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ABSTRACT 9 

Fast fluidization of fine particles leads to formation of particle clusters, which significantly affects the 10 

drag force between the phases. Existing gas-solid drag models, both empirical and theoretical, do not 11 

account for the effect of the clusters on the drag force, and as a result, the computational studies using 12 

them are unable to capture the inherent heterogeneity of fast fluidization beds. The limitation of the 13 

current drag models is generally attributed to poor understanding of the effect of the clusters. In this 14 

study, the effect of a single cluster on the drag force has been investigated by conducting lattice 15 

Boltzmann simulations of gas-particle flow under a wide range of the overall voidage and particle 16 

Reynolds numbers. It was observed that simulations with the particles in a cluster configuration gave 17 

considerably lower drag than those with particles in a random arrangement. Furthermore, for the 18 

cluster voidage between maximum to 0.7, a significant drag reduction was observed when the inter-19 

particle distances within a cluster was decreased. The simulations with a constant cluster voidage of 20 

0.7 showed that the drag force decreased on decreasing the overall voidage from the maximum 21 

voidage to approximately 0.96; however any further decrease in the overall voidage caused a steep 22 

increase in the drag force. The results of this study are important in quantifying the drag reduction due 23 

to the formation of clusters. 24 
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INTRODUCTION 28 

Gas-solid flow under fast fluidization conditions underpins some important chemical processes such 29 

as fluid catalytic cracking and circulating fluidized bed combustion. Computational fluid dynamics 30 

(CFD) based gas-solid flow models have been extensively applied to investigate the hydrodynamics 31 

of fast fluidized beds and carry out possible design improvements (Sundaresan, 2000 and Ranade, 32 

2001). All CFD models must include mass and momentum conservations for both gas and solid 33 

phases along with a model for inter-phase drag, which strongly affects the simulation results. Most 34 

commonly used empirical gas-solid drag models reasonably predict the drag force for voidage at two 35 

extremes i.e. maximum and minimum fluidizing voidage. However none of these models account for 36 

the effect of formation of particle aggregates, the so called clusters, which occurs at intermediate 37 

voidage. This work focuses on quantifying the effect of clusters on the gas-solid drag. Conventional 38 

drag models are either derived from pressure drop data under packed bed conditions e.g. the Ergun 39 

model (Ergun 1952), or from single particle settling experiments e.g. the Wen-Yu model (Wen and 40 

Yu, 1966), or a combination of these e.g. the Gidaspow drag model (Gidaspow, 1994). To account for 41 

the effect of clusters, the conventional drag models have been modified using multi-scale approaches 42 

such as sub-grid scale (Andrews IV et al., 2005) and energy minimization approaches (Li and Kwauk, 43 

1994). Despite such modifications, the CFD models shows little qualitative agreement with 44 

experimental data (Benyahia, 2009; Shah et al., 2011). Accurate prediction of dilute gas-solid flows 45 

therefore needs improved drag models, which require better understanding of the effect of clusters. In 46 

this study, the effect of a single cluster on gas-solid drag is computationally investigated. 47 

Available multiphase experimental techniques such as the magnetic resonance imaging, computer 48 

tomography and radioactive particle tracking are ineffective in capturing data at the spatio-temporal 49 

scales required to analyse the gas-solid interactions at cluster level. On the other hand, direct 50 

numerical simulations (DNS) of gas-particle flow can provide this information at a much smaller time 51 

and length scales (Yang et al., 2000; Hill et al., 2001; Biggs et al., 2003; Van der Hoef et al., 2005 52 

Beetstra et al., 2007; Yin and Sundaresan, 2009; Garg et al., 2011; and Tenneti et al., 2011). Two 53 

different numerical approaches, namely lattice Boltzmann method (LBM) and immersed boundary 54 
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method (IBM) have been previously used to simulate gas-solid flow in order to study the interactions 55 

between two phases. Ladd (1994a, b) developed an effective LB method for simulating particle-fluid 56 

suspension and also LB code “SUSP3D”, which has been used Hill et al. (2001a,b); Van der Hoef et 57 

al. (2005); and Yin and Sunderesan (2009). In the LBM, the flow domain is represented by a number 58 

of lattices and the fluid flow is calculated by updating velocity distribution at each lattice by using 59 

