

School of Electrical and Computing

Department of Electrical and Computer Engineering

Efficient Methods for Synthesis of Multi-Valued Logic

Adib Kabir Chowdhury

This thesis is presented for the Degree of

Master of Philosophy (Electrical and Computer Engineering)

of

Curtin University

June 2014

Declaration

Declaration

To the best of my knowledge and belief this thesis contains no material previously

published by any other person except where due acknowledgement has been made.

This thesis contains no material which has been accepted for the award of any other

degree or diploma in any university.

Signature: …………………………………

(ADIB KABIR CHOWDHURY)

Date : 9th June 2014

Acknowledgements

I

Acknowledgements

In the name of GOD, most gracious, most merciful

When I am writing the thesis, the first person that comes to my mind is my supervisor,

Professor Ashutosh Kumar Singh. His guidance, patience, technical suggestions and

encouragement has always kept me motivated. My sincere and utmost gratitude and

respect goes to my supervisor, who has nurtured me since my undergraduate studies.

His supportive attitude and kindness has strengthened my path of research.

I would like to express my appreciation to my mentor and Co-Supervisor, Mr. Lenin

Gopal who has always kept me motivated and gave me suggestions time to time. I

would also like to gratefully thank my thesis committee Chairperson Associate

Professor Zhuquan Zang. Apart from that, I am obliged to acknowledge my friend and

research partner, Nikhil Raj. His depth in technical knowledge has indulged me to learn

many things during my research work. I thank my parents, Miss Hamida Khatun and

Mr. Ashadul Kabir Chowdhury for their utmost mental and financial support, my wife

Nur Syazareena binti Zainuddin, who have continuously supported me and assisted in

my thesis writing. Their supports have given me confidence and positive energy to

overcome hurdles during any difficult times.

My sincere thankfulness to my research colleagues Shamil Mohamed, Alex Goh Kwang

Leng, Balaji Palani, Omid Nabinejad and Maneesh Singh who have directly or

indirectly dedicated their time or knowledge to assist in my thesis writing. Last but not

least, I would like to thank Muhammad Ibrahim for his kind support, Mr. Veeramani

Acknowledgements

II

Shanmugam, Dr. Ekhlasur Rahman, Dr. Sujan Debnath, the postgraduate students and

academic staffs in Curtin University. Last but not least, I appreciate the hard work and

co-operation of Nur Afnizan Johan, Jenny S.C. Teoh and Siti Nurbaya. Their

administrative support has helped me numerous times during my research period.

Furthermore, I would like to thank Prof. Clem Kuek, Prof. Marcus Man Kon Lee, Prof.

Ashutosh Kumar Singh, Prof. Ir. Dr. Lau Hieng Ho and Curtin University, Sarawak

Campus for providing the scholarship entitled “Curtin Sarawak Postgraduate Stipend

Award 2013”. This stipend award has helped me to continue my research without any

financial difficulties.

Abstract

III

Abstract

Multi-Valued Logic (MVL) synthesis has economically revolutionized the method of

designing logic functions. In the era of technological advancement of the 21st century

MVL becomes an alternative to our universal binary logic. MVL does not only present a

theoretical foundation but also offers various experimental analysis and implementation

for electronic circuitry. Representation of logic functions using binary logic requires

higher number of interconnections hence causing circuits to be slower. As a branch of

emerging technology, circuit simplification and size reduction is becoming a necessity

in Very Large Scale Integration (VLSI) industry. MVL circuits provide a reduced chip

size which performs faster and more efficiently compared to binary counterpart. These

circuits demonstrate advanced dynamic and static performances over binary.

Therefore efficient MVL synthesizing techniques are desirable in the trend of electronic

industry. Although many of the existing concepts have been developed and deployed,

efficient algorithm for better performance in MVL synthesis still remains as a necessity.

To overcome this, novel algorithms using different techniques have been proposed in

this thesis. Efficient synthesis techniques for synthesizing and realizing MVL functions

were developed to ensure lesser on chip interconnections, reduced delay time and faster

speed. Furthermore, Artificial Intelligence (AI) incorporated MVL operators were also

proposed to ensure reliable, robust and universal logic synthesis. Many sets of

benchmark circuits, IC and MVL operators were used for experiments throughout the

thesis. Some that were discussed are a benchmark of 50000 sequentially generated 4

valued 2 variable, benchmark of 19600 randomly generated 3 valued 2 variable,

Abstract

IV

benchmark of 49998 randomly generated 4 valued 2 variable MVL functions, IC

HEF4007UBP and MVL operators.

