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Abstract 

Glycosaminoglycans (GAGs) are complex polysaccharides involved in a wide range of biological 

signalling events, as well as being important as biological structural materials. Despite the ubiquity and 

importance of GAG-protein interactions in biological systems and potentially as therapeutic targets, 

detailed structures of such interactions are sparse in availability. Computational methods can provide 

detailed structural knowledge of these interactions; however, they should be evaluated against suitable 

test systems prior to their widespread use. In this study, we have investigated the application of 

automated molecular docking and interaction mapping techniques to characterizing GAG-protein 

interactions. A series of high-resolution X-ray crystal structures of GAGs in complex with proteins was 

used to evaluate the approaches. Accurately scoring the pose fitting best with the crystal structure was a 

challenge for all docking programs evaluated. The site mapping technique offered excellent prediction 

of the key residues involved in ligand recognition, comparable to the best pose and improved over the 

top ranked pose. A design protocol incorporating site- and ligand-based mapping techniques was 

developed and applied to identify GAGs capable of binding to acidic fibroblast growth factor (aFGF). 

The protocol was able identify ligands known to bind to aFGF and accurately able to predict the binding 

modes of those ligands when using a known ligand-binding conformation of the protein. This study 

demonstrates the value of mapping-based techniques in identifying specific GAG epitopes recognized 

by proteins and for GAG-based drug design. 
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3 
Introduction 

Glycosaminoglycans (GAGs) are complex, linear polysaccharides that are generally sulfated (with the 

exception of hyaluronan) and involved in a wide range of biological processes (Gandhi, N.S. and 

Mancera, R.L. 2008). GAGs such as hyaluronan, chondroitin sulfate, dermatan sulfate and keratan 

sulfate have well-established roles as biological structural materials, forming key components of 

cartilage, synovial fluid, and corneal tissue. There is, however, emerging evidence of their role in the 

manifestation of cancer and brain and spinal cord recovery after injury. Although typically associated 

with blood coagulation, heparin and heparan sulfate have been shown to play roles in development and 

differentiation, cancer metastasis and inflammation. In the case of GAG binding to antithrombin, only 

the recognition of a very specific sulfation pattern results in inhibition of the coagulation cascade (Jin, 

L., et al. 1997). Thus, there exists great potential to develop molecules that mimic the biological activity 

of GAGs for the development of biological nanomaterials, novel anticancer agents and novel anti-

inflammatory agents (Gandhi, N.S. and Mancera, R.L. 2010b).  

As is the case for other types of carbohydrate-protein complexes (Agostino, M., et al. 2012, Agostino, 

M., et al. 2009b, Agostino, M., et al. 2011b), limited high quality structural information is available for 

GAG-protein complexes. A key factor contributing to the lack of high quality structures is the high 

flexibility of carbohydrates. GAGs are particularly flexible compared to other types of carbohydrates 

(Jin, L., et al. 2005, Pogány, P. and Kovács, A. 2009, Silipo, A., et al. 2008), such as Lewis antigens 

(Yuriev, E., et al. 2005) and pig xenoantigens (Yuriev, E., et al. 2009). Furthermore, unlike most other 

carbohydrate residues of biological significance, iduronic acid (IdoA) and its 2-O-sulfated form 

(IdoA(2S)), both frequently found in GAGs, can readily interconvert between chair (1C4) and skew-boat 

(2S0) conformations (Gandhi, N.S. and Mancera, R.L. 2010a). This is due to both low energy barriers 

and similar energies between these states (Sattelle, B.M., et al. 2010). The most likely conformation in 

solution appears to vary depending on the sulfation pattern of the residue and the position of the residue 

within a GAG chain (Ferro, D.R., et al. 1990). Due to the flexibility of the IdoA ring, different proteins 
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may recognize specific conformations of IdoA, which in turn, affects the understanding of GAG-protein 

recognition, both in experimental and computational structural studies (Coombe, D.R., et al. 2008). 

In addition to the difficulties posed to X-ray diffraction methods by the flexibility of GAGs, GAG-

protein complexes pose some additional challenges. GAGs are notoriously difficult to obtain at suitable 

levels of purity for crystallographic studies. Many biochemical studies use enzymatically cleaved 

products purified to a particular length of GAG, but rarely a defined composition (Ostrovksy, O., et al. 

2002, Pye, D.A., et al. 2000, Taylor, K.R., et al. 2005). Heparinase cleavage results in the formation of 

an unsaturated Δ4-uronic acid (ΔUA/ΔUA(2S)) at the non-reducing end of the cleavage product, thus 

preventing the ability to distinguish between iduronic acid and glucuronic acid in the original GAG 

sequence. Chemical synthesis of GAGs has been achieved, but like other strategies to carbohydrate 

chemical synthesis, it involves a complex series of reactions utilizing specific protecting group 

strategies to achieve the desired product. Nonetheless, the chemical synthesis of fondaparinux, a heparin 

mimetic used to treat thrombosis, is routinely performed for industrial production. 

Given the difficulties associated with experimentally studying GAG-protein interactions, numerous 

groups have used computational techniques, particularly molecular docking and molecular dynamics 

simulations, in conjunction with experimental techniques to elucidate the structural basis of GAG-

protein recognition (Canales, A., et al. 2006, Nieto, L., et al. 2011, Pichert, A., et al. 2012, Sapay, N., et 

al. 2011). Several studies validating the use of particular docking approaches have been published over 

the last decade or so (Bitomsky, W. and Wade, R.C. 1999, Bytheway, I. and Cochran, S. 2004, 

Samsonov, S.A., et al. 2011, Takaoka, T., et al. 2007); however, limited attempts have been made to 

perform a comparison of a wide range of tools against a wide range of cases. Docking studies performed 

to date have generally placed little emphasis on structural validation of the docking method (Costa, 

M.G.S., et al. 2010, Mulloy, B. and Forster, M.J. 2008, Torrent, M., et al. 2011). AutoDock is a popular 

choice for performing molecular docking of GAGs and earlier versions of it have been shown to 

perform well in validation studies (Gandhi, N.S., et al. 2008, Gandhi, N.S., et al. 2012, Gandhi, N.S. and 

Mancera, R.L. 2011, Gandhi, N.S. and Mancera, R.L. 2012). However, in general, docking scoring 
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functions perform poorly at predicting carbohydrate-protein complexes, and further analysis is required 

to identify the most likely binding mode from the set of possible solutions (Agostino, M., et al. 2010). 