Boltzmann’s velocity distribution function. The flow of particles is resolved by applying Newton’s 60 

force balance equation. The force interactions between the fluid and particle are then calculated from 61 

the velocity distributions at the boundary nodes and velocity of particles. The IBM has been used by 62 

Uhlmann (2005); Garg et al. (2009) and Tenneti et al. (2011) to study the drag between the gas and 63 

solid phases. In the IBM, the fluid is represented in an Eulerian framework, whereas the particles are 64 

represented in a Lagrangian framework. The Eulerian variables are defined on a Cartesian mesh, and 65 

the Lagrangian variables are defined on a curvilinear mesh that moves freely through the cartesian 66 

mesh without being constrained to adapt to it in any way at all. The fluid-solid interactions are 67 

accounted via a smoothed approximation to the Dirac delta function (Peskin, 2002).   68 

Hill et al. (2001a, b) used the LBM to study the drag force on spheres, and provided first numerical 69 

observations which showed that the gas-solid drag over a range of solid volume fractions was 70 

different from that calculated using the conventional drag models. However, their simulations were 71 

limited only to low particle Reynolds numbers and mono-dispersed randomly or regularly arranged 72 

particles. Van der Hoef et al. (2005) conducted LB simulations of fluid flowing past mono- and bi-73 

disperse random arrays of spheres to measure the drag force on the spheres for a range of volume 74 

fractions and particle Reynolds number. They proposed a correlation for the drag force applicable to 75 

both mono- and poly-disperse systems. Beetstra et al. (2006) further extended the LBM study by 76 

simulating particles arranged in cluster configurations. The numerically calculated drag coefficients 77 

were compared with the experimental data of drag coefficients for irregularly shaped particles 78 

reported by Tran-Cong et al. (2004). Beetstra et al. (2006) predicted a strong effect of inter-particle 79 

distance on the gas-solid drag force. However, this study was limited only up to 32 particles, and did 80 

not include the effect of particle Reynolds number on the drag force. Most of the simulations carried 81 
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out by Beetstra et al. (Van der Hoef et al., 2005; and Beetstra et al., 2006) used a constant particle 82 

resolution in all simulations, including those with higher Reynolds number. At higher Reynolds 83 

numbers their resolution was not sufficient to resolve the boundary layer thickness around the particle 84 

resulting into erroneous drag values. This has been critically highlighted by Tenneti et al. (2011). 85 

Tenneti et al. (2011) also strongly suggested requirement of high resolution LBM simulations. Yin 86 

and Sunderesan (2009) used the LBM to simulate flow with mono- and bi-dispersed particles, and 87 

gave a drag correlation for Stokes flow in fixed particle configuration. Recently, Zhang et al. (2011) 88 

simulated a 2D periodic array of clusters using the LBM to investigate the effect of cluster on the drag 89 

coefficient. They found close agreement between the simulated drag values and those calculated from 90 

the energy minimization approach. 91 

While there are several detailed gas-solid flow simulations, the effect of clusters on the gas-solid drag 92 

is still poorly understood. The present study aims to quantify the effect of a single cluster on gas-solid 93 

drag by conducting high resolution 3D LB simulations.  The simulated flow domain was a cube with 94 

periodic boundary conditions, where solid particles were positioned in either random or a cluster 95 

configurations. In the cluster configuration, most of particles (up to 1000) were positioned close to 96 

each other forming a single cluster with few particles located around the cluster forming a dilute 97 

phase. Simulations were carried out with different cluster configurations by varying both overall 98 

voidage of the flow domain and voidage of cluster. Furthermore, the flow conditions in these 99 

simulations were also varied to cover a wide range of particle Reynolds number from 21 to 210. 100 

Simulations results were the drag forces for both the flow domain with random and cluster 101 

configurations, which were compared and analysed in order to quantify the effect of a cluster.  102 