Firstly, a set of novel algebraic, postulates and logical operators was proposed to realize

MVL functions. Novel High Deduction Algorithm (HDA-MVL) was represented to

synthesize MVL functions. The usage of proposed MVL in logic synthesis operators

revealed that a reduction of 18.00% was achieved in reducing gate count. A remarkable

33.00% reduction was observed in reducing usage of MIN operator for synthesizing

MVL functions. In the worst case scenario, proposed HDA-MVL algorithm achieved

45.46% more success in reducing Product Term (PT) over evolutionary Ant Colony

Optimization (ACO) algorithm. In the experiment, it is observed that overall average PT

reduction was achieved by 56.88% for HDA-MVL algorithm.

Thereafter, a novel Neural Network Deployment Algorithm (NNDA-MVL) was

proposed. The NNDA-MVL used the back-propagation learning capability as well as

the proposed MVL operators to train. From the experimental results, it was depicted that

the NNDA-MVL algorithm managed to achieve an accuracy of 99.97% for

EXTENDED AND neural operator. The results also showed that the proposed NNDA-

MVL induced the output delay in the range 0.01 to 0.04 seconds for the trained

operators.

The advantages of NNDA-MVL algorithm was demonstrated with realization of

synthesized MVL function with lesser MVL operators. Overall the algorithm showed an

improvement of 52.94% for MVL MIN gate reduction and reduced MVL neural net

internal link connections of 23.38% compared to existing techniques.

Abstract

V

Alternatively a method for synthesizing Reduced MVL Networks (RMVLNs) using

Non-Zero Multi-Valued Decision Diagram (NZMDD) is proposed. It is observed that

reduced average PT is achieved in MVL synthesis using NZMDD. During synthesis, the

proposed NZMDD algorithm reduced the number of PT by 52.62% while ACO-MVL

reduced by 40.13%.

Implementation of MVL operator was accomplished by proposing a novel voltage mode

MAX operator. The validation of the MAX circuit was done on enhancement mode

transistors offered by IC HEF4007UBP. Proposed voltage mode MAX operator is

92.86% faster than the existing current mode MAX operator. During digital

implementation, the proposed operator required 71.43% less transistor compared to

existing operator.

Further experiment was conducted on a Voltage-Mode 3 Transistor (VM3T) based

MAX circuit for implementation of MVL system. Simulations performed on 180nm

technology revealed that proposed VM3T MAX has a lesser rising edge delay of

22.22% compared to existing CMOS NOR. It was also observed that proposed operator

consumed 25.37% less power than the existing operator. MAX is a basic operator for

synthesizing MVL functions. In this thesis, it was presented that optimized MAX

operator can do fast realization with increased efficiency. An effective use of this

operator was shown by realizing NOR gate and its comparison with standard CMOS

NOR gate.

Author’s Note

VI

Author’s Note

JOURNAL PAPERS:

1. Adib Kabir Chowdhury, Nikhil Raj and Ashutosh Kumar Singh. “Synthesis and

Reduced Logic Gate Realization of Multi-Valued Logic (MVL) Functions using Neural

Network Deployment Algorithm (NNDA)”, Journal of Engineering Science and

Technology. (Accepted for Publication)

2. Adib Kabir Chowdhury, Nikhil Raj and Ashutosh Kumar Singh. “Non-Zero

Multi-Valued Decision Diagram (NZMDD) based Synthesis of Multi-Valued Logic

(MVL) Functions”, Journal of Manufacturing Science and Technology. (Accepted for

Publication)

3. Adib Kabir Chowdhury, Nikhil Raj and Ashutosh Kumar Singh. “Area Efficient

MAX Operator for Multi-Valued Logic Realization”, Electronic Materials Letters.

(Under Review)

4. Adib Kabir Chowdhury, Nikhil Raj and Ashutosh Kumar Singh. “A Review on

Synthesis Methods and Application of Multi-Valued Logic”, Journal of Engineering

Science and Technology Review. (Under Review)

CONFERENCE PAPERS:

1. Adib Kabir Chowdhury, Nikhil Raj and Ashutosh Kumar Singh. “An Analysis

of Novel MVL Neural Operators Using Feed Forward Back-Propagation, Realization

and Application of Logic Synthesis, International Conf. on Intelligent Network and

Computing, Miri, Malaysia. (Accepted).