The site mapping technique has previously been demonstrated in a wide range of protein-ligand 

recognition scenarios, particularly carbohydrate-protein recognition, to provide comparable or superior 

performance to the top ranked pose obtained from molecular docking in predicting the key protein 

residues involved in ligand recognition (Agostino, M., et al. 2012, Agostino, M., et al. 2011a, Agostino, 

M., et al. 2009b, Agostino, M., et al. 2011b). This technique utilizes the interactions taking place in a set 

of up to 100 ranked docking solutions, which are tallied according to both the protein residue with 

which they occurred and the type of interaction (hydrogen bonding or van der Waals interaction). For 

each type of interaction, the tallies are then converted to percentages (relative to the total number of 

interactions of the type) and sorted from most frequently to least frequently contacted. The cumulative 

sum of the percentages going down the lists is then computed and all residues occurring above given a 

cumulative sum cutoff are deemed important for recognition. Using an appropriate validation set of 

crystallographic complexes, the cumulative sum cutoffs can be optimized for a given type of protein-

ligand system by computation of site maps across an exhaustive set of cutoffs to determine the 

combination that gives rise to best prediction of the contacts in the crystallographic complexes. The site 

mapping procedure and its corresponding optimization protocol have recently been released as the 

AutoMap package (Agostino, M., et al. 2013). The technique appears to give the best quality predictions 

in cases that are difficult to study by molecular docking alone, such as carbohydrate-lectin recognition 

(Agostino, M., et al. 2011b) and ganglioside-antibody recognition (Agostino, M., et al. 2012). In these 

respective cases, difficulties in applying molecular docking are due to the generally shallow nature of 

the protein binding sites (carbohydrate-lectin recognition) and the negative charge and high flexibility of 

the ligand (ganglioside-antibody recognition). As GAG-protein interactions generally feature flexible, 

anionic ligands binding to shallow protein sites, they embody both of these problems, and thus may be 

better studied using the site mapping technique rather than molecular docking alone. Furthermore, 
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ligand-based mapping techniques have also been developed and may offer some further insight into 

recognition in a ligand design context (Agostino, M., et al. 2010). 

We report the first validation study using structural data of a computational approach using a 

combination of molecular docking simulations and mapping techniques. We first evaluate a range of 

molecular docking programs for their ability to reproduce the GAG binding mode in a series of high 

resolution X-ray crystal structures of GAG-protein complexes (Table I). We then demonstrate the 

application of the site mapping approach to identifying key protein residues involved in GAG 

recognition. Finally, we demonstrate for the first time the development and application of a ligand 

design strategy incorporating the mapping techniques (Figure 1), specifically demonstrated here for 

investigating the recognition of GAG ligands by acidic fibroblast growth factor (aFGF). This protein 

target was chosen as it is the only case to our knowledge for which a comprehensive library of GAG 

fragments of defined composition and sufficiently small size for docking has been evaluated 

experimentally, with both high affinity ligands and their complexes with the protein determined (Hu, 

Y.-P., et al. 2012).  Although the design strategy has been demonstrated solely against aFGF, it is likely 

to be extendible to other types of carbohydrates and potentially non-carbohydrate ligands. 

Results 

Evaluation of cognate molecular docking 

In general, most docking programs had trouble in producing accurate GAG poses in the range of test 

cases (Figure 2, Table S1).  For at least one test case, each program failed to identify any docking 

solutions, with the exception of FRED, which was able to identify docking solutions for every test case. 

Where reasonably accurate poses could be obtained, they were rarely highly ranked by the docking 

scoring functions of each program. Furthermore, no specific pattern to the successful cases could be 

drawn, unlike in previous carbohydrate-protein docking investigations, where trends relating docking 

success to the length of the carbohydrate, the types of linkages in the carbohydrate, and the binding site 

topography could clearly be established (Agostino, M., et al. 2009a, Agostino, M., et al. 2012, Agostino, 
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M., et al. 2011b). While it is likely that the size of the ligands affected the docking performance, there is 

no evidence within our test set to suggest that docking a small ligand (e.g., disaccharide) is any easier 

than docking a larger ligand (e.g., tetra/pentasaccharide). Instead, poor docking performance is more 

likely to be associated with binding site topography and the chemical functionality of GAGs and their 

target proteins. The target proteins of the test set generally feature large and flat binding sites, thus 

making it difficult to draw specific conclusions about the effect of binding site topography. However, 

previous studies on carbohydrate-protein docking indicate that the method usually proceeds better when 

docking to cavity-like binding sites, such as those in antibodies (Agostino, M., et al. 2009a) and poorly 

when docking to large extended binding sites, such as in lectins (Agostino, M., et al. 2011b). Previous 

studies also indicate that longer, more flexible ligands (such as those feature 1→6/2→8 linkages) are 

also more challenging to dock (Agostino, M., et al. 2012). 

The interactions between sulfated GAGs and proteins are generally dominated by electrostatic 

interactions (including charge-assisted hydrogen bonds) between lysine, arginine or histidine residues 

and the sulfate groups of GAGs. However, due to the high degree of sulfation of GAGs, as well as the 

presence of numerous positively charged residues in the binding site of the protein, it is generally 

difficult to score the correct binding pose accurately. This is somewhat related to the issues previously 

observed in accurately ranking the binding modes of acidic carbohydrates when bound to antibodies 

(Agostino, M., et al. 2012), which also feature numerous positively charged residues in their binding 

sites. Essentially, the docking program can “misdirect” the placement of the entire ligand structure by 

determining that a specific pairing of negative and positively charged groups – other than the 

experimentally observed pairing – is a more favorable arrangement. The combined effect of a 

reasonably flat binding site containing many positively charged residues is the observation of docking 

results that are generally much worse than that observed for either carbohydrate-lectin docking or 

antibody recognition of acidic carbohydrates. 

Despite the difficulties associated with molecular docking of GAGs to proteins, AutoDock, Glide and 

FITTED were reasonably consistent in producing at least one moderately accurate pose within their top 
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100 ranked poses for each of the test cases. Given the overall high level of success of GOLD in 

predicting carbohydrate-protein complexes in previous investigations (Agostino, M., et al. 2009a, 

Agostino, M., et al. 2012, Agostino, M., et al. 2011b), it was anticipated that it would be the best 

performer, but it is instead one of the worst performers, second only to DOCK. AutoDock was the best 

performer overall, a result somewhat at odds with our previous investigations into carbohydrate-protein 

recognition, but consistent with that previously reported for GAG-protein interactions (Samsonov, S.A., 

et al. 2011, Takaoka, T., et al. 2007). As previously noted, the difference in performance between 

GOLD and AutoDock is most likely due to the differences in the way electrostatics are treated by these 

programs; the AutoDock scoring function provides an explicit treatment of electrostatic interactions 

(Huey, R., et al. 2007), whereas the GOLD scoring function does not (Verdonk, M.L., et al. 2003). 

These findings highlight the importance of carrying out evaluation studies to select the most 

appropriate docking program for a given molecular recognition investigation, and the variation in 

performance that can occur when seemingly subtle aspects of the investigated system are changed. A 

major caveat to the use of AutoDock is its inability to consider any more than 32 rotatable bonds during 

docking calculations, which excludes its application to carbohydrates larger than tetrasaccharides. Thus, 

for these cases, where AutoDock cannot be applied, alternatives must be sought. While FITTED does 

not appear to have limitations imposed on ligand size or the number of rotatable bonds, it is not capable 

of consistently providing docking poses for every test case (Table S1). Both FRED and Glide can dock 

the cases unable to be docked by AutoDock and perform reasonably comparably across the test cases. 

However, FRED is the most appropriate second choice for cases where AutoDock cannot be applied 

successfully, as it is the only program that provides results for every member of the test set. The major 

caveat to the use of FRED is that it does not perform conformational searching of the ligand during 

docking; the search must be performed by an external tool. This is problematic for two reasons. Firstly, 

ligands larger than tetrasaccharides will require very long conformational searches in order to sample a 

large enough conformational space, thus may not be represented adequately. Secondly, it is possible that 

different approaches for conformational searching could give rise to different conformational ensembles 
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(Musafia, B. and Senderowitz, H. 2010). Therefore, the consistency of the predicted binding poses with 

FRED is likely to be highly dependent on the approach to conformer generation used and the 

performance of FRED observed must be interpreted with this in mind. 

It is important to note once again that the top ranked pose predicted by any program rarely afforded 

the best fit to the crystal structure. This highlights the need for alternative scoring strategies when 

investigating GAG-protein interactions using docking. 

Site mapping of glycosaminoglycan-protein interactions 

Since AutoDock was found to be the best performing program, it was used to provide poses as input 

for site mapping. In the cases that could not be evaluated using AutoDock, the docking poses predicted 

by FRED were used as input for site mapping. Initially, the hydrogen bonding and van der Waals 

cutoffs for site mapping were optimized using the evaluation systems. It was determined that the 

optimal cutoffs were 90% for hydrogen bonding interactions and 50% for van der Waals interactions 

(Figure 3, Table S2). This is similar to the cutoffs observed for the recognition of acidic carbohydrates 

by antibodies (Agostino, M., et al. 2012). This similarity is most likely a result of GAGs also featuring 

acidic functionality. 

The use of site mapping to predict the key protein residues involved in recognition afforded a 

statistically significant improvement (p < 0.05 in two-tailed t-test) over considering the top ranked pose 

alone (Figure 4, Table S3). Furthermore, a slight improvement in the mean F1 score of the site maps is 

observed when compared to that of the best poses. These findings suggest that considering information 

from multiple poses is required to describe GAG recognition by proteins accurately. Like the molecular 

docking predictions, it was difficult to determine any patterns that led to either the increased likelihood 

of success or failure of the technique. It appears that the length of the GAG fragment can influence the 

quality of prediction, but this does not appear to influence prediction quality in a consistent manner. The 

effect is most dramatic when comparing the two annexin A2 structures and the two basic fibroblast 

growth factor (bFGF) structures (Figures S1 and S2). For bFGF, the interactions made by the 

tetrasaccharide (PDB code 1BFB) could be specifically reproduced by the site map far more effectively 

 at C
urtin U

niversity L
ibrary on January 22, 2015

http://glycob.oxfordjournals.org/
D

ow
nloaded from

 

http://glycob.oxfordjournals.org/


10 
than the equivalently generated site map using the hexasaccharide (PDB code 1BFC). In the case of 

annexin A2, the effect of length is the reverse to that of bFGF: site mapping with the pentasaccharide 

(PDB code 2HYV) gave a superior result than site mapping with the tetrasaccharide (PDB code 2HYU). 

Evaluation of design and binding mode prediction strategy against aFGF 

The design and binding mode prediction strategy was found to perform quite well for predicting the 

disaccharides capable of binding to aFGF and the corresponding binding modes when applied to the 

aFGF complex structures (PDB codes 3UD8 and 3UD9). The initial energy-based selection identified 

six molecules from the possible twenty-four (Table II), with three of these molecules 

(GlcNS(3S)α(1→4)IdoA(2S), GlcNS(6S)α(1→4)IdoA(2S) and GlcNS(3S,6S)α(1→4)IdoA(2S)) known 

to bind to aFGF (Hu, Y.-P., et al. 2012). The six molecules yielded approximately 150 binding modes in 

docking to each of the complex structures. Almost half of these in each case had an SF1 Score greater 

than 0.9. For the poses generated by docking to the 3UD8 structure, cluster analysis indicated four 

clusters with at least two members and an average EF1 Score greater than 1.0 (Table S4). For the poses 

generated by docking to the 3UD9 structure, cluster analysis indicated seven clusters with at least two 

members and an average EF1 Score greater than 1.0 (Table S5). Binding modes from all six ligands are 

still represented in the clusters derived from docking to the 3UD8 structure, while the clustering analysis 

has eliminated poses from two non-binding ligands when applied to the poses obtained from docking to 

the 3UD9 structure. In both cases, at least one cluster is scored significantly better than the other 

clusters by ClusScore and the top scoring cluster is the closest to the crystallographic binding mode 

(Figure 5). In the cluster selected from the 3UD8 data, one binding mode from each of the three known 

ligands identified by the initial energy-based selection is represented, while in the cluster selected from 

the 3UD9 data, only two of the three initially identified known ligands are represented. Nonetheless, this 

demonstrates that, given an appropriately induced protein structure, the design strategy can identify 

correct ligands for the correct reason. 

In order to investigate whether the design strategy could be applied to a protein conformation not 

induced by a ligand, we then attempted to apply it to two conformations of the native structure of aFGF 
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(PDB code 1BAR, chains A and B). Prior to applying the design strategy to the native structures, the 

four structures were superposed to identify any changes in the overall protein conformation that may 

hinder the identification of accurate binding modes (Figure S3). Like most other GAG-binding proteins 

(Gandhi, N.S. and Mancera, R.L. 2008), aFGF features numerous arginine and lysine residues in the 

binding site, which are important for GAG recognition but also particularly flexible and difficult to 

accurately model. Superposing the four structures revealed that the conformation of Lys113 could 

significantly affect accurate ligand docking in chain A of PDB 1BAR, as the terminal amine is placed 

such that it overlaps with the bound GAG in the 3UD8 and 3UD9 structures. Other nearby residues that 

vary in their placement between the set of structures include Lys118, Arg122 and Lys128. As these 

residues point directly into the binding pocket, they may also affect ligand placement in docking.  

The initial application of the design strategy to each of the native aFGF conformations yielded 

similarly scoring clusters (Table S6) and selected binding modes moderately distant from the complex 

structure. In applying the strategy to chain A of 1BAR, binding modes were selected that were 

dramatically different in overall ligand placement. However, the N-sulfate groups of the GlcNS residues 

of the selected binding modes were placed between the sulfate groups of the co-crystallized ligands 

(Figure 6a), indicating that the importance of that region of the receptor for sulfate binding can be 

correctly identified. In applying the strategy to chain B of 1BAR, binding modes are identified where 

the 6-O-sulfate of the GlcNS residues is placed to overlap with the 2-O-sulfate of the IdoA(2S) residues 

of the co-crystallized ligands (Figure 6b). This again highlights that the importance of that region of the 

receptor for sulfate binding can be correctly identified. However, the failure to identify the 

crystallographic binding mode is most likely due to differences between the protein conformations in 

the native and complexed states. Four binding modes in two clusters were obtained when the design 

strategy was applied to chain A of 1BAR, while ten binding modes in four clusters were obtained when 

the design strategy was applied to chain B of 1BAR; the side chain prediction procedure was applied to 

all of these complexes. 
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In applying the design strategy to the new conformers of each chain of 1BAR, clearly preferred 

clusters could be obtained, as indicated by the observation of top scoring clusters with significantly 

better ClusScores than the lower scoring clusters (Table S7). The binding modes obtained in each case 

are not identical to the crystallographic binding mode, but bear some striking resemblances (Figure 7). 

The best ranked cluster obtained featured binding modes of the ligands GlcNS(3S)α(1→4)IdoA(2S) and 

GlcNS(3S,6S)α(1→4)IdoA(2S) (Figure 7a), both which are known to bind to aFGF with high affinity 

(Hu, Y.-P., et al. 2012). The binding modes of these ligands feature the 3-O-sulfate groups positioned 

almost identically to that in the crystallographic binding mode. However, the N-sulfate groups have 

been positioned to interact with the side chain of Lys112 and the resampled Arg122, rather than 

becoming more buried in the protein to interact with the side chains of Lys118 and Asn18 as in the 

crystal structure complex. Nonetheless, the N-sulfate-binding region is still identified as important for 

sulfate binding and the 2-O-sulfate of the IdoA(2S) residues in the binding modes is placed in an 

identical position to the N-sulfate group in the crystallographic binding mode, permitting it to interact 

with the side chain of Lys118. 

After applying the design strategy to the new conformers of chain B chain of 1BAR, the best ranked 

cluster featured binding modes only for GlcNS(3S,6S)α(1→4)IdoA(2S). The binding modes obtained 

were reversed compared to the crystallographic binding modes, but also “shifted” with respect to these 

(Figure 7b,c). The GlcNS residues of the determined binding modes fitted well with those of the 

crystallographic binding modes, however, the location of the N-sulfates and the 3-O-sulfates were 

reversed between the determined binding modes and the crystallographic binding modes. This again 

highlights the ability of the approach to identify the location of sulfate-binding regions on the aFGF site 

correctly. 
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Discussion 

Although there are some differences in the methodology employed in previous studies validating 

GAG docking compared to our study, our findings agree with previous observations that AutoDock 

performs well for docking GAGs to proteins, at least in terms of producing the correct binding poses. It 

has been previously noted that this improvement is most likely due to the explicit treatment of 

electrostatics in the scoring function of AutoDock, as well as improved ligand sampling by the 

Lamarckian genetic algorithm (Takaoka, T., et al. 2007). A general issue with the use of AutoDock to 

perform molecular docking and site mapping is that one is limited to studying GAG fragments as long 

as tetrasaccharides, due to the rotatable bond limit of the program. However, many GAG-recognizing 

proteins utilize large surfaces to recognize much larger fragments (Gandhi, N.S. and Mancera, R.L. 

2008). The recently developed Computational Carbohydrate Grafting technique (CCG) (Tessier, M.B., 

et al. 2012) excellently complements our approach presented in this paper: our approach allows the 

accurate placement of at least a key interacting portion of a carbohydrate, while CCG can be used to 

grow the remainder of the carbohydrate. This could be a particularly useful strategy in identifying some 

of the more unusual potential binding modes of large GAG chains (Gandhi, N.S. and Mancera, R.L. 

2011, Johnson, D.J., et al. 2006, Krieger, E., et al. 2004). 

In optimizing the site mapping technique to analyze GAG-protein recognition, the hydrogen bonding 

and van der Waals cutoffs obtained were found to be similar to those obtained for ganglioside-antibody 

binding (Agostino, M., et al. 2012). This is most likely due to the functional group similarities between 

gangliosides and GAGs, the predominant one being the presence of negatively charged groups: 

carboxylates in the case of gangliosides and both carboxylates and sulfates in the case of GAGs. The 

density of sulfates and indeed negative charge on GAGs is unrivalled by any other natural molecule 

(Gandhi, N.S. and Mancera, R.L. 2008). While GAGs do not feature residues that contain prominent 

hydrophobic faces, unlike blood group-related carbohydrates (e.g., galactose, fucose), molecular 

mechanics-based calculations of the free energies of binding suggest that both van der Waals and 
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hydrogen bonding/electrostatic interactions make energetic contributions of a similar order of 

magnitude in GAG-protein interactions (Gandhi, N.S. and Mancera, R.L. 2009). Detailed examination 

of the epitope mapping data may reveal the precise mechanism of van der Waals interactions in GAG-

protein interactions. 

Although the GAG binding modes determined against native aFGF incorporating flexibility into the 

model do not match directly with the crystallographic complexes, the degree of similarity among these 

binding modes is comparable to the similarity between carbohydrates modelled in dual conformations in 

several crystallographic complexes. In the complex of rat mannose protein A with Manα(1→3)Man 

(PDB 1KX0) (Ng, K.K.-S., et al. 2002), the same atoms of the terminal α-mannose contact the calcium 

in the binding site in both conformations, however, the orientation of these around the calcium is 

reversed from one conformation to the other. The rings of the terminal α-mannose in both cases overlay 

well with one another, however, the difference in its placement results in a very large shift in the 

placement of the second mannose. Similar binding modes of α-mannose have been observed in 

complexes with both langerin (PDB 3P5F) (Feinberg, H., et al. 2011) and DC-SIGN (PDBs 2IT5 and 

2IT6) (Feinberg, H., et al. 2007). The difference between the two observed binding modes in these cases 

is similar to that observed here between the crystallographic binding modes of the GAG disaccharides in 

complex with aFGF and the binding modes predicted by the application of the mapping-based strategy, 

specifically, that shown in Figure 7b (and to an extent, that shown in Figure 7c). In the complexes of 

Talaromyces emersonii Cel7A with cellobiose (PDB 3PFX) and cellotetraose (PDB 3PFZ), a cellobiose 

molecule can be observed in both cases to be modelled in two different conformations, each one shifted 

from the other within the enzyme by the length of approximately half a residue. The differences 

between these binding modes are similar to those between the predicted and crystallographic binding 

modes shown in Figure 7a, which are shifted to a similar degree with respect to one another. Thus, the 

types of differences between the predicted and experimental structures observed here for aFGF have 

clear experimental analogues, and therefore could represent potential alternative binding modes for 

these carbohydrates with aFGF. Certainly, GAG binding to aFGF can occur in multiple ways, with 
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alternative conformations being observed in separate X-ray crystallography and NMR experiments 

(Canales, A., et al. 2006, DiGabriele, A.D., et al. 1998), although despite the variation in overall binding 

modes, sulfate groups are consistently placed, as we have generally observed here.  

A key limitation of the approaches presented here is that no attempt to assign the ring conformation of 

iduronic acid is made. The choice of ring conformation can have a dramatic impact on docking accuracy 

(Samsonov, S.A. and Pisabarro, M.T. 2013). Iduronic acid typically exists as either a 1C4 chair or a 2S0 

skew-boat, generally with a significant bias towards the chair state (Gandhi, N.S. and Mancera, R.L. 

2010a). In our docking and site mapping validations, we retained the ring conformations of the original 

ligand, as they were modeled in the crystal structure complexes. In the validation of the design strategy, 

iduronic acid was assumed to be in the chair conformation. While this assumption was valid for aFGF, it 

is not a strictly valid assumption to make for all GAG-binding proteins. It is currently unclear as to the 

best approach to identifying ring conformations in iduronic acid; an adaptation of the dynamic site 

mapping approach to assessing multiple ring conformations may be an appropriate strategy to consider 

(Agostino, M., et al. 2012). However, from this study it is clear that if the binding ring conformations 

are known, as well as the correct protein conformation, the developed design and binding mode 

prediction strategy gives very accurate results, even in the absence of correct ranking by the docking 

scoring function. 

A second limitation of the approaches presented here is that knowledge of the approximate location of 

the GAG binding site is required; a global scan of the protein structure to identify prospective sites, such 

as that performed by FTMap (Brenke, R., et al. 2009) or Schrödinger’s SiteMap (Halgren, T.A. 2009), is 

not performed in our current protocol. Where possible, experimental knowledge should be used to guide 

the identification of binding sites and subsequent application of the approaches presented here. 

However, caution should be exercised in interpreting the results of experimental studies. For instance, in 

the cases of RANTES (Shaw, J.P., et al. 2004) and SDF-1α (Murphy, J.W., et al. 2007), X-ray 

crystallography, NMR and biochemical studies provide conflicting evidence for the placement of GAG 

binding sites on these proteins. Since the conditions for obtaining the X-ray structures of RANTES and 
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SDF-1α deviate significantly from physiological conditions, there is the potential that GAG-binding 

sites identified on these proteins are not biologically relevant, and thus utilizing these sites for structure-

based design may result in erroneous conclusions. Incorporating an appropriately evaluated method for 

performing a global binding site scan into the protocol may help to address issues in locating the GAG 

binding site caused by conflicting experimental evidence. 

Materials and methods 

Selection of evaluation systems 

GAG-protein complexes for use as evaluation systems were selected by searching the Protein Data Bank 

for structures with ligands containing sulfated glucosamine and iduronic acid residues. The structures 

selected contained heparin fragments, between two and six residues in length, in complex with non-

enzymatic proteins at moderate to high resolution (≤ 2.5 Å) (Table I). Throughout the entire manuscript, 

all carbohydrates are linked via α(1→4) linkages, unless otherwise specified. 

Evaluation of cognate molecular docking 

Glide 5.7 (Friesner, R.A., et al. 2004, Schrödinger, LLC 2011), AutoDock 4.2 (Huey, R., et al. 2007), 

DOCK 6.5 (Lang, P.T., et al. 2009), FRED 2.2.5 (McGann, M. 2011), FITTED 3.5 (Corbeil, C.R., et al. 

2007) and GOLD 5.1 (Verdonk, M.L., et al. 2003) were each evaluated for their ability to reproduce the 

crystallographic binding mode of the evaluation systems. Ligands were treated with full flexibility, 

except for the carbohydrate rings, that were maintained in the conformation observed in the crystal 

structure in each case. No protein flexibility was considered. The detailed settings used for Glide, 

AutoDock, DOCK and GOLD were identical to those employed in previous investigations (Agostino, 

M., et al. 2012, Agostino, M., et al. 2011b), with some minor adjustments to the settings used for 

AutoDock and GOLD. Protein and ligand structure preparation was also identical to previous 

investigations. The Lamarckian genetic algorithm was employed for binding mode generation in 

AutoDock (Morris, G.M., et al. 1998). The option to retain diverse solutions in GOLD was disabled, 

due to a significant increase in computation time in applying the algorithm in the current version of 

GOLD. Instead of generating diverse solutions during the docking, the resulting poses were clustered 
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using the cluster script in the Silico toolkit (Chalmers, D.K. and Roberts, B.P. 2011). For FITTED 3.5, 

the structures prepared for use with DOCK were used as input. The default settings were used to carry 

out the setup and docking, with the exception of the number of genetic algorithm runs, which was set to 

200 to be equivalent to that used for AutoDock and GOLD. As the FRED setup was reasonably more 

complex, it is described in the following section. 

For all programs, the root-mean-square deviation (RMSD) to the crystallographic binding mode was 

used to evaluate the success of molecular docking. Poses with an RMSD of 2.5 Å or less were deemed 

highly accurate, while those between 2.5-5.0 Å were deemed moderately accurate. RMSDs are reported 

for the top-ranked pose according to the scoring function of the respective programs (referred to as the 

“top pose”), as well as for the pose within the set of results with the lowest RMSD with respect to the 

crystallographic pose (referred to as the “best pose”). 

Setup of FRED docking runs 

Although FRED utilizes a rigid docking approach, conformational flexibility of the ligand can be 

considered during docking by providing multiple ligand conformations. Conformational searches in 

Macromodel 9.9 were performed for each ligand. The Monte Carlo Multiple Minimum (MCMM) 

method was employed in all searches. Automatic setup of the ligands was initially performed with 

manual adjustment of the following search: torsion rotations in rings were not considered, and all ring 

closure and torsion check parameters were removed. These settings were selected to maintain the 

original ring conformations observed in the respective crystal structure. The searches used extended 

torsional sampling. Mirror images were not retained to preserve the stereochemistry of the GAG 

fragments. The searches were set to conclude after completing 2000 steps per rotatable bond, or a 

maximum of 100000 steps, whichever was reached first. An energy window of 50 kJ/mol was used for 

saving structures. The Polak-Ribiere conjugate gradient algorithm (PRCG) was used to perform energy 

minimization on the conformers. Minimization terminated after 1000 cycles or upon reaching a gradient 

of 0.1 kJ/(mol Å). Redundant conformers were eliminated using the Redundant Conformer Elimination 

tool in Macromodel, using a 2.0 Å cutoff applied to heavy atoms. 
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The FRED Receptor GUI was used to set up the protein for docking. The co-crystallized ligand was 

used to guide the box size and placement. A high quality site shape potential was generated within the 

box. The outer contour was adjusted such that the entire ligand could be accommodated within it; the 

inner contour was adjusted according to the ratio between the volumes of the initially determined outer 

and inner contours. The orientation of the site shape was not optimized to preserve the adjustments 

made to the contours and to ensure that the protein coordinates remained constant for subsequent RMSD 

calculations performed on the ligand. Constraints were not used. A trial docking was performed with the 

bound ligand to ensure that the site was set up correctly and could accommodate the ligand. 

For the production run, the Chemgauss3 scoring function was used (McGann, M.R., et al. 2003), with 

further optimization by Chemgauss3. Two hundred alternate binding poses were retained in each 

docking run. 

Site mapping of GAG-protein interactions 

The AutoMap procedure was used to perform site mapping for each GAG-protein system, the full 

details of which are described elsewhere (Agostino, M., et al. 2013). As in previous studies (Agostino, 

M., et al. 2012, Agostino, M., et al. 2011b), the program which gave rise to the most accurate poses 

overall, regardless of their ranking, was used to provide input for site mapping. MLP was used to 

determine the interactions between each ligand pose and the target protein. The collected interactions, as 

well as the list of known interacting residues obtained from the crystal structures, were passed to 

OPTCUTOFF to determine optimal hydrogen bonding and van der Waals cutoffs for site mapping of 

GAG-protein interactions. SITEMAP was then used to determine the site maps and identify the key 

interacting residues using the optimized cutoffs identified.  

The ability of the site maps and given binding modes to accurately predict residues involved in 

recognition is assessed using the F1 score, which is defined by the following expression: 
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where r is the recall and p is the precision. Recall and precision are computed according to the 

following expressions: 

FNTP
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r


  

FPTP

TP
p


  

where TP is the number of residues involved in interactions in the crystallographic complex, FN is the 

number of true positive residues failed to be identified as contacts and FP is the number of residues 

falsely identified as contacts. An F1 Score of 1 indicates precise recall of the residues involved in 

interactions in the crystallographic complex. 

Development of a computational design strategy for GAG epitope and binding mode prediction 

A computational design strategy for the prediction of GAG binding epitopes and their corresponding 

binding modes was devised, incorporating the site mapping strategies (Figure 2). The strategy 

incorporates energy-based selection of binding epitopes, followed by mapping-based analysis of the 

binding modes of the selected epitopes, clustering of the binding modes and an energy-based selection 

from the binding mode clusters.  

The docked binding modes of each ligand are analyzed to determine the median value of the mean 

binding energy of highly populated binding mode clusters for that ligand; in this study, a cluster is 

considered to be highly populated if it contains five or more members. The ligands are then ranked 

according to this value and the top 25% of ranked ligands are selected for further analysis. Site mapping 

analysis is carried out on the selected ligands. A series of site maps is generated – one for each ligand, 

generated by the poses of that ligand – using the optimized hydrogen bonding and van der Waals 

cutoffs. The degree of fit of each ligand pose to the corresponding site map is then computed; this 

quantity is termed the SF1 Score and is computed in an identical fashion to the F1 score. However, in 
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this case, the true positives are the residues identified from site mapping, rather than a crystallographic 

complex, and the false positives/negatives defined based on the definition of the true positives. Poses 

with an SF1 Score of greater than 0.9 are selected for cluster analysis, thus selecting poses that correlate 

highly with the site map. 

Prior to performing cluster analysis on the selected poses, epitope mapping analysis is carried out on 

the selected ligands, using a revised procedure to that previously published (Agostino, M., et al. 2010). 

In this case, the contribution of a binding mode to the epitope hydrogen bonding and van der Waals 

counts is weighted according to the SF1 score for that binding mode. For instance, if a binding mode has 

an SF1 score of 0.67, then each contact made by an epitope atom will count as 0.67 to the interaction 

tally for that epitope atom. Thus, poses that better fit the site maps carry more weight when tallying the 

contributions of interacting epitope atoms. A 50% cutoff is used to identify the important epitope points 

involved in both hydrogen bonding and van der Waals interactions. Epitope scores are produced, 

specifically, an hbEF1 Score and an nbEF1 Score, calculated in an identical fashion to the SF1 score, 

using the hydrogen bonding epitope maps and the van der Waals epitope maps respectively to provide 

the definition of true and false positives. These scores are summed to give the final EF1 Score, which 

can be a maximum of 2 (as it is the sum of two F1 scores). 

Cluster analysis is performed on the poses selected by the SF1 Score filter. The clusters are 

determined by comparing the coordinates of the carbohydrate rings of each of the selected poses. Poses 

with carbohydrate rings within an RMSD of 1.5 Å of one another are deemed to belong to the same 

cluster. Clusters containing a single pose are discarded. The average EF1 score for the cluster is 

computed and clusters with an average EF1 below 1.0 are also discarded. The mean energy of the cluster 

is determined, as well as the standard deviation of the cluster energy. The final score reported and used 

to rank the clusters (ClusScore) is the negative of the mean energy of the cluster divided by the standard 

deviation of the cluster energy:  

E

EClusScore



  
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A lower limit on the standard deviation of 0.125 is applied to prevent two-membered clusters with 

members very close in energy from being scored overly favorably. 

Evaluation of design and binding mode prediction strategy with aFGF 

The design and binding mode prediction strategy was evaluated by adapting a recent experimental study 

whereby a comprehensive library of GAG disaccharides was prepared and tested against aFGF (Hu, Y.-

P., et al. 2012). A GAG library exclusively featuring biosynthetically accessible disaccharides was used 

as the ligand library for screening (Raghuraman, A., et al. 2006). As in the experimental studies on 

aFGF, only disaccharides with glucosamine derivatives at the non-reducing end were screened. Iduronic 

acid residues were exclusively examined in the 1C4 conformation. Four structures of aFGF were used to 

evaluate the approach. These were its complexes with GlcNS(3S)α(1→4)IdoA(2S)α(1-OMe) (PDB 

code 3UD8) and GlcNS(3S,6S)α(1→4)IdoA(2S)α(1-OMe) (PDB code 3UD9) (Hu, Y.-P., et al. 2012), 

as well as the native structure, which features two molecules of aFGF in slightly differing conformations 

(PDB code 1BAR) (Zhu, X., et al. 1991). The aFGF structures were prepared using the Protein 

Preparation Wizard in Maestro, with missing side-chains modeled using Prime Side Chain Prediction. 

Docking was carried out using AutoDock 4.2, as this was the program identified as performing the best 

for docking GAGs (see Results). In order to speed up the docking calculations, multilevel parallel 

AutoDock 4.2 (mpAD4) was employed for screening the library (Norgan, A.P., et al. 2011), using the 

same settings for each docking run as the cognate docking evaluation. 

Incorporation of protein flexibility into design and binding mode prediction strategy 

An adaptation of the Prime Refinement step of Schrödinger’s Induced Fit Protocol was applied to 

introduce protein flexibility (Sherman, W., et al. 2006). All of the complexes selected by applying the 

design strategy to the native aFGF structures were subject to Prime Side Chain Prediction in the 

presence of the ligand. Protein residues within 5.0 Å of the ligand were selected for the refinement 

procedure. The disaccharide library was then docked to each of the newly generated protein conformers. 

The steps for selecting the ligands and generating SF1 and EF1 scores were carried out individually for 
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each protein conformer, while the final cluster analysis to select the poses performed on the collected set 

of results. 
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Figure Legends 

Figure 1. Flowchart of design and binding mode prediction strategy. 

Figure 2. Comparison of the performance of docking programs at predicting GAG binding modes. 

Assessment of docking performance is made for each test case docked by each program by 

identifying the pose with the lowest root-mean-squared deviation (RMSD) of heavy atom 

coordinates relative to the crystallographic binding mode. The complete data is presented in Table 

S1. 

Figure 3. Optimization of hydrogen bonding and van der Waals cutoffs for site mapping of GAG-

protein interactions. Assessment of accuracy of the prediction of binding residues is made using the 

F1 score, as described in the Methods. 

Figure 4. Comparison of the performance of methods for identifying the interacting protein 

residues involved in ligand recognition. Outliers are excluded from the plots. Assessment of 

accuracy of the prediction of binding residues is made using the F1 Score, as described in the 

Methods. 

Figure 5. Poses from best scoring binding mode clusters obtained after applying design strategy to 

aFGF structures, overlaid with co-crystallized ligand. a) PDB 3UD8. b) PDB 3UD9. Carbons are 

colored to the following legend: black – crystallographic ligand, green – GlcNS(6S)-IdoA(2S), blue 

– GlcNS(3S,6S)-IdoA(2S), grey – GlcNS(3S)-IdoA(2S). 

Figure 6. Overlay of structures obtained by applying the design strategy to the unliganded aFGF 

and the crystallized ligands. a) Chain A of PDB 1BAR. b) Chain B of PDB 1BAR. Figure legend: 
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black – crystallized ligands (from PDBs 3UD8 and 3UD9), green – binding modes from best ranked 

clusters according to ClusScore. Full cluster details are provided in the Supplementary Information. 

Figure 7. Best structures according to ClusScore following incorporation of protein flexibility in 

design strategy. a) Complex of GlcNS(3S)-IdoA(2S) with aFGF (PDB 1BAR chain A) 

conformation induced by the 36th ranked pose (according to AutoDock) of GlcNS(3S,6S)-

IdoA(2S). b) Complex of GlcNS(3S,6S)-IdoA(2S) with aFGF (PDB 1BAR chain B) conformation 

induced by the 2nd ranked pose (according to AutoDock) of GlcNS(3S,6S)-IdoA. c) Complex of 

GlcNS(3S,6S)-IdoA(2S) with aFGF (PDB 1BAR chain B) conformation induced by the 10th 

ranked pose of (according to AutoDock) of GlcNS(3S,6S)-IdoA(2S). All figures overlaid with the 

crystallographic complex of GlcNS(3S)-IdoA(2S) with aFGF (PDB 3UD8). Figure legend: black – 

crystallographic complex; white – docked complexes; green atoms – sulfur atoms in 

crystallographic ligand; yellow atoms – sulfur atoms in docked ligands; green dashes – electrostatic 

interactions in crystallographic complex; yellow dashes – electrostatic interactions in docked 

complexes. Carbohydrate residue labels are coloured according to sulfur colours. 
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Tables 

Table I. GAG-protein complexes used for method validation 

PDB ID Protein Protein type Ligand[a] Resolution 
(Å) 

1BFB Basic fibroblast 
growth factor 

Growth 
factor 

ΔUA(2S)-GlcNS(6S)-IdoA(2S)-
GlcNS(6S) 

1.90 

1BFC Basic fibroblast 
growth factor 

Growth 
factor 

ΔUA(2S)-GlcNS(6S)-IdoA(2S)-
GlcNS(6S)-IdoA(2S)-GlcNS(6S) 

2.20 

3UD8 Acidic fibroblast 
growth factor 

Growth 
factor 

GlcNS(3S)-IdoA(2S)[b] 2.37 

3UD9 Acidic fibroblast 
growth factor 

Growth 
factor 

GlcNS(6S)-IdoA(2S)[b] 2.34 

1GMN NK1 Growth 
factor 

IdoA(2S)-GlcNS(6S)-IdoA(2S)-
GlcNS(6S)-IdoA(2S) 

2.30 

1G5N Annexin V Annexin ΔUA(2S)-GlcNS(6S)-IdoA(2S)-
GlcNS(6S) 

1.90 

2HYU Annexin A2 Annexin ΔUA(2S)-GlcNS(6S)-IdoA(2S)-
GlcNS(6S) 

1.86 

2HYV Annexin A2 Annexin ΔUA(2S)-GlcNS(6S)-IdoA(2S)-
GlcNS(6S)-IdoA(2S) 

1.42 

1U4L RANTES Chemokine ΔUA(2S)-GlcNS(6S) 2.00 

1U4M RANTES Chemokine ΔUA(2S)-GlcNS 2.00 

2NWG CXCL12 Chemokine ΔUA(2S)-GlcNS(6S)[c] 2.07 

1QQP Foot-and-mouth 
disease virus 

Virus particle IdoA(2S)-GlcNS(6S)-IdoA(2S)-
GlcNS(6S)-IdoA(2S) 

1.90 

1ZBA Foot-and-mouth 
disease virus 
serotype A10 61 

Virus particle GlcNS(6S)-IdoA(2S)-GlcNS(6S) 2.00 

2WNU C1q Complement 
component 

IdoA(2S)-GlcNS(6S) 2.30 
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3B9F Thrombin Serine 
protease[d] 

IdoA(2S)-GlcNS 1.60 

3QMK Amyloid 
precursor-like 
protein 1 

Amyloid 
precursor 
protein 

IdoA(2S)-GlcNS(6S)-IdoA(2S)-
GlcNS(6S) 

2.21 

[a]All linkages in ligands are α(1→4) linkages. [b]Ligand capped with α(1-OMe) group. 
[c]Ligand bound at two sites in structure. [d]This protein is non-enzymatic towards heparin. 
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Table II. Molecules initially selected by screening of GAG disaccharides against aFGF 

structures 

 Structure 

 3UD8 3UD9 

Rank Ligand[a] Score[b] Ligand[a] Score[b] 

1 GlcNS(3S,6S)-IdoA(2S)* -9.83 GlcNS(3S,6S)-IdoA(2S)* -9.31 

2 GlcNS(6S)-IdoA(2S)* -9.33 GlcNS(6S)-IdoA(2S)* -8.55 

3 GlcNS(3S,6S)-GlcA -8.79 GlcNS(3S,6S)-IdoA -8.44 

4 GlcNS(3S)-IdoA(2S)* -8.76 GlcNS(3S,6S)-GlcA -8.30 

5 GlcNS(3S,6S)-IdoA -8.36 GlcNS(3S)-GlcA(2S) -8.08 

6 GlcNS(3S)-GlcA(2S) -8.22 GlcNS(3S)-IdoA(2S)* -8.06 

[a]Ligands marked with an asterisk indicate those known to bind to aFGF. [b]Score computed as 
the median value of the mean binding energy of the highly populated clusters of that ligand 
obtained from docking. Results are ranked according to score. 

 

 at C
urtin U

niversity L
ibrary on January 22, 2015

http://glycob.oxfordjournals.org/
D

ow
nloaded from

 

http://glycob.oxfordjournals.org/


35 

 

 

 

 at C
urtin U

niversity L
ibrary on January 22, 2015

http://glycob.oxfordjournals.org/
D

ow
nloaded from

 

http://glycob.oxfordjournals.org/


36 

 

 
 

 

 at C
urtin U

niversity L
ibrary on January 22, 2015

http://glycob.oxfordjournals.org/
D

ow
nloaded from

 

http://glycob.oxfordjournals.org/


37 

 

 
 
 

 

 at C
urtin U

niversity L
ibrary on January 22, 2015

http://glycob.oxfordjournals.org/
D

ow
nloaded from

 

http://glycob.oxfordjournals.org/


38 

 

 
 
 

 

 at C
urtin U

niversity L
ibrary on January 22, 2015

http://glycob.oxfordjournals.org/
D

ow
nloaded from

 

http://glycob.oxfordjournals.org/


39 

 

 
 
 
 

 

 at C
urtin U

niversity L
ibrary on January 22, 2015

http://glycob.oxfordjournals.org/
D

ow
nloaded from

 

http://glycob.oxfordjournals.org/


40 

 

 
 
 
 

 

 at C
urtin U

niversity L
ibrary on January 22, 2015

http://glycob.oxfordjournals.org/
D

ow
nloaded from

 

http://glycob.oxfordjournals.org/


41 

 

 
 
 
 

 

 at C
urtin U

niversity L
ibrary on January 22, 2015

http://glycob.oxfordjournals.org/
D

ow
nloaded from

 

http://glycob.oxfordjournals.org/

