl)}
k = 1,...,p, are random vectors distributed according to k=1 =1
the multivariate normal distribution, where the corregpon - T T
ing mean vector (of dimensigry) and covariance matrix (of = Z Z Cov{(g") "y(ts), (9") " y(t)}
k=11=1

dimensiorpg x pq) are given. .
To measure estimation accuracy, we use the following T =kl

. ! = tr) E%'y(t;), 10

least-squares error function: > vt y(t) (10)

P whereZ! is aq x ¢ matrix whosg(i, j)th element is defined
NEE RN 3
T =Y [yltely) = 9% [y(tely) - 9*] by
k
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[Ek’l}ij = COV{gjf, ?jé}
y(tly) — 9% Furthermore,
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Our aim is to choosey € T' so that the expected value of

k=1 =1
J () is minimized (i.e., the predicted system output should p
be close to the actual system output “on average”). At the = Z ZCOV{ ) Ty(te), (,gl)T,gl}
same time, the variance of(«) should also be minimized k=1 1=1
to ensure that the optimal estimate fpiis robust with re- PP
spect to uncertainties in the output data. This motivates th = Z Zy(tk)TTk’llq, (11)

following dynamic optimization problem. k=1 1=1



wherel9 denotes a column vector of onesid andY*! is expected values and covariances of the output measurements

ag x g matrix whose(z, j)th element is defined by g%,k =1,...,p. Substituting (16) into (12) gives
Yr = Cov{pk, (44)°}. P2
[ ]z] { ( j) } Var{J } 4zzy k,ly(tl)
Substituting (10) and (11) into (9) gives k=1 lzlp
w +varf Z(ykf@k} (17)
Var{J(v)} =4 > y(tx) "EMy () k=1
k=11=1 12 P P
P P (12) SZZy wlo=kh19,
+Var{ Z(yk)Tyk} 4 D y(ty) Tk, iyt
k=1 k=11=1

Now, using (8) and (17), the cost function in Problem P can
Now, the (i, j)th element ofY*! can be evaluated as fol- b€ written as

lows: )
[T’“’l} = Cov{gF, (41)?} ;y y(ty) — 2 z_: E{g"} Ty(ts)

- E{yz (yg } - E{yf}E{(?jéf} (13) + zp: E{(,gk)Tgk} + 4ai iy(tk)—rak’ly(tl)

Sinceg andgé are jointly normal random variables, it fol- k=1 v k=1 l:pl
lows from Theorem 3.3.1in [12] that n aVar{ Z(,gk)'r,gk} —8a Z Z y(tk)T(lI,l o Ek,l)lq.
Cov{gF, 9t} k=1 k=1 1=1
NP A N i) Jj N/
Eg: 195} = E{gi'} + Var{ Aé.} [ g; — B }] Thus, since the third and fifth terms on the right-hand side of

this equation are independentf Problem P is equivalent
where H-|j%} denotes conditional expectation give. to the following optimization problem.
Thus, by the law of total expectation,

E{or (9%)°} = E{E{9F (4})%19}}}

Problem Q. Choose a candidate state-delay vector v € T’
to minimize the following cost function:

= E{(45)°E{91;} } >
E{(5)7}Covigt, 31} = > yltn) Ty(t) —QZE{yk}T (1)
= E{9/}E{(9))*} + ’ Var{j'} — k=1 o
 E{3}}E{(@)* Cov{ak, 31} + 4a;l_21y<tmak’ly<m
var{i/} | o
— 8« te) T (Wl oERH 19,
Using the identities E(gé-)Q} = Var{ggj,} + E{%}z and ;z;y( k) ( )

E{(9})*} = E{g}}® + 3E{g}}Var{j}}, this equation can
be simplified to obtain

E(F (@)} . SN -
N e (14) Problem Q is a dynamic optimization problem in which
= E{g; YE{(9))*} + 2E{g;}Cov{g}, §;}. the decision vectoty must be chosen to minimize the cost
I . . function H subject to the time-delay system (5)-(7) and the
Substituting (14) into (13) yields constraints (4). In principle, this problem can be solved us
k] _ koaly _ =k, ing the following gradient-based optimization strategy:
[T } 2E{y]}COV{yl 5} = 2R }[H LJ (13) . Choose an initial guesge T'.
Let ®! be ag x ¢ matrix defined as follows: . Computef] ().
. ComputéH (v)/0vi,i=1,...,m
E{g'} T . Use the gradientinformation computed in Step 3 to per-
E{g'}7 form an optimality test.
' = . g rows . If v is optimal, then stop. Otherwise, use the gradient
A'l - information computed in Step 3 to determine an appro-
E{g'} priate search direction.
6. Perform a line search along the search direction de-
termined in Step 5 to obtain a new state-delay vector
Ykl — ol o =kl (16) ~ eT.
7. Sety’ — ~ and return to Step 2.
whereo denotes the Hadamard (element-wise) product. This If the partial derivatives off can be computed success-
equation shows thar*! can be expressed in terms of the fully in Step 3, then Steps 4-6 can be implemented using

where y(-) = y(-|v) isthe output of system (5)-(7).
4 Computational Algorithm

A WNPF

(&)

Then it follows from (15) that



standard methods in numerical optimization [13]. However,Since=Z*! = (E/F)T, this equation can be rearranged to
sinceH is not an explicit function ofy, its partial derivatives  obtain
cannot be derived analytically using standard differéiatia

rules. We will instead develop a numerical algorithm for OH(vy) 9 SN )Tay(tk)
computing the partial derivatives éf. v ;0 (v i
Let -
p
0g(x(ty)) Ox(ty)
; =2 Hy)T . 22
F(thy) = f@(thy), @t = 1y, @l = m]) 2o e @
and
~ Now, letv” : [tp_1,t] — R", k =1,...,p, be aset of ar-
Of(tly) _ of(@(tly), 2t —n|y),. .., x(t = ym|7)) bitrary absolutely continuous functions. Multiplying egu
oxs ox(t — ) ’ tion (5) by v* and integrating over subintervals,_1, t;],
¢=0,...,m, k=1,...,p, gives

wherevy, = 0 (i.e., 0z denotes differentiation with respect oot o oot
to ). Furthermore, for each=1,.. ., p, define Z/t vo(t) &(t)dt = Z/ vi(t) f(t|y)dt.
k=1"tk—1 k=1

o*(v) = y(tely) — E{g"}

» Thus, using integration-by-parts,
+4a ) {EFy(tly) - (B o BN}
=1

Z {Uk(tk)Tﬂ?(tk) - Uk(tkl)-rm(tkl)}

Consider the following auxiliary “time-advance” system: k=1
p tr p tr
= k(T kT F
. " o+ )T S [ e ewa =Y [ oo fmae
At) =— Z {f(ngh)] At +7), t <t,, (18) ,; too1 ,; teo1

<=0

: : . . Rearranging this equation gives
with the intermediate jump conditions ging q 9

p—1

-
M) = 2+ 2| D ok ()T = ) (o)
k=1....p, +'Up(ﬁp)—r$(tp) —v'(0)"9(0)
and the terminal condition It kT kT £
= oF(t) ' x(t) + v (t) ' F(t]y) pdt.
>/ )

At) =0, t>t, (20)

wherey € T'is an arbitrary candidate state-delay vector. Let NOW, by differentiating this equation with respectg and
A(|7) denote the left-continuous solution of (18)-(20) cor- Noting thati () = x(¢|) aimost everywhere, we obtain
responding tey € I'. We now express the partial derivatives

of H with respect to the state-delays in terms\¢f|-). = {oh(t)T = o* ()T} ox(ty) For(t,)T 0x(tp)
; Z p
Theorem 1. For eachi = 1,...,m, the partial derivative k=1 i i
of H with respect to ; is given by B zp: /tk. QT aw(t)dt
tp £ N 1 8’)/1
R e O T A B 05 (t1) Da(t — 72)
! 0 g ) 9x(t — ¢
+ / R ()T dt
where ¢( ) ’ . ;; _ ( ) oxs 8%
t ) ime S ) p tr r
tly) =1 " _ * of(t
X () {f(tm, it >0 S [ o i (29
k=1"tk—1

Proof. For simplicity, we use the notatia(-) = =(-|) and
y(-) = y(-|v). DifferentiatingH with respect toy; gives Recall thaw” : [t;_1,t;] — R™, k = 1,...,p, were chosen
arbitrarily. Thus, we can define

i k=1 i k=1 0% AtE ), ift=ty_1,
? () = if t € (to1,t) (24)
Oy (tx) V(1) A1), ift € (th_1,tr),
Te=lk _
+8a;;y(m = oy A(ty),  ift=ty,
- 8azp: zp:(lq)T(\Ill o E’“=l)Tay(t"‘)_ whereX(:) = A(:|7) is the left-continuous solution of the
1 =1 i auxiliary time-advance system (18)-(20). Then by using



equations (19)-(22), equation (23) becomes where the sample times atg = %k k=1,...,20. The
roblem is to choose to minimize
OH() _ [ § 7 020 P ¢
— = A(t) a—dt
0

i i G(v) =E{J(v)} + aVar{J(7)}
m tP £ —
+ Z/ YO 8f(f|§7) Oz (t — 7o) dt subject to the delay-differential equations (25)-(26) el
=070 oz i initial conditions (27), wherex > 0 is a given weight. Here,
tp L OF(tly) we chooser = 1.
- /0 At) E X (t — ily)dt. We consider two scenarios for the inexact output data.
_ _ _ e« Scenario 1. The output valueg’ andy% are such that
Hence, by applying a change of variable in the second inte-
gral and using equations (6) and (20), Eg") = [E{gi}] _ {y1(ﬁkl2)
- COE{ge}]  [pe(l2)]”
H tp | 2
8—(7) — / )\(t)T aw_(t)dt
9% o O LT itk =
LNy OF (t + ly) dx(1) =gl
+ Z/ Alt+70)T e dt 0, otherwise
—Jo dxs dyi . .
° . _ wherey; (+|2) andy.(-|2) denote the output trajectories of
_ / g AT af(ﬂ‘Y)X(t )t (25)-(28) corresponding te = 2, I denotes the x 2
0 ox’ ! ’ identity matrix, and) denotes the x 2 zero matrix. Here,
Substituting (18) into this equation completes the proa@il the output measurements are mutually independent.

« Scenario 2. The output valueg? andg% are such that
Recall from our discussion at the beginning of this section

that computing the partial derivatives &f is the key step E(g*) = {E{ﬁ}} _ {yl(tk|3)}
to solving Problem Q. By virtue of Theorem 1, these partial E{g5} ya(tr]3)]’
derivatives can be obtained by solving the state system (5)- [k ok

(6) and the auxiliary system (18)-(20), and then substituti & Q’f} ;
x(-]v) andA(-|v) into equation (21). This procedure can be - ,
readily incorporated into standard gradient-based optimi 1k B } ,
tion methods such as sequential quadratic programming [13] 6 1

to solve Problem Q effectively. ¥ §§:|

. k k
5 Numerical Example S9 Sio
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Consider a continuously-stirred tank reactor in which the g% =0, I#k-1kk+1,

reactionA — B occurs. The reaction dynamics can be de-

) : i . > wherey; (-|3) andy:(-|3) denote the output trajectories of
scribed by the following delay-differential equations11

(25)-(28) corresponding to = 3, and<), j = 1,..., 10,

) 1 202 (1) are random numbers frof, 3]. Here, the output mea-
i1 (t) = 15(1 — 21(t)) exp |:x2(ﬁ) ¥ 20} surements are dependent; each output sample depends on
2 (t) £ ar(t —7), t€(0,10], (25) its rTeighbouring output §amples. o
2025 (1) To |mplgment t.he gradient-based optimization approaph
do(t) = 2(1 — 21(t)) exp {WQJJO] proposed in Section 4, we wrote a Fortran program that in-
2

vokes the optimization code NLPQLP [14]. This program
—Sao(t) +aa(t — 1), te€(0,10], (26) solves the state and auxiliary systems using the RungexKutt
method of order 6, with the delay/advance values calculated
using Hermite interpolation.
ri(t) =1, xo(t)=1, t<0, (27) For each scenario, we applied our Fortran program start-
ing from four initial guesses:y = 1, v = 4, v = 5,
wherez; is the (dimensionless) concentration 4f z- is andvy = 6. The program converged quickly from all ini-

the (dimensionless) temperature of the reactor, aiglan  tjg| guesses. The optimal state-delay estimates obtaieed a
unknown state-delay that needs to be identified. ~ = 2 for Scenario 1 andy = 3.12335 for Scenario 2.

We assume that both state variables can be measure
Thus, the state and output variables are the same:

with initial conditions

ds expected, the optimal estimates are close to the original
state-delays used to compute the artificial output data ¢
_ _ for Scenario 1 and = 3 for Scenario 2). In Scenario 1,
n® =), pat) =), t€[0,10.  (28) when the observation measurements are indepengent,
Let v denote the state-delay estimate. Furthermore, leis actually the optimal solution. In Scenario 2, when the ob-
y1(-|v) andyz(-|y) denote the output trajectories from sys- servation measurements are dependent random variatdes, th
tem (25)-(28) corresponding to the state-delay estimate optimal estimate differs slightly fromy = 3. For each sce-

Then the least-squares error function is nario, NLPQLP converged successfully in around 10-15 iter-
20 ations. The numerical convergence of the output trajezsori
- K is shown in Figures 1 and 2. In each figure, the dashed lines
J0) = Y { ) =352 + (el — 82}, S - '

Pt show the initial output trajectories and the solid blaclelin
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(b) Output trajectoryyz (t) = x2(t).

(a) Output trajectory (t) = x1(t).

ey =1

SRl

Ll==-=-7=5 <

= Pid

(b) Output trajectoryyz (t) = x2(t).

Fig. 1: Numerical convergence of the output trajectory in Fig. 2: Numerical convergence of the output trajectory in
Scenario 2.

Scenario 1.

shows the final (converged) trajectory. The red crosses show
the mean values of the observed data (which correspond to
7 = 21in Scenario 1 and = 3 in Scenario 2).
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