LATTICE BOLTZMANN METHOD 103 

This section is intended to give a brief introduction to the LBM for modelling of multiphase flows. 104 

For a more detail understanding of the LBM for multiphase flows, readers are referred to Ladd (1994a 105 

and b) and Van der Hoef et al. (2005).  LBM is a direct numerical simulation technique which 106 

resolves the flow of fluid by solving the Boltzmann equation of velocity distributions. The movement 107 

of particles is calculated by solving Newton’s force balance equation for each particle. The 108 



Page 5 of 23 
 

momentum exchange between the fluid and particles is resolved by applying the bounce back rules at 109 

boundary nodes. 110 

Flow of fluid:  Flow domain is as number of discrete lattice nodes in x, y and z directions. Each node 111 

represents a fluid element with its velocity distributed in 19 directions (D3Q19). At each fluid 112 

element, the velocity distribution is updated by the Boltzmann equation: 113 

      eq. (1) 114 

where fa is velocity distribution at any lattice node x, ea is the direction vectors, τ is a relaxation time, 115 

and Δt is the time for the fluid elements to travel from node to node. The velocity distribution 116 

function, fa(x,t), describes number of gas elements at lattice node x and time t with a velocity in ea 117 

direction. The magnitudes of velocity direction vectors e0, e1-6 and e7-19 are 0 (particle at rest), 1 and 118 

√2 respectively.  119 

Equation (1) has two parts, where (i)  represents streaming; and (ii) 120 

 represents collision steps. Collision is 121 

represented by a relaxation towards equilibrium, and the relaxation time controls the kinematic 122 

viscosity of the LB fluid (Bhatnagar et al., 1954).  123 

The most common approach to model the relaxation is the Bhatnagar-Gross-Krook (BGK) approach 124 

(Bhatnager et al., 1954); where the relaxation time, τ is governed by the kinematic viscosity of the 125 

fluid, with length being represented in terms of lattice units or the distance between two neighbouring 126 

lattice nodes, i.e.; 127 

          eq. (2) 128 

where v is the kinematic viscosity of fluid in lu2/ts. 129 

Another method for modelling the relaxation is to use the stress tensor update (Ladd, 1994a, b): 130 
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    eq. (3) 131 

where Π’ is the stress tensor after collision, and Π is the stress tensor before collision. Furthermore, λ 132 

and λB are related to the shear viscosity and bulk viscosity respectively. Their relation with the 133 

relaxation time can be given by: 134 

           eq. (4a) 135 

           eq. (4a) 136 

In our simulations, the values of λ and λB are set to -0.99 and -1 respectively, which corresponds to 137 

the value of the kinematic viscosity equal to 0.0008333 (Ladd and Verberg, 2001; Van der Hoef et al., 138 

2005). Macroscopic properties such as density, velocity and stress are calculated from the velocity 139 

distribution functions at each lattice node using the following equations,  140 

           eq. (5a) 141 

          eq. (5b) 142 

         eq. (5c)  143 

The macroscopic properties are used to calculate equilibrium distribution: 144 

       eq. (6) 145 

where cs is the speed of sound and wea is the weight function for different directions. The value of c2
s 146 

is 1/3 lattice unit per second, whilst those of w0, w1 and  are 1/3, 1/18 and 1/36 respectively (Ladd 147 

and Verberg, 2001; and Van der Hoef et al., 2005). 148 
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Fluid-solid interactions:  149 

The solid boundary can be located either at the lattice node or nodes middle of the links between 150 

lattice nodes. In the present study spherical particles are mapped on the discrete lattices using 151 

boundary nodes which are located only at the middle of the links between lattice nodes. Similarly, 152 

stationary solid boundaries are selected to be in the middle of two lattice points (Ladd and Verberg, 153 

