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Abstract : The resilient modulus ( RM) of hydrated cement treated crushed rock base ( HCTCRB) af­

fected by amount of hydration periods , compaction and dryback processes was presented using repeated 

load triaxial tests. The related trends of RM corresponding to the different hydration periods still cannot 

be concluded. Instead, It is found that the moisture content plays more major influence on the RM per­

formance. Higher additional water during compaction of HCTCRB , even at its optimum moisture con­

tent and induced higher dry density, led to the inferior RM performance compared to the sample with­

out water addition. The RM of damper samples can be improved through dryback process and superior 

to that of the sample without water addition at the same moisture content. However, the samples with­

out water addition during compaction deliver the comparable RM values even its dry density is lower 

than the other two types. These results indicate the significant influence of moisture content to the per­

formances of HCTCRB with regardless of the dry density. Finally , the experimental results of HCT­

CRB and parent material are evaluated with the K-6 model and the model recommended by Austroads. 

These two models provide the excellent fit of the tested results with high degree of determination. 

Key words: base course; hydrated cement treated crushed rock base; cement modified material ; re­

peated load triaxial test; resilient modulus ; pavement 

1 Introduction 

The flexible pavements in Western Australia ( W A ) 

have a surface of approximately 30 mm in thickness. 

Thus , traffic loads on the road surface result in high 

stress levels on underlying layer. Crushed rock base 

( CRB) was the traditional base course material used 

in W A. CRB is an unbound granular material that has 
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the insufficient capability to resist the increasing traf­

fic loads and volumes. Moreover, CRB is susceptible 

to moisture which accelerates pavement deterioration. 

High quality aggregates are therefore required for the 

base course layer. These requirements led to the im­

provement of base course material in W A. 

Cement is usually used to improve the engineering 

properties of the unbound granular materials such as 
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crushed rock, aggregates and soils. Cement treated 
base ( CTB) is a mixture of the original base course 

material, cement and water nsed for pavement struc­

ture. Cement content for CTB varies from 3% to 8% 

by mass of the aggregate which depends on the re­
quired strength (Garber et al. 2011 ) . CTB mixture 

can be placed and compacted in the field immediately 

after mixing and hauling to the site. The strength of 

the base course is greatly improved using CTB. For 

example, a typical modulus of crushed rock base can 

be developed from 500 MPa to 5000 MPa by blending 
it with 4% -5% cement to construct CTB ( Austroads 

2010). 

The cement stabilisation technique has been em­

ployed in W A by blending small amounts of cement 

with standard CRB. However, it is believed that even 

1 % of cement can lead the base course material too 

stiff and prone to fatigue cracking. Thus, the ap­

proach to prevent the bound characteristics of the base 

course layer was investigated. The investigation out­

come was unique base course material used in W A 

called hydrated cement treated crushed rock base 

( HCTCRB) ( Butkus 2004; Harris and Lockwood 

2009; Rehman 2012). HCTCRB is made by mixing 

2% of general purpose Portland cement with standard 

CRB at the optimum amount of water obtained by 
main roads Western Australia ( MRW A) test method 

( MRW A 2007). Unlike the common CTB, the mix 

is stored and cured to have the specific hydration peri­

od. And then it is retreated by putting the hydrated 

mix to the mixer to break bonds generated during the 

hydration reaction. Finally, HCTCRB is transported 

and constructed in the field. The retreated process 

makes HCTCRB different from the conventional 

CTB. HCTCRB is expected to provide higher strength 

and lower moisture sensitivity than CRB while prevent 

the base layer becoming too stiff. 

Over the years, HCTCRB has been commonly used 

as a base course material in W A, with a relatively 

high modulus value, about800-1000 MPa, in particu­
lar for heavy traffic pavements. HCTCRB was devel­

oped during the empirical design period and has not 

yet been characterised following the pavement mecha­

nistic approach. Therefore, uncertainties during man­

ufacturing and construction procedures are still taking 

place. This uncertainty has contributed to the early 

damage of some new highways and roads. Some of 

highways and roads in W A are exhibiting extensive 

surface damage as a result of increasing traffic vol­

ume. However, explanations for the damage occur­

ring under present conditions are difficult to determine 

and assess. Accordingly , an understanding of the ma­

terial characteristics, in accordance with the pavement 

mechanistic approach, is strongly advised to maximise 

its use. 

This paper aims to present the resilient modulus 
( RM) of HCTCRB affected by amount of hydration 

periods , compaction processes and dryback using the 

repeated load triaxial tests. The study is designed to 

further standardise HCTCRB ' s manufacture and con­

struction , and overcome doubts regarding its use. 

Some basic properties of base course materials used 

in W A were previously explored by Jitsangiam et al. 