Table of Contents

VII

Table of Contents

Acknowledgements I

Abstract III

Author’s Note VI

Table of Contents VII

List of Figures XII

List of Tables XV

List of Acronyms XVII

Glossary XX

1 Introduction 1

2 Preliminaries 16

2.1 Notation and Background .. 16

2.1.1 Basic MVL MIN Operator ... 17

2.1.2 Basic MVL MAX Operator .. 18

2.1.3 Basic MVL INVERTER Operator .. 19

2.2 Benchmark Circuits and IC HEF4007UUBP ... 20

2.3 Feature Set for Different Approach Analysis ... 22

2.4 MVL Over Binary System .. 24

2.5 MVL Synthesis ... 25

Table of Contents

VIII

3 Multi Valued Logic Synthesis Techniques 29

3.1 Introduction ... 29

3.2 MVL Synthesis Approach .. 30

3.2.1 The Direct Cover Approach .. 30

3.2.2 The Iterative Heuristic Approach ... 31

3.2.3 The Decomposition Method ... 32

3.2.4 The Algebraic Approach ... 33

3.2.5 The Neural Network Approach ... 36

3.3 Summary ... 37

4 Logic Operators and Algebraic Postulates 39

4.1 Introduction ... 39

4.2 Unique Multi Valued Logic Operator ... 40

4.3.4 WINDOW LITERAL ... 40

4.3.4 EVEN .. 40

4.3.4 ODD .. 41

4.3.4 EXTENDED COMPLEMENT .. 42

4.3.4 MIN and MAX ... 43

4.3.4 EXTENDED AND ... 45

4.3.4 LITERAL ASSIGNMENT ... 46

4.3 Algebraic ... 47

4.3.1 MVL Distribution ... 48

4.3.2 MVL Idempotent .. 49

4.3.3 MVL Identity .. 50

4.3.4 MVL De Morgan .. 50

4.4 Summary ... 51

5 High Deduction Algorithm (HDA-MVL) 53

5.1 Introduction ... 53

5.2 HDA-MVL Algebraic Synthesis .. 54

5.2.1. Minterm and Implicant Selection ... 55

Table of Contents

IX

5.3 Algorithm: HDA-MVL Algebraic Synthesis .. 58

5.3.1 Calculating Average PT Results ... 60

5.4 Experimental Analysis .. 60

5.5 Summary ... 63

6 MVL Neural Networks Operators 64

6.1 Introduction ... 64

6.2 Neural Architecture for MVL Operators .. 65

6.3 Neural Operators and Minterm Representation .. 72

6.4 Key Steps for Neural NNDA .. 73

6.5 Analysis of Neural Network MVL Operator .. 76

6.5.1 Neural EXTENDED AND Operator .. 77

6.5.2 Neural ODD Operator ... 78

6.5.3 Neural EVEN Operator ... 78

6.5.4 Neural MIN Operator ... 79

6.5.5 Neural MAX Operator .. 80

6.6 Applications .. 81

6.7 Summary ... 83

7 Neural Network Deployment Algorithm (NNDA) 84

7.1 Introduction ... 84

7.2 EXTENDED AND Operator in MVL Synthesis .. 85

7.3 Construction of NNDA Architecture .. 86

7.3.1 Algorithm and Procedure .. 86

7.4 Simulation Analysis .. 91

7.4.1 EXTENDED AND Neural Network ... 92

7.4.2 ODD Neural Network .. 95

7.4.3 EVEN Neural Network .. 96

7.4.4 MIN and MAX Neural Network ... 98

7.5 Discussion and Comparison ... 101

7.6 Summary ... 103

Table of Contents

X

8 Non Zero Multi Valued Decision Diagram (NZMDD) 104

8.1 Introduction ... 104

8.2 Details of RMVLN and NZMDD ... 106

8.2.1 Model of RMLVN and Its Nodal Logic Gates 106

8.2.2 NZMDD Generation using RMVLN .. 108

8.3 NZMDD Synthesis of MVL Benchmark .. 112

8.4 Experimental Results .. 114

8.5 Summary ... 117

9 Implementation and Realization at Gate and Transistor Level 118

9.1 Introduction ... 118

9.2 Logic Circuit Presentation at Gate Level .. 119

9.3 MVL Operator Realization with Transistor .. 125

9.3.1 MIN Circuit .. 125

9.3.2 Different Comparator .. 126

9.3.3 CONVERTER Circuit .. 127

9.3.4 ODD and EVEN LOGIC Operator ... 132

9.3.5 EXTENDED AND Operator .. 134

9.4 Simulation Results .. 135

9.5 Summary ... 140

10 Area Efficient and Low Power MAX Operator and Its Application 141

10.1 Introduction ... 141

10.2 Proposed Area Efficient MAX Operator .. 142

10.2.1 MAX Circuit Analysis .. 143

10.2.2 Experimental Results .. 145

10.3 Proposed 3-Transistor MAX Operator ... 148

10.3.1 Application: MVL NOR Logic Realization 149

10.3.2 Simulation Results .. 150

10.4 Summary ... 153

Table of Contents

XI