2001; and Van der Hoef et al., 2005).   154 

When a fluid element encounters a stationary solid boundary, bounce back rule is applied, i.e.: 155 

        eq. (7) 156 

This results in a fluid velocity of zero in the middle of two boundary sites, corresponding to no-slip 157 

velocity conditions at stationary walls.  158 

If a fluid element strikes a moving solid boundary, such as suspended particles, then the bounce back 159 

rule is modified to accommodate the velocity at the boundary node. The bounce back rule at the 160 

moving solid boundary can be given as:  161 

      eq. (8) 162 

where ρ- is wall density, and ub is the velocity of the boundary nodes inside the particle. The value of 163 

ub is resultant of the axial and radial velocity of the particle, given by: 164 

         eq. (9) 165 

where U is translation velocity of the particle, 𝛺 is angular velocity, rb is location of boundary node 166 

and R is the location of centre of mass of the particle. 167 

The resulting force exerted by the fluid element on the particle because of the change in momentum of 168 

the fluid element is given by: 169 

;      eq. (10) 170 
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whilst torque is given by: 171 

     eq. (11) 172 

where Σa and Σb represent summation over all nineteen directions and boundary nodes respectively. 173 

Movement of particles: Newton’s force balance equation is solved for each particle to obtain its 174 

velocity: 175 

               eq. (12) 176 

             eq. (13) 177 

where FP and TP are momentum and torque transfers to particles from fluid plus other forces. Mp and 178 

Ip are mass and moment of inertial of the particle. 179 

The change in fluid momentum (eq. 8) at the boundary nodes on a single particle is equal and opposite 180 

of the total force that the gas exerts, Ff-s. Using this equality, the drag force Fd can be calculated. 181 

The force exerted by the gas on each particle (eq.10) is multiplied by overall voidage to calculate the 182 

drag force on each particle (Van der Hoef et al., 2005). 183 

            eq. (14) 184 

The drag force is then normalized by the Stokes-Einstein drag ( ) to define the 185 

dimensionless drag force. 186 

          eq. (15) 187 
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LB SIMULATIONS 188 

For the present work, a multiphase 3D lattice Botzmann code “SUSP3D” (Ladd, 1994a and b) is used. 189 

SUSP3D is a highly parallel code and scales well for thousands of particles. However, the size of the 190 

flow domain and number of particles in simulations are limited by the available computational power. 191 

For example, to simulate 1000 particles at 0.7 voidage and 105 NRe,p with resolution of 42 lattices per 192 

particle requires a flow domain of 630 lattices in each direction and 12000 CPU hours on intel Xeon 193 

2.93GHz CPU The simulations were carried out over a periodic domain for 250 to 500 cycles. For 194 

each cycle, the normalized drag force was averaged over all particles. The averaged normalized drag 195 

force for last 100 cycles was to calculate the ensemble-averaged normalized drag. 196 

        eq. (16) 197 

      eq. (17) 198 

where Ff-p is total force on each particle, Fd is drag force on a single particle, Fd,normalized is the 199 

dimentionless normalized drag force, µ is viscosity of fluid, d is diameter of particle and U is 200 

superficial velocity of fluid. 201 

Simulations with both random and cluster configurations were performed. In random configuration, 202 

the particles were randomly positioned using the Monte-Carlo method in a cubical flow domain 203 

(Figure-1a); whereas cluster configurations have particle positioned close to each other forming a 204 

single cluster with few particles located around the cluster forming a dilute phase (Figure-1b),  205 

(a)  (b)  

Figure 1: Particles in  (a) random configuration (b) cluster configuration 
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The simulations were initially verified by comparing the calculated drag force from the simulations of 206 

this study to that reported by two previous numerical studies i.e. (i) Beetstra (2006) and (ii) Tenneti et 207 

al. (2011).Three different random configurations were prepared using the Monte-Carlo method from 208 

three initial configurations with i.e. (i) 32 particles in face centric cubical (FCC); (ii) 54 particles in 209 

body central cubical (BCC); and (iii) 64 particles in simple cubical (SC) structure and then displacing 210 

the particles from their initial positions. A single particle was resolved using 16.4 lattices for 211 

comparison with Beetstra et al. (2005) and 20-58 lattices for comparison with Tenneti et al. (2011). 212 