( 2013). Particle size distributions of CRB and HCT­

CRB at different hydration periods were examined at 
before and after compaction. The particle size distri­

butions of CRB at before and after compaction con­

formed to the MRW A specification ( MRW A 2008) . 

It was found that hydration periods insignificantly dif­

ferentiate the HCTCRB gradation characteristics. The 

gradation of HCTCRB for all hydration periods which 
varied from 3 to 45 days failed to meet the specifica­

tion either before or after compaction. The fine con­

tents (smaller than 4. 75 mm) of HCTCRB samples 

before compaction were below the lower limit of the 

specification. After compaction, HCTCRB grains 

were broken resulting in smaller grain size. The gra­

dation curves shifted up , and the fine contents were 

closer to the lower limit while the coarse grain lines 

lay just above the upper limit. The shear strength pa­

rameters of CRB and HCTCRB were investigated 

using scanning electron microscopy and static triaxial 

test. Observation of the scanning electron microscope 

pictures of CRB and HCTCRB conformed well to the 

static triaxial tests which revealed that CRB showed 

higher internal friction angles but less cohesion than 

HCTCRB. From static triaxial tests, the cohesion and 

angle of internal friction parameters of CRB were 

38 kPa and 59°, for HCTCRB these two parameters 

were 169 kPa and 46°, respectively. 
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2 Laboratory works 

2.1 Materials and basic characteriS:ics 

The crushed rock samples were collected from a local 

Gosnells quarry to produce HCTCRB. The basic 

properties of CRB were checked in accordance with 

MRWA specifications ( MRWA 2008). The cement 

used in this study was general purpose Portland ce­

ment, conforming to the standard AS 3972-1997 

( Standards Australia 1997 ) . 

The moisture-dry density relationships of materials 

were evaluated using modified compaction method 

through the standard test WA 133.1 (MRWA 2007). 

The compaction curves for CRB and CRB-cement mix 

were conducted initially to determine the appropriated 

water for HCTCRB preparation. In this study, HCT­

CRB samples were prepared based on the CRB-cement 

compaction test result of 2% -cement and 6. 26% -water. 

CRB and cement were blended and kept in sealed plas­

tic bags for 14, 28 , 45 and 60 days hydration periods. 

Each mix was retreated to finish manufacturing process 

of HCTCRB once the individual hydration time was 

due. The modified compaction tests were then per­

formed for all these sorts of HCTCRB. All compaction 

curves, the OMC and MDD of abovementioned mate­

rials are presented in Fig. 1 and Tab. 1. 
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Fig. 1 Modified compaction curves for test materials 

There were slight increases in OMC but minor de­

creases in MDD for longer hydration periods amongst 

these four types of HCTCRB. Compared to the CRB, 

the OMC of HCTCRB increased dramatically by 

25.9% to 34.5%, while the corresponding MDD de­

creased by 3. 1% to 3. 7%. Reduction of MDD in 
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HCTCRB samples is caused by its poorer gradation 

compared to that of CRB. The gradation curves of 

HCTCRB shifted rightward to that of CRB and did 

not comply with the specification limit. This occur­

rence is due to lower fme content as a result of cement 

and fme particles of CRB forming the larger grains 

( Jitsangaim et al. 2013). 

Tab. 1 OMC and MDD of test materials 

Material OMC(%) MDD (t/m3 ) 

CRB 5.80 2.301 

CRB with 2% cement 6.26 2.327 

HCTCRB 14 d 7.30 2.230 

HCTCRB 28 d 7.34 2.217 

HCTCRB 45 d 7.62 2.216 

HCTCRB 60 d 7.80 2.217 

2.2 Specimen preparation 

All tested specimens were prepared according to mod­

ified compaction method in mould size of 200 mm in 

height and 100 mm in diameter. Material for each 

specimen was divided and compacted in evenly eight 

layers. Each layer was subjected to 25 blows of 

4. 9 kg hammer and 450 mm drop height which pro­

vided 21. 6 J per blow. The top of each layer was 

scarified about 6 mm in depth prior addition of materi­

al for next layer. HCTCRB samples were compacted 

instantly after completion of retreated processes. 

Then, all HCTCRB specimens were cured for 28 days 

at 25 'C prior to the tests, while CRB samples were 

tested immediately once finishing compaction. 