11 Conclusion 154

11.1 Summary of Thesis ... 154

11.2 Future Research Directions ... 158

Bibliography

Appendices

List of Figures

XII

List of Figures

1.1 Main fields of MVL applications .. 5

1.2 Benefits of MVL ... 7

1.3 Summary of some MVL synthesis approaches ... 10

2.1 SETA-Sequentially generated benchmarks ... 20

2.2 SETB-Randomly generated benchmarks .. 21

2.3 SETC-Randomly generated benchmarks .. 21

2.4 Binary Vs MVL parallel transmission .. 24

2.5 Scope of research in the process of MVL synthesis 26

3.1 Comparison of proposed algorithm with existing evolutionary and direct cover

algorithms .. 35

3.2 Average product term needed to synthesize MVL functions using different

algorithms .. 35

5.1 HDA-MVL pseudo code .. 59

5.2 Pseudo code generating average PT used per minterm combination of the

synthesized function ... 60

5.3 Graphical comparison of HDA-MVL algorithm and other existing algorithms,

representation of PT used per minterm combination 62

6.1 Hyperbolic tangent sigmoid function ... 67

6.2 Basic neuron structure characteristics .. 67

6.3 Performance of EXTENDED AND after 71 epochs 77

6.4 Performance of ODD after 107 epochs .. 78

6.5 Performance of EVEN after 135 epochs .. 79

6.6 Performance of MIN after 111 epochs ... 79

6.7 Performance of MAX after 66 epochs ... 80

List of Figures

XIII

7.1 The Procedure which builds the MVL neural architecture 88

7.2 NNDA-MVL pseudo code ... 91

7.3 ROC observation for EXTENDED AND .. 92

7.4 Accuracy of EXTENDED AND operation .. 93

7.5 Weight initialization for 1 2 1 2, , ,x x b b , a .. 94

7.6 Gradient and validation after 71epochs ... 94

7.7 Weight Initialization for 1 2,x x .. 95

7.8 Accuracy of ODD operation .. 95

7.9 Gradient and validation after 107 Epochs .. 96

7.10 Weight initialization for 1 2,x x .. 96

7.11 Accuracy of EVEN operation .. 97

7.12 Gradient and validation after 135 epochs .. 97

7.13 Weight initialization of MIN and MAX operator .. 98

7.14 Accuracy of MIN operation ... 99

7.15 Accuracy of MAX operation ... 99

7.16 Gradient and validation analysis for neural MIN operator 100

7.17 Gradient and validation analysis of MAX neural operator 100

7.18 Networks for a synthesized MVL function .. 102

8.1 Ordered-reduced MDD .. 110

8.2 Reduced NZMDD 110

8.3 A nodal simulation of NZMDD using MAX and EXTENDED AND 111

8.4 A 4 valued 2 variable MVLN, its sub-functional synthesis to MVL gates .. 113

9.1 Representation of essential logic circuit elements 120

9.2 Realization of function f1 using logic circuit design 122

9.3 MVL circuit implementation according to Romerio et. al. (2009) 123

9.4 Logic circuit representation according to the proposed method 124

9.5 Circuit realization of a MIN logic operator ... 126

9.6 Differential comparator .. 126

9.7 A typical circuit realization of 0V to 1.5V CONVERTER 128

List of Figures

XIV

9.8 Circuit realization of a 1.5V to 1.5V CONVERTER 128

9.9 Circuit realization of a 3V to 4.5V CONVERTER 130

9.10 Circuit realization of a 4.5V to 4.5V CONVERTER 131

9.11 EVEN logic operator .. 133

9.12 EXTENDED AND schematic for
0 1.5,3

1 2x x ... 134

9.13 Transient analysis of the circuit realization of
0 1

1x window literal 135

9.14 Transient analysis of the circuit realization of
1 1

1x WINDOW LITERAL .. 135

9.15 Transient analysis of the circuit realization of
2 3

1x WINDOW LITERAL . 136

9.16 Transient analysis of the circuit realization of
3 3

1x WINDOW LITERAL .. 136

9.17 Transient analysis of the circuit realization of Extended And Logic Operator

(Variable x1) ... 137

9.18 Transient analysis of the circuit realization of EXTENDED AND operator

(Variable x2) ... 137

9.19 Transient analysis of the circuit realization of EXTENDED AND logic