The size of the flow domain was adjusted to achieve a desired volume fraction. 213 

 Table 1: Simulation conditions 

 Initial simulations Simulations  

with cluster configurations  Comparison with 

Beetstra, 2005 

Comparison with 

Tenneti et al., 2011 

Flow domain Variable  Variable Variable 

Particle diameter 16.4 lu 20 – 58 lu 20 – 58 lu 

Kinematic viscosity 8.333e-4 lu 8.333e-4 lu 8.333e-4 lu (Ladd, 1991a, b) 

Fluid density 36 lu 36 lu 36 lu (Van der Hoef et al., 

2005) 

Particle arrangement Random Random Cluster Configuration 

Number of particle 32-64 32-64 90-1000 

Particle Reynolds Number 0.2 and 21 21-210 21-210 

 After verification, simulations were carried out for cluster configurations (shown in Figure-1 and 214 

Table-2). The volume of cluster was calculated from the number of particles in a cluster, volume of 215 

each particle and cluster voidage (eq. 19). Similarly, the volume of flow domain was calculated using 216 

total number of particles (that in both cluster and surrounding) and overall voidge (eq. 20). 217 

Surrounding particles were randomly positioned in a space between boundaries of the cluster and flow 218 

domain. 219 
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            eq. (18) 220 

           eq. (19) 221 

where Vc is the volume of cluster, Nc is the number of particles in a cluster, Vp is the volume of each 222 

particle, V is the volume of flow domain, N is the number of particles in a cluster, ε is overall voidage, 223 

and εc is cluster voidage. 224 

Table 2: Details of Particle Configurations 

 particles particles in 

cluster 

particles in 

surrounding 

Cluster 

voidage 

Overall 

voidage 

Cluster 

fraction 

1 90 64 26 0.9 0.985- 0.15 

2 90 64 26 0.8 0.985- 0.075 

3 90 64 26 0.7 0.985- 0.05 

4 90 64 26 0.6 0.985- 0.0375 

5 90 64 26 0.5 0.985- 0.03 

6 151 125 26 0.7 0.98 0.0667 

7 242 216 26 0.7 0.96 0.1333 

8 538 512 26 0.7 0.91 0.3 

9 1000 1000 26 0.7 0.85 0.5 

       

Voidage reported in Table 3 are calculated using Equation 14 (Li and Kwauk, 1994): 225 

         eq. (20) 226 

where ε is overall voidage, f is cluster fraction, εf is voidage of surrounding fluid and εc is cluster 227 

voidage. Note that due to small number of particles present, the voidage of surrounding fluid, εf, is 228 

generally assumed to be close to unity. 229 
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           eq. (21) 230 

The particle configuration was initialized to move with a certain velocity (vsim) in an arbitrary 231 

direction. As a result, the moving particles exerted force on the gas phase, which was counterbalanced 232 

by applying uniform back force to the gas phase by setting backflow velocity (u) for the gas phase 233 

(Van der Hoef et al., 2005). 234 

        eq. (22) 235 

where vsim is the velocity of the particle configuration, u is backflow velocity of the gas phase, ρ is a 236 

density of the gas phase and ρs is density of the solid. The ratio of densities of the gas and solid phases 237 

was set to 1 (Van der Hoef et al., 2005), and as a result: 238 

        eq. (23) 239 

where U is the superficial velocity of the gas. The particle Reynolds number of the gas-solid flow was 240 

then calculated by, 241 

NRe,p = ρUd/µ = ρVsim d/µ.         eq. (24) 242 

For a specific particle configuration and particle Reynolds number, seven independent simulations 243 

were conducted with velocities in seven different directions, namely, x, y, z, xy, xz, yz and xyz.  The 244 

calculated normalized drag force from these seven simulations was averaged and reported with error 245 

bars showing the variation in the values. 246 

RESULTS 247 

To verify the simulation methodology, results from random particle arrangement were compared with 248 

those reported by Beetstra (2005). Figure-2(a) and (b) shows a comparison between the calculated 249 

drag forces from our simulations and those reported by Beetstra (2005) for low (0.2) and high (21) 250 

particle Reynolds numbers respectively. The simulation results closely agree with those from Beestra 251 

(2005). Figure-2 also shows comparison between the calculated normalized drag and empirical drag 252 
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models such as the Ergun and Wen-Yu models (Wen and Yu, 1966). At very high overall voidage 253 

(close to unity), the calculated drag forces from both this study and Beetstra (2005) reasonably agreed 254 

with that calculated from the Wen-Yu model. At low voidage close to minimum fluidizing voidage 255 

simulations from this study and Beetstra (2005) show discrepancies with the Ergun model (Ergun, 256 

1952). It was also observed that the drag from the LB simulations were considerable different from 257 

that from the empirical drag models, particularly at lower voidage. Such differences between 258 

numerically and empirically calculated drag values were also observed by Hill et al. (2001) and 259 

Beetstra (2005). 260 

 
(a) 

 
(b) 

Figure 2: Normalized drag force Vs. Overall voidage 

Beetstra (2005) used a low particle resolution of 16.4 to 24.4 lattices for both low and high Reynolds 261 

number simulations. This particle resolution is adequate at lower particle Reynolds numbers, but it 262 

does not resolve the boundary layer around particle at higher particle Reynolds numbers. Particle 263 

resolution is particularly critical at high volume fractions when the gap between two particles is 264 

narrow and at high Reynolds numbers where the boundary layer thickness is very thin (Tenneti et al., 265 

2011). Van der Hoef (2005) noted that an asymptotic value of the normalized drag force could be 266 

obtained from LBM simulations by performing consecutive simulations at higher grid resolutions and 267 

then extrapolating the results to 1/rh
2  ∞, where rh represents the gap between the two particles. As 268 

the particle resolution increases, computational demands of the LBM increase exponentially. Thus 269 

performing successive simulations soon becomes impractical, especially for high particle Reynolds 270 

numbers where particles need to be resolved using a large number of lattices.  271 
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Tenneti et al. (2011) conducted immersed boundary simulations of gas-particle suspension and found 272 

discrepancies between their results and those reported by Beetstra (2005). They attributed these 273 

discrepancies to inability of Beetstra’s (2005) simulations to resolve the boundary layer. 274 

Table 3: Grid resolutions used in this study 

NRe,p D (lu) 
δ = D/  

(lu) 

ε D (lu) rh = Dε/6(1-ε) 

(lu) 

21 20 ~4 0.5 20 ~3 

42 26 ~4 0.5 26 ~4 

84 37 ~4 0.5 37 ~6 

105 42 ~4 0.5 42 ~7 

210 58 ~4 0.5 58 ~9 

In our simulations, the grid resolution was varied with the particle Reynolds number to adequately 275 

capture the gap between the two particles (rh = Dε/6(1-ε) and the boundary layer thickness (δ = 276 

D/ ) with sufficient number of lattices. The grid resolution for different conditions is shown in 277 

Table-3. Simulations with these grid resolutions were carried out and compared with the results 278 

presented by Tenneti et al. (2011). The comparison shows good agreement between the two results 279 

(Figure-3). These particle resolutions (Table-3) were then used for all consequent simulations with 280 

cluster configurations. In these simulations, each particle was represented by 20-58 lattices depending 281 

on the particle Reynolds number (Table-3); whereas the domain size was around 15 times of particle 282 

size. This approximately corresponds to the grid size in continuum gas-solid flow simulations. For 283 

example, a 60 micron particle represented by 20 lattice units, the domain size will be ~300 lattice 284 

units in each directon, where 1 lu corresponds to 3 microns 285 
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Figure 3: Normalized drag Vs. particle Reynolds number (○, □, ◊, Δ – Tenneti et al., 2011; and ●, ■, 

♦, ▲ – This Study) 

Effect of a cluster on gas-solid drag 286 

After the initial verification, simulations were carried out for random and configurations.  The random 287 

configuration consisted of 108 particles, whereas the cluster configurations had 90 particles with 64 288 

particles forming a single cluster and 26 particles randomly placed in surrounding. The details of the 289 

configuration are given in Table-2 (first 5 configurations). Simulations were carried out with constant 290 

particle Reynolds number and overall voidage and corresponding cluster fraction. The resulting 291 

normalized drag force is shown in Figure-4(a). At higher cluster voidage (> 0.9), the calculated 292 

normalized drag force approached the value obtained for the random configuration. Between the 293 

cluster voidage of 0.985 and 0.7, the calculated normalized drag force steeply declined with decrease 294 

in the cluster voidage. However, further reduction in the cluster voidage from 0.7 resulted into only 295 

gradual reduction in drag force. These observations were consistent in simulation results at different 296 

particle Reynolds number. Based on these results, a fixed value of the cluster voidage of 0.7 was used 297 

in subsequent simulations for further investigations.  298 
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(a) (b)  

Figure 4: (a) Normalized drag Vs. Cluster voidage; (b) Normalized drag Vs. particle Reynolds 

number 

Figure-4(b)shows a comparison between calculated drag forces from (i) random configuration of 108 299 

particles and (ii) cluster configuration of 90 particles with a constant cluster voidage equal to 0.7 300 

(third configuration in Table-2). The overall voidage in these simulations was constant at 0.985, 301 

whilst the particle Reynolds number varied from 21 to 105. The simulation results show that the drag 302 

for the cluster configuration was significantly lower than that for the randomly arranged particle 303 

configuration over the entire range of the particle Reynolds numbers. Moreover, the difference in drag 304 

between two configurations reduced with increase in the particle Reynolds number. The observed 305 

drag reduction with the cluster configuration was qualitatively coherent with the drag from the energy 306 

minimization multi-scale (EMMS) concept (Li and Kwauk, 1994); which says that the formation of 307 

clusters causes less resistance to the flow of the fluid, and as a result it decreases the effective drag 308 

force. The simulation results also provide a basis for quantifying such a reduction. 309 

Effect of overall voidage and cluster fraction 310 

Clusters in dilute gas-solid flows can consist of more than 1000 particles (Shaffer et al., 2010). 311 

Simulations were therefore conducted with increasing number of particles in a cluster, from 64 to 312 

1000 keeping number of surrounding particles constant. Six particle configurations (see 313 

configurations 3 and 6-10, Table-2) were considered. Each configuration had a different overall 314 

voidage but the same cluster voidage of 0.7. Such an arrangement resulted in a variation in cluster 315 
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fraction from 0.05 to 0.75.  Figure-5 shows the effect of overall voidage and cluster fraction on the 316 

calculated normalized drag force. It can be seen that as the overall voidage was increased, the solid 317 

phase resistance decreased which lowered the normalised drag. However, beyond the overall voidage 318 

of approximately 0.96, an increase in the normalized drag force was observed. This is due to the 319 

cluster behaviour transiting into randomly arranged particles at very high voidage, resulting in the 320 

normalized drag force approaching the value calculated for randomly arranged particles at the 321 

maximum voidage. As the overall voidage reduced below 0.96, the increase in cluster fraction showed 322 

steep increase in the drag force.  At lower overall voidage, the drag force approaches the value for 323 

randomly arranged particles with approximately 0.85 overall voidage. The results suggest that 324 

calculated normalized drag force formed minimum at the overall voidage of ~0.96 with its value 325 

increased with both increase and decrease in the overall voidage from 0.96. 326 

 

Figure 5: Normalized drag force Vs. Overall voidage 

Simulations were also carried out at different particle Reynolds numbers to study the effect of the 327 

overall voidage and cluster fraction at constant cluster voidage. Figure-6 shows the calculated 328 

normalized drag calculated from simulations of six particle configurations (see configurations 3 and 329 

6-10, Table-3) with different particle Reynolds numbers ranging from 21-105. For all simulations, a 330 

minimum drag force in the range 0.95-0.96 overall voidage was obtained with the minimum value of 331 

the drag force was found to increase with increased particle Reynolds numbers. Here, the prediction 332 

of minimum drag at particular overall voidage resembles the calculated drag using the EMMS 333 

approach (Yang et al., 2004). However in the EMMS, the position of the minimum drag in reference 334 
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to the overall voidage highly dependent on operating flow conditions, as well as the use of cluster 335 

diameter correlations (Shah et al., 2011)  336 

 
Figure 6: Normalized drag force Vs. Overall voidage  

The simulations carried out as part of this study depended on (i) overall voidage, (ii) particle Reynolds 337 

number, (iii) cluster fraction, and (iv) cluster voidage. Overall voidage, cluster voidage and cluster 338 

fraction are related by eq. (20). Hence, flow can be defined by knowledge of three parameters. 339 

Information on the cluster voidage at given flow conditions is not available either experimentally or 340 

numerically. In the present study the cluster voidage was assumed to be constant. Work on predicting 341 

the cluster formation and cluster configuration for a given set of flow conditions is currently under 342 

progress. 343 

CONCLUSION 344 

Gas-particle flow with the particles arranged in the cluster configurations and random arrangements 345 

was simulated using the LBM to investigate the effect of a single cluster and its properties on the drag 346 

force over a wide range of voidage and particle Reynolds numbers. Simulations were validated using 347 

previously published results by Beetstra (2005) and Tenneti et al. (2011). 348 

The simulation results showed that the calculated drag forces from the simulations with the particles 349 

arranged in the cluster configuration was considerably lower than that from the simulations with 350 

randomly arranged particles under the same flow conditions. The reduction in the calculated drag 351 

force in the flow with the cluster was observed to be larger at the lower particle Reynolds numbers. 352 

The simulations with different particle configurations with varying inter-particle distances in the 353 
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cluster and a constant overall voidage showed that a major drag reduction happened for the cluster 354 

voidage higher than 0.7, whereas a minor decrease in the drag force was observed for the cluster 355 

voidage less than 0.7. When simulations were conducted at a constant cluster voidage of 0.7, the drag 356 

decreased on decreasing the overall voidage from the maximum voidage to approximately 0.96; 357 

however any further decrease in the overall voidage resulted in a steep increase in the calculated drag 358 

force. The results of this study are important in quantifying the drag reduction caused by the 359 

formation of the cluster, and they are also useful in formulating an improved drag correlation for CFD 360 

simulations. 361 
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NOMENCLATURE 366 

cs Speed of sound (lu/s)  367 

D Number of lattices per particle 368 

ea Direction vector 369 

F Momentum (kg m/s) 370 

Fd Drag force (kg m/s2) 371 

f Cluster fraction 372 

fa Velocity distribution function 373 

NRe,p Particle Reynolds number 374 

M Mass (kg) 375 

rb Location of boundary node [lattice unit(lu)] 376 

rh Hydrodynamic diameter (lu) 377 

R Location of centre of mass of a particle (lu) 378 

T Torque (kg m2/s2) 379 
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t Time (s) 380 

Δt Time step (s) 381 

U Superficial velocity (lu/s) 382 

U Velocity of particle (lu/s) 383 

u macroscopic velocity (lu/s) 384 

ub Velocity at boundary node (lu/s) 385 

x Lattice node 386 

Δx Gap between two lattice node (lu) 387 

v Kinematic viscosity 388 

w Weight functions 389 

Greek Lettter 390 

ε Voidage 391 

ρ Macroscopic Density (kg/m3) 392 

τ Relaxation time (s) 393 

µ Viscosity (kg/m s) 394 

π Macroscopic stress  395 

Π Stress tensor 396 

𝛺 Angular velocity 397 

Subscript 398 

a Direction 399 

b Boundary 400 

c Cluster 401 

d Drag 402 

eq Equilibrium 403 

f fluid 404 

f-p Exchange between fluid and particle 405 

f-s Exchange between fluid and solid 406 

p Particle 407 
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