This study investigated the effect of hydration peri­

ods, water addition during compaction and dryback 

on the RM of HCTCRB. Hydration periods varied 

from 14 , 28 , 45 and 60 days. For longer hydration 

period, the moisture content of CRB-cement mixes 

will be lower and the samples may be too dry to com­

pact. Thus, additional water may be required for 

compaction. Consequently, the influence of water ad­

dition during compaction on the material performances 

was also examined. There were three different levels 

of the water addition, types A, B and C which repre­

sented no additional water, adding water to OMC of 
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CRB-cement mixture and adding water to OMC of in­

dividual hydration period. After 28 days of curing, 

the specimens had been dried during dryback process 

prior to the tests ( ARRB 2003 ; MRW A 2008; Midg­

ley 2009) . Three degrees of dryback were used, in­

cluding no dryback, dryback to 80% of OMC and 

dryback to 60% of OMC. 

2 .3 Testing protocol 

The resilient moduli of the materials were investigated 

by repeated load triaxial tests , following the Austroads 

standard test method AG: PT/T053 ( Austroads 2007) 

based on the study by Vuong and Brimble ( 2000 ) . 

The tests were conducted under drained condition and 

the suctions were not measured. The repeated vertical 

load waveform has a period of 3 s consisting of 1 s 

load pulse, with rise and fall times of up to 0. 3 s. 

The resilient modulus tests involved 66 stress stages 

of different deviator and confining stresses to simulate 

the complicated traffic loadings. The applied deviator 

and confining stresses ranged from 100 -600 kPa and 

20-150 kPa, respectively. The stress ratios of deviator 

stress to confming stress varied from 2 at the frrst 

stage to 25 at the fmal stage. The applied stresses and 

vertical load waveform are illustrated in Fig. 2. Dur­

ing the test, each specimen was subjected to minimum 

one thousand cycles of preconditioning and then fol­

lowed by minimum fifty cycle-loadings at each stress 

stage. The resilient moduli were calculated from the 

last six cycles in which the results varied less than 5% 

of the mean of those six results. 

3 Experimental results 

3.1 Effect of hydration periods on the resilient 

modulus 

The tested results proved that the HCTCRB impres­

sively improved the RM of the original material about 

treble even though the CRB-cement blends were dis­

turbed after hydration. There were differences in re­

silient modulus characteristics of the HCTCRB at dif­

ferent hydration periods. The HCTCRB sample of 45-

day hydration period showed the highest RM values 

while the sample of 28-day hydration period provided 

the lowest RM values among these four samples. The 

distinction of results between the hydration not longer 

and longer than 28 days can be observed. The RM 

ranges for 14 , 28 , 45 , and 60 days hydration period 

samples, as plotted in Fig. 3, were 400-1070, 400-

1040, 550-1360 and 530-1290 MPa, respectively. 

Other factors such as density and moisture content of 

the tested specimens as shown in Tab. 2 were also 

considered together with the hydration period. There 

were similar RM and moisture content between sam­

ples of 14 and 28 days as well as between those of 45 

and 60 days. Thus, it is expected that the moisture 

content plays the major influence on the material per­

formance. However, the related trends corresponding 

to the different hydration periods still cannot be con­

cluded. Consequently, more experimental data are 

still needed. 
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Fig. 2 illustrations of applied loads for resilient modulus test 

Tab. 2 Density and moisture content of HCTCRB specimens 

Hydration Moisture content Wet density Dry density MOD* 
period (d) (%) ( t/m3) ( t/m3) (%) 

14 5.26 2.219 2.110 94.6 

28 5.20 2.190 2.081 93.9 

45 4.96 2.160 2.058 92.8 

60 4.90 2.217 2.113 95.3 

Note: • Calculated according to individual HCTCRB shown in Fig. 1. 
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Fig. 3 RM test results for CRB and HCTCRB 
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3.2 Effect of compaction and dryback proces:o on 

the resilient modulus 

The 28-day hydration samples with three types of wa­

ter addition (A, B and C) were tested to examine the 

effect of dryback process at three different levels , no 

dryback, dry back to 80% of OMC and dryback to 

60% of OMC. The moisture content of the HCTCRB 

at 28-day hydration dropped to 80% of OMC as are­

sult of water consumption through hydration and cu­

ring processes. Therefore, sample 28A that was not 

subjected to dryback and sample 28A that was dried to 

80% of OMC was the same specimen. The average 

moisture content after curing were 97. 9% of OMC 

for type B sample and 97. 2% of OMC for type C 

sample. The average dry density with respect to MDD 

of sample types A, B and C were 93. 4%, 97.6% 

and 98. 7% , respectively. Addition of water to the 

OMC of HCTCRB , type C, provided the worst RM 

performances although the samples achieved more 

than 98% of MDD. 
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Figure 4 illustrates the tested results of HCTCRB of 

28 -day hydration with variation of additional water 

and degree of dryback. Two samples of 28A provided 

quite similar RM, which varied from 400-1040 MPa 

and 440-1200 MPa for no dryback and dryback sam­

ples, respectively. For samples 28B, RM increased 
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from the range of 330-930 MPa to 320-1100 MPa and The model parameters for CRB and HCTCRB of 

450-1210 MPa as the moisture dropped from 97. 6% 

to 80% and 60% of OMC. The RM values of sam­

ples 28C were 240-750 MPa for no dryback sample, 

490-1250 MPa for the sample dryback to 80% of 

OMC and 520-1340 MPa for the sample dryback to 

60% ofOMC. 

Higher additional water during compaction led to 

inferior RM performance, compared to the sample 

without additional water during compaction, although 

the specimens became denser. The RM of samples 

28B and 28C could be improved during dryback 

process and superior to that of 28A at the same level 

of moisture content. The results stated that dryback 

process could improve the material performances 

caused by reduction of the moisture content of the 

specimens. The drier the sample, the bigger the resil­

ient modulus. All these results indicate the significant 

influence of moisture content to the performances of 

HCTCRB. 

3.3 Modelling of resilient modulus test results 

The resilient modulus is the key input for current 

pavement analysis and design. Analyses of experi­

mental results using the constitutive models are dem­

onstrated in this section. The K-(} model (Hick and 

Monismith 1971 ) and the model recommended by 

Austroads ( Witcsak and Uzan 1988; Austroads 2010) 

were examined with the RM results of CRB and HCT­

CRB sample of 28-day hydration period with no 

dryback ( sample 28A ) . The K-(} model and the 

model recommended by Austroads are expressed in 

Eqs. (1) and (2), respectively. 

M = k1(/2 ( 1) 

M = k1 P( ; t ( ; + 1 t ( 2) 

where M is resilient modulus ( MPa) ; P is atmospher­

ic pressure ( 100 kPa) ; (} is bulk stress ( kPa) , (} = 

u 1 +u2 +u3 ; T is octahedral shear stress for cylindri-

cal specimens in triaxial tests, r = !{ u d ; u 1 is major 

principal stress ; u 2 is intermediate principle stress ; u 3 

is minor principal stress or confining stress ; u d is de­

viator stress , u d = u 1 - u 3 ; k1 , k2 and k3 are regres­

sion parameters. 

28-day hydration period are summarized in Tabs. 3 

and 4 respectively. These evaluations provided that 

the K-(} model fit well with the tested results and pro­

vided high degree of determination ( R2 ) no less than 

96% . Another model is associated with more factors 

and complicated forms , but delivers a little higher R2 • 

Thus the K-(} model is useful for preliminary 

evaluation of granular material due to its simplicity 

and high reliability. However, more complex models 

are required for better explanation of the influences of 

individual factor. Fig. 5 presents comparison between 

the RM tested results and predicted results using the 

K-(} model and the model recommended by Austroads 

for CRB and HCTCRB. 
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Tab. 3 Model parameters for CRB 

Model 

K-(}mode! 2.235 0.704 0.978 

Austroads 0.572 0.656 0.082 0.980 
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Tab. 4 Model plll'1UJlOien for HCTCRB 

Model 

K-8 model 14.637 6.626 0.967 

Austroads 2.610 0. 712 -0.148 0.973 

4 Conclusions 

This study has examined the resilient modulus ( RM) 

of HCTCRB conducted under various scenarios of hy­

dration periods , water addition during compaction and 

dryback. The hydration periods of 14, 28, 45 and 60 

days were evaluated. There were three different levels 

of the water addition during compaction, no water 

added, water added to OMC in CRB-cement mixture 

and water added to OMC in individual hydration peri­

od. Eventually , the specimens involved dryback 

process prior to the tests. Three degrees of dryback, 

no dry back, dryback to 80% of OMC and dry back to 

60% of OMC, were examined. The important results 

obtained from the tests are concluded as follows. 

There were slight increases in OMC but minor de­

creases in MDD for longer hydration periods amongst 

these four types of HCTCRB. The related trends of 

resilient modulus corresponding to the different hydra­

tion periods cannot be concluded. Instead, It was as­

sumed that the moisture content played the major in­

fluence on the RM performance. 

Higher additional water during compaction of HCT­

CRB , even at its OMC and inducing higher dry densi­

ty , led to inferior RM performance compared to the 

sample without water addition. The dryback process 

has potential to improve the material performances. 

The RM of damper samples could be improved 

through dryback process and superior to that of the 

dried sample at the same moisture content. However, 

the samples without water addition during compaction 

provided the comparable RM values even its dry den­

sity was lower than the other two types. These results 

indicated the significant influence of moisture content 

on the performances of HCTCRB with regardless of 

the dry density. 

Finally, the experimental results of CRB and HCT­

CRB were evaluated with the K-IJ model and the mod­

el recommended by Austroads. These two models 

provided the excellent fit of the experimental results 
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with high degree of determination. 
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