operator (b1,b2 and y) ... 138

10.1 Proposed MAX circuit .. 144

10.2 Transient simulation of proposed MAX .. 145

10.3 Delay calculation for MAX operator ... 146

10.4 IC HEF4007UBP ... 146

10.5 Proposed MAX circuit ... 148

10.6 NOR gate realization using proposed MAX circuit 149

10.7 Simulation result of proposed MAX operator ... 150

10.8 Simulation result of NOR gate using CMOS and proposed MAX operator . 151

10.9 Analysis of delay for NOR gate using CMOS and proposed MAX operator

 ... 152

List of Tables

XV

List of Tables

2.1 Tabular representation of MVL MIN operator .. 18

2.2 Tabular representation of MVL MAX operator ... 19

2.3 Tabular representation of MVL INVERTER operator 19

2.4 Feature set for different MVL synthesis approaches 23

2.5 A 2-input 1-output ternary function  1 2,G x x ... 26

2.6 Minimized portion of  1 2,G x x during synthesis ... 27

2.7 Difference between original and synthesized MVL function 28

4.1 3x3 matrix of complemented ln arrows showing possible switch between the

slant bondings ... 43

4.2 An example of 4x4 matrix MIN function .. 43

4.3 Phase 2 of the inverse MIN or MAX operation ... 44

4.4 Possible switching of the minterms shown by both ended arrows 44

4.5 Final phase 4 representing the outcome as the MAX function 45

4.6 Function f1 representing a 3x3 matrix of a random MVL function 46

5.1 Function f1 representing a 3x3 matrix of a random MVL function 55

5.2 Extracting minterm and implicant from function f1 56

5.3 Output y is checked using the synthesized expression from function f1 57

5.4 Comparison of proposed algorithm with existing evolutionary and direct cover

algorithm .. 61

5.5 Overall PT reduction using different algorithms ... 63

6.1 MVL function representing a 3x3 matrix of a random MVL function 73

6.2 Post training comparison among different MVL neural net operators 81

7.1 Post training comparison among different MVL neural net operators 101

8.1 Matrix of function  1 2,f x x ... 109

List of Tables

XVI

8.2 Average PT used in synthesis of 3-valued MVL benchmarks using NZMDD

method .. 115

8.3 PT reduction using NZMDD over ACO-MVL for 4-valued MVL functions

 ... 116

9.1 Example of a MVL function f1 .. 120

9.2 Example of a MVL function G(a1 ,a2) from Romero et. al. (2009) 121

9.3 Operator usage during logic circuit representation of function G(a1 ,a2) ... 138

9.4 Comparison of work by Romero et. al. (2009) and proposed method 139

10.1 Output voltage under DC supply to MAX operator 147

10.2 Comparison to existing MAX circuit ... 148

10.3 Performance comparison of NOR gate .. 152

List of Acronyms

XVII

List of Acronyms

ACO-MVL Ant Colony Optimization- Multi-Valued Logic

AI Artificial Intelligence

CCD Charged Coupled Device

CMCL Current Mode CMOS Logic

CMOS Complementary Metal Oxide Semiconductor

CONVERTER MVL Logic Level Converter

CPU Central Processing Unit

DC Direct Cover

DD Decision Diagram

DIP Dual In-line Package

ECL Emitter Coupled Logic

EVEN Even MVL Operator

C

numberExAND
 EXTENDED AND prediction

T

numberExAND
 Total number of EXTENDED AND

EXTENDED AND MVL AND Operator

GA Genetic Algorithm

HDA-MVL High Deduction Algorithm- Multi-Valued Logic

IC Integrated Circuit

INVERTER MVL Complement Operator

MAX Maximum

MIN Minimum

C

numberMIN
 MIN prediction

List of Acronyms

XVIII

T

numberMIN
 Total number of MIN

ML Machine Learning

MOS Metal Oxide Semiconductor

MV Multi-Valued

MVL Multi-Valued Logic

NN Neural Network

NNDA-MVL Neural Network Development Algorithm- MVL

_NN ExAND Neural Network EXTENDED AND

_NN MAX Neural Network MAX

_NN MIN Neural Network MIN

NOR Not Or

ODC Ordered Direct Cover

ODD Odd MVL Operator

PLA Programmable Logic Array

PSO Particