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Abstract: This paper considers the problem of using inexact output data to estimate the values of unknown state-delays in a
general nonlinear time-delay system. We formulate the problem as a nonlinear optimization problem in which the state-delays
are decision parameters and the cost function penalizes a weighted sum of the mean and variance of the least-squares error
between actual and predicted system output. Our main resultshows that the gradient of the least-squares cost function can be
computed by solving an auxiliary time-advance system backward in time. On this basis, the state-delay estimation problem
can be solved efficiently using standard gradient-based optimization algorithms such as sequential quadratic programming. We
conclude the paper by testing this approach on a dynamic model of a continuously-stirred tank reactor with recycle loop.
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1 Introduction

Time-delay systems arise in a multitude of real-world
applications, including purification processes [1], irrigation
channels [2], aerospace engineering [3], and chromatogra-
phy processes [4]. Control techniques for such systems often
depend heavily on accurate knowledge of the time-delays.
Hence, time-delay estimation is one of the key issues in the
study of time-delay systems [5].

The time-delay estimation problem can be formulated as
an optimization problem in which the time-delays are de-
cision variables chosen to minimize a cost function that
penalizes the deviation between the real system output
(measured during experiments) and the predicted system
output (generated by the mathematical model). Popu-
lar approaches for solving this problem include methods
based on finite-dimensional approximations of the infinite-
dimensional time-delay model [6], or swarm intelligence al-
gorithms such as particle swarm optimization [7, 8]. Re-
cently, a new gradient-based optimization approach, which
combines nonlinear programming techniques with novel al-
gorithms for computing the cost function’s gradient, was
proposed in references [9–11]. This approach was pioneered
in [11] for systems in which each nonlinear term contains a
single delay, and then extended in [9] to general nonlinear
time-delay systems. In [10], this approach was applied to
a more difficult time-delay estimation problem in which the
dynamic system contains both state- and input-delays, and
the input function is discontinuous.

The gradient-based optimization methods in [9–11] usu-
ally converge quickly to the optimal time-delay estimates,
even for highly nonlinear systems. However, these meth-
ods are based on the assumption that the output data used in
the cost function isexact (recall that the cost function penal-
izes the discrepancy between predicted and measured system
output). Of course, this assumption is often violated in prac-
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tice, as it is impossible to guarantee perfect precision when
measuring the output of a real system.

In this paper, we address this limitation by developing a
new gradient-based optimization method for time-delay es-
timation that explicitly caters for uncertainties in the sys-
tem output data. We consider a general time-delay dynamic
model consisting of a set of coupled delay-differential equa-
tions with state-delays (i.e., time-delays in the state vari-
ables). These state-delays are unknown and must be “tuned”
by comparing the system output predicted by the model
with the real system output. To allow for possible mea-
surement errors in the system output data, we view the out-
put data points as random variables, rather than fixed con-
stants. Thus, the actual and measured system output could
differ due to measurement inaccuracies. With the output data
points as random variables, our state-delay estimation prob-
lem is formulated as astochastic optimization problem in
which the cost function penalizes both the expectation and
the variance of the least-squares error between actual and
predicted system output. We develop a computational algo-
rithm for solving this problem and then examine its perfor-
mance on a dynamic model of a continuously-stirred tank re-
actor with recycle loop. The results show that our approach
can successfully determine optimal state-delay estimatesin
the presence of inexact output data.

2 Problem Statement

Consider the following nonlinear system withm state-
delays:

ẋ(t) = f(x(t),x(t− τ1), . . . ,x(t− τm)), t > 0, (1)

x(t) = φ(t), t ≤ 0, (2)

wherex(t) ∈ R
n is thestate vector; τi, i = 1, . . . ,m, are

thestate-delays; andf : R(m+1)n → R
n andφ : R → R

n

are given continuously differentiable functions.
The outputy(t) ∈ R

q of system (1)-(2) is given by the
following equation:

y(t) = g(x(t)), t ≥ 0, (3)



whereg : Rn → R
q is a given continuously differentiable

function.
The state-delaysτi, i = 1, . . . ,m, in equation (1) are un-

known and need to be estimated using experimental data.
Let ai andbi denote the lower and upper bounds of theith
state-delay, respectively. Thenγ ∈ R

m is called acandi-
date state-delay vector if its components satisfy the follow-
ing bound constraints:

ai ≤ γi ≤ bi, i = 1, . . . ,m. (4)

LetΓ denote the set of all such candidate state-delay vectors.
Obviously, the real state-delay vectorτ = [τ1, . . . , τm]⊤ is
an element ofΓ.

For each candidate state-delay vectorγ ∈ Γ, consider the
following parameterized system in which the components of
γ are used as the state-delays in (1)-(2):

ẋ(t) = f(x(t),x(t− γ1), . . . ,x(t− γm)), t > 0, (5)

x(t) = φ(t), t ≤ 0. (6)

Let x(·|γ) denote the solution of (5)-(6) corresponding to
γ ∈ Γ. Furthermore, let

y(t|γ) = g(x(t|γ)), t ≥ 0. (7)

Our goal is to determineτ , the real state-delay vector, by
comparing the predicted system output from (5)-(7) with the
actual system output measured during experiments. Intu-
itively, if the predicted outputy(·|γ) is close to the measured
system output, thenγ will be a good approximation ofτ .

Let {tk}
p
k=1 be a set of sample times, where

0 < t1 < t2 < · · · < tp−1 < tp.

Furthermore, let̂yk denote the actual system output at sam-
ple timet = tk. In references [9–11], we assumed thatŷk,
k = 1, . . . , p, can be measured exactly. However, this as-
sumption is idealistic; due to system noise and measurement
errors, the true system output will often differ from the mea-
sured system output. Thus, in this paper, we assume thatŷk,
k = 1, . . . , p, are random vectors distributed according to
the multivariate normal distribution, where the correspond-
ing mean vector (of dimensionpq) and covariance matrix (of
dimensionpq × pq) are given.

To measure estimation accuracy, we use the following
least-squares error function:

J(γ) =

p
∑

k=1

[

y(tk|γ) − ŷk
]⊤[

y(tk|γ)− ŷk
]

=

p
∑

k=1

∥

∥y(tk|γ)− ŷk
∥

∥

2
.

Our aim is to chooseγ ∈ Γ so that the expected value of
J(γ) is minimized (i.e., the predicted system output should
be close to the actual system output “on average”). At the
same time, the variance ofJ(γ) should also be minimized
to ensure that the optimal estimate forγ is robust with re-
spect to uncertainties in the output data. This motivates the
following dynamic optimization problem.

Problem P. Choose a candidate state-delay vector γ ∈ Γ to
minimize the following cost function:

G(γ) = E{J(γ)} + αVar{J(γ)},

where E{·} denotes expectation, Var{·} denotes variance,
and α ≥ 0 is a given weight.

3 An Equivalent Problem

For simplicity, we writey(·) instead ofy(·|γ). Then the
least-squares error functionJ(γ) can be written as follows:

J(γ) =

p
∑

k=1

{

y(tk)
⊤y(tk)− 2(ŷk)⊤y(tk) + (ŷk)⊤ŷk

}

=

p
∑

k=1

y(tk)
⊤y(tk)− 2

p
∑

k=1

(ŷk)⊤y(tk) +

p
∑

k=1

(ŷk)⊤ŷk.

Hence,

E{J(γ)} =

p
∑

k=1

y(tk)
⊤y(tk)− 2

p
∑

k=1

E{ŷk}⊤y(tk)

+

p
∑

k=1

E{(ŷk)⊤ŷk}

(8)

and

Var{J(γ)} = 4Var

{ p
∑

k=1

(ŷk)⊤y(tk)

}

+ Var

{ p
∑

k=1

(ŷk)⊤ŷk

}

− 4Cov

{ p
∑

k=1

(ŷk)⊤y(tk),

p
∑

l=1

(ŷl)⊤ŷl

}

,

(9)

where Cov{·, ·} denotes covariance.
Note that

Var

{ p
∑

k=1

(ŷk)⊤y(tk)

}

= Cov

{ p
∑

k=1

(ŷk)⊤y(tk),

p
∑

l=1

(ŷl)⊤y(tl)

}

=

p
∑

k=1

p
∑

l=1

Cov
{

(ŷk)⊤y(tk), (ŷ
l)⊤y(tl)

}

=

p
∑

k=1

p
∑

l=1

y(tk)
⊤
Ξ

k,ly(tl), (10)

whereΞk,l is aq×q matrix whose(i, j)th element is defined
by

[

Ξ
k,l
]

ij
= Cov{ŷki , ŷ

l
j}.

Furthermore,

Cov

{ p
∑

k=1

(ŷk)⊤y(tk),

p
∑

l=1

(ŷl)⊤ŷl

}

=

p
∑

k=1

p
∑

l=1

Cov
{

(ŷk)⊤y(tk), (ŷ
l)⊤ŷl

}

=

p
∑

k=1

p
∑

l=1

y(tk)
⊤
Υ

k,l
1
q, (11)



where1q denotes a column vector of ones inRq andΥk,l is
aq × q matrix whose(i, j)th element is defined by

[

Υ
k,l
]

ij
= Cov{ŷki , (ŷ

l
j)

2}.

Substituting (10) and (11) into (9) gives

Var{J(γ)} = 4

p
∑

k=1

p
∑

l=1

y(tk)
⊤
Ξ

k,ly(tl)

+ Var

{ p
∑

k=1

(ŷk)⊤ŷk

}

− 4

p
∑

k=1

p
∑

l=1

y(tk)
⊤
Υ

k,l
1
q.

(12)

Now, the(i, j)th element ofΥk,l can be evaluated as fol-
lows:

[

Υ
k,l
]

ij
= Cov{ŷki , (ŷ

l
j)

2}

= E{ŷki (ŷ
l
j)

2} − E{ŷki }E{(ŷlj)
2}. (13)

Sinceŷki andŷlj are jointly normal random variables, it fol-
lows from Theorem 3.3.1 in [12] that

E{ŷki |ŷ
l
j} = E{ŷki }+

Cov{ŷki , ŷ
l
j}

Var{ŷlj}

[

ŷlj − E{ŷlj}
]

,

where E{·|ŷlj} denotes conditional expectation given̂ylj .
Thus, by the law of total expectation,

E{ŷki (ŷ
l
j)

2} = E
{

E{ŷki (ŷ
l
j)

2|ŷlj}
}

= E
{

(ŷlj)
2E{ŷki |ŷ

l
j}
}

= E{ŷki }E{(ŷlj)
2}+

E{(ŷlj)
3}Cov{ŷki , ŷ

l
j}

Var{ŷlj}

−
E{ŷlj}E{(ŷlj)

2}Cov{ŷki , ŷ
l
j}

Var{ŷlj}
.

Using the identities E{(ŷlj)
2} = Var{ŷlj} + E{ŷlj}

2 and
E{(ŷlj)

3} = E{ŷlj}
3 + 3E{ŷlj}Var{ŷlj}, this equation can

be simplified to obtain

E{ŷki (ŷ
l
j)

2}

= E{ŷki }E{(ŷlj)
2}+ 2E{ŷlj}Cov{ŷki , ŷ

l
j}.

(14)

Substituting (14) into (13) yields

[

Υ
k,l
]

ij
= 2E{ŷlj}Cov{ŷki , ŷ

l
j} = 2E{ŷlj}

[

Ξ
k,l
]

ij
. (15)

LetΨl be aq × q matrix defined as follows:

Ψ
l =











E{ŷl}⊤

E{ŷl}⊤

...
E{ŷl}⊤





























q rows

Then it follows from (15) that

Υ
k,l = 2Ψl ◦Ξk,l, (16)

where◦ denotes the Hadamard (element-wise) product. This
equation shows thatΥk,l can be expressed in terms of the

expected values and covariances of the output measurements
ŷk, k = 1, . . . , p. Substituting (16) into (12) gives

Var{J(γ)} = 4

p
∑

k=1

p
∑

l=1

y(tk)
⊤
Ξ

k,ly(tl)

+ Var

{ p
∑

k=1

(ŷk)⊤ŷk

}

− 8

p
∑

k=1

p
∑

l=1

y(tk)
⊤(Ψl ◦Ξk,l)1q.

(17)

Now, using (8) and (17), the cost function in Problem P can
be written as

G(γ) =

p
∑

k=1

y(tk)
⊤y(tk)− 2

p
∑

k=1

E{ŷk}⊤y(tk)

+

p
∑

k=1

E{(ŷk)⊤ŷk}+ 4α

p
∑

k=1

p
∑

l=1

y(tk)
⊤
Ξ

k,ly(tl)

+ αVar

{ p
∑

k=1

(ŷk)⊤ŷk

}

− 8α

p
∑

k=1

p
∑

l=1

y(tk)
⊤(Ψl ◦Ξk,l)1q.

Thus, since the third and fifth terms on the right-hand side of
this equation are independent ofγ, Problem P is equivalent
to the following optimization problem.

Problem Q. Choose a candidate state-delay vector γ ∈ Γ
to minimize the following cost function:

H(γ) =

p
∑

k=1

y(tk)
⊤y(tk)− 2

p
∑

k=1

E{ŷk}⊤y(tk)

+ 4α

p
∑

k=1

p
∑

l=1

y(tk)
⊤
Ξ

k,ly(tl)

− 8α

p
∑

k=1

p
∑

l=1

y(tk)
⊤(Ψl ◦Ξk,l)1q,

where y(·) = y(·|γ) is the output of system (5)-(7).

4 Computational Algorithm

Problem Q is a dynamic optimization problem in which
the decision vectorγ must be chosen to minimize the cost
functionH subject to the time-delay system (5)-(7) and the
constraints (4). In principle, this problem can be solved us-
ing the following gradient-based optimization strategy:

1. Choose an initial guessγ ∈ Γ.
2. ComputeH(γ).
3. Compute∂H(γ)/∂γi, i = 1, . . . ,m.
4. Use the gradient information computed in Step 3 to per-

form an optimality test.
5. If γ is optimal, then stop. Otherwise, use the gradient

information computed in Step 3 to determine an appro-
priate search direction.

6. Perform a line search along the search direction de-
termined in Step 5 to obtain a new state-delay vector
γ′ ∈ Γ.

7. Setγ′ → γ and return to Step 2.
If the partial derivatives ofH can be computed success-

fully in Step 3, then Steps 4-6 can be implemented using



standard methods in numerical optimization [13]. However,
sinceH is not an explicit function ofγ, its partial derivatives
cannot be derived analytically using standard differentiation
rules. We will instead develop a numerical algorithm for
computing the partial derivatives ofH .

Let

f̄ (t|γ) = f(x(t|γ),x(t − γ1|γ), . . . ,x(t− γm|γ))

and

∂f̄(t|γ)

∂x̃ς
=

∂f(x(t|γ),x(t− γ1|γ), . . . ,x(t− γm|γ))

∂x(t− γς)
,

ς = 0, . . . ,m,

whereγ0 = 0 (i.e.,∂x̃0 denotes differentiation with respect
tox). Furthermore, for eachk = 1, . . . , p, define

σk(γ) = y(tk|γ)− E{ŷk}

+ 4α

p
∑

l=1

{

Ξ
k,ly(tl|γ)− (Ψl ◦Ξk,l)1q

}

.

Consider the following auxiliary “time-advance” system:

λ̇(t) = −
m
∑

ς=0

[

∂f̄(t+ γς |γ)

∂x̃ς

]⊤

λ(t+ γς), t ≤ tp, (18)

with the intermediate jump conditions

λ(t−k ) = λ(t+k ) + 2

[

∂g(x(tk|γ))

∂x

]⊤

σk(γ),

k = 1, . . . , p,

(19)

and the terminal condition

λ(t) = 0, t > tp, (20)

whereγ ∈ Γ is an arbitrary candidate state-delay vector. Let
λ(·|γ) denote the left-continuous solution of (18)-(20) cor-
responding toγ ∈ Γ. We now express the partial derivatives
of H with respect to the state-delays in terms ofλ(·|γ).

Theorem 1. For each i = 1, . . . ,m, the partial derivative
of H with respect to γi is given by

∂H(γ)

∂γi
= −

∫ tp

0

λ(t|γ)⊤
∂f̄(t|γ)

∂x̃i
χ(t− γi|γ)dt, (21)

where

χ(t|γ) =

{

φ̇(t), if t ≤ 0,

f̄(t|γ), if t > 0.

Proof. For simplicity, we use the notationx(·) = x(·|γ) and
y(·) = y(·|γ). DifferentiatingH with respect toγi gives

∂H(γ)

∂γi
= 2

p
∑

k=1

y(tk)
⊤
∂y(tk)

∂γi
− 2

p
∑

k=1

E{ŷk}⊤
∂y(tk)

∂γi

+ 8α

p
∑

k=1

p
∑

l=1

y(tl)
⊤
Ξ

l,k ∂y(tk)

∂γi

− 8α

p
∑

k=1

p
∑

l=1

(1q)⊤(Ψl ◦Ξk,l)⊤
∂y(tk)

∂γi
.

SinceΞk,l = (Ξl,k)⊤, this equation can be rearranged to
obtain

∂H(γ)

∂γi
= 2

p
∑

k=1

σk(γ)⊤
∂y(tk)

∂γi

= 2

p
∑

k=1

σk(γ)⊤
∂g(x(tk))

∂x

∂x(tk)

∂γi
. (22)

Now, letvk : [tk−1, tk] → R
n, k = 1, . . . , p, be a set of ar-

bitrary absolutely continuous functions. Multiplying equa-
tion (5) by vk and integrating over subintervals[tk−1, tk],
k = 1, . . . , p, gives

p
∑

k=1

∫ tk

tk−1

vk(t)⊤ẋ(t)dt =

p
∑

k=1

∫ tk

tk−1

vk(t)⊤f̄(t|γ)dt.

Thus, using integration-by-parts,

p
∑

k=1

{

vk(tk)
⊤x(tk)− vk(tk−1)

⊤x(tk−1)

}

−

p
∑

k=1

∫ tk

tk−1

v̇k(t)⊤x(t)dt =

p
∑

k=1

∫ tk

tk−1

vk(t)⊤f̄(t|γ)dt.

Rearranging this equation gives

p−1
∑

k=1

{

vk(tk)
⊤ − vk+1(tk)

⊤
}

x(tk)

+ vp(tp)
⊤x(tp)− v1(0)⊤φ(0)

=

p
∑

k=1

∫ tk

tk−1

{

v̇k(t)⊤x(t) + vk(t)⊤f̄(t|γ)

}

dt.

Now, by differentiating this equation with respect toγi, and
noting thatẋ(t) = χ(t|γ) almost everywhere, we obtain

p−1
∑

k=1

{

vk(tk)
⊤ − vk+1(tk)

⊤
}∂x(tk)

∂γi
+ vp(tp)

⊤
∂x(tp)

∂γi

=

p
∑

k=1

∫ tk

tk−1

v̇k(t)⊤
∂x(t)

∂γi
dt

+

m
∑

ς=0

p
∑

k=1

∫ tk

tk−1

vk(t)⊤
∂f̄(t|γ)

∂x̃ς

∂x(t− γς)

∂γi
dt

−

p
∑

k=1

∫ tk

tk−1

vk(t)⊤
∂f̄(t|γ)

∂x̃i
χ(t− γi|γ)dt. (23)

Recall thatvk : [tk−1, tk] → R
n, k = 1, . . . , p, were chosen

arbitrarily. Thus, we can define

vk(t) =











λ(t+k−1), if t = tk−1,

λ(t), if t ∈ (tk−1, tk),

λ(t−k ), if t = tk,

(24)

whereλ(·) = λ(·|γ) is the left-continuous solution of the
auxiliary time-advance system (18)-(20). Then by using



equations (19)-(22), equation (23) becomes

∂H(γ)

∂γi
=

∫ tp

0

λ̇(t)⊤
∂x(t)

∂γi
dt

+

m
∑

ς=0

∫ tp

0

λ(t)⊤
∂f̄(t|γ)

∂x̃ς

∂x(t− γς)

∂γi
dt

−

∫ tp

0

λ(t)⊤
∂f̄(t|γ)

∂x̃i
χ(t− γi|γ)dt.

Hence, by applying a change of variable in the second inte-
gral and using equations (6) and (20),

∂H(γ)

∂γi
=

∫ tp

0

λ̇(t)⊤
∂x(t)

∂γi
dt

+
m
∑

ς=0

∫ tp

0

λ(t+ γς)
⊤
∂f̄(t+ γς |γ)

∂x̃ς

∂x(t)

∂γi
dt

−

∫ tp

0

λ(t)⊤
∂f̄(t|γ)

∂x̃i
χ(t− γi|γ)dt.

Substituting (18) into this equation completes the proof.

Recall from our discussion at the beginning of this section
that computing the partial derivatives ofH is the key step
to solving Problem Q. By virtue of Theorem 1, these partial
derivatives can be obtained by solving the state system (5)-
(6) and the auxiliary system (18)-(20), and then substituting
x(·|γ) andλ(·|γ) into equation (21). This procedure can be
readily incorporated into standard gradient-based optimiza-
tion methods such as sequential quadratic programming [13]
to solve Problem Q effectively.

5 Numerical Example

Consider a continuously-stirred tank reactor in which the
reactionA → B occurs. The reaction dynamics can be de-
scribed by the following delay-differential equations [11]:

ẋ1(t) =
1
10 (1− x1(t)) exp

[

20x2(t)

x2(t) + 20

]

− 2x1(t) + x1(t− τ), t ∈ (0, 10], (25)

ẋ2(t) =
4
5 (1− x1(t)) exp

[

20x2(t)

x2(t) + 20

]

− 5
2x2(t) + x2(t− τ), t ∈ (0, 10], (26)

with initial conditions

x1(t) = 1, x2(t) = 1, t ≤ 0, (27)

wherex1 is the (dimensionless) concentration ofA, x2 is
the (dimensionless) temperature of the reactor, andτ is an
unknown state-delay that needs to be identified.

We assume that both state variables can be measured.
Thus, the state and output variables are the same:

y1(t) = x1(t), y2(t) = x2(t), t ∈ [0, 10]. (28)

Let γ denote the state-delay estimate. Furthermore, let
y1(·|γ) andy2(·|γ) denote the output trajectories from sys-
tem (25)-(28) corresponding to the state-delay estimateγ.
Then the least-squares error function is

J(γ) =
20
∑

k=1

{

(y1(tk|γ)− ŷk1 )
2 + (y2(tk|γ)− ŷk2 )

2
}

,

where the sample times aretk = 1
2k, k = 1, . . . , 20. The

problem is to chooseγ to minimize

G(γ) = E{J(γ)}+ αVar{J(γ)}

subject to the delay-differential equations (25)-(26) andthe
initial conditions (27), whereα > 0 is a given weight. Here,
we chooseα = 1.

We consider two scenarios for the inexact output data.
• Scenario 1. The output valueŝyk1 andŷk2 are such that

E{ŷk} =

[

E{ŷk1}
E{ŷk2}

]

=

[

y1(tk|2)
y2(tk|2)

]

,

Ξ
k,l =

{

1
10I, if k = l,

0, otherwise,

wherey1(·|2) andy2(·|2) denote the output trajectories of
(25)-(28) corresponding toτ = 2, I denotes the2 × 2
identity matrix, and0 denotes the2×2 zero matrix. Here,
the output measurements are mutually independent.

• Scenario 2. The output valueŝyk1 andŷk2 are such that

E{ŷk} =

[

E{ŷk1}
E{ŷk2}

]

=

[

y1(tk|3)
y2(tk|3)

]

,

Ξ
k,k−1 = 1

10

[

ςk1 ςk2
ςk3 ςk4

]

,

Ξ
k,k = 1

10

[

1 ςk5
ςk6 1

]

,

Ξ
k,k+1 = 1

10

[

ςk7 ςk8
ςk9 ςk10

]

,

Ξ
k,l = 0, l 6= k − 1, k, k + 1,

wherey1(·|3) andy2(·|3) denote the output trajectories of
(25)-(28) corresponding toτ = 3, andςkj , j = 1, . . . , 10,
are random numbers from[0, 45 ]. Here, the output mea-
surements are dependent; each output sample depends on
its neighbouring output samples.
To implement the gradient-based optimization approach

proposed in Section 4, we wrote a Fortran program that in-
vokes the optimization code NLPQLP [14]. This program
solves the state and auxiliary systems using the Runge-Kutta
method of order 6, with the delay/advance values calculated
using Hermite interpolation.

For each scenario, we applied our Fortran program start-
ing from four initial guesses:γ = 1, γ = 4, γ = 5,
andγ = 6. The program converged quickly from all ini-
tial guesses. The optimal state-delay estimates obtained are:
γ = 2 for Scenario 1 andγ = 3.12335 for Scenario 2.
As expected, the optimal estimates are close to the original
state-delays used to compute the artificial output data (τ = 2
for Scenario 1 andτ = 3 for Scenario 2). In Scenario 1,
when the observation measurements are independent,γ = 2
is actually the optimal solution. In Scenario 2, when the ob-
servation measurements are dependent random variables, the
optimal estimate differs slightly fromγ = 3. For each sce-
nario, NLPQLP converged successfully in around 10-15 iter-
ations. The numerical convergence of the output trajectories
is shown in Figures 1 and 2. In each figure, the dashed lines
show the initial output trajectories and the solid black line
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(a) Output trajectoryy1(t) = x1(t).
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(b) Output trajectoryy2(t) = x2(t).

Fig. 1: Numerical convergence of the output trajectory in
Scenario 1.

shows the final (converged) trajectory. The red crosses show
the mean values of the observed data (which correspond to
τ = 2 in Scenario 1 andτ = 3 in Scenario 2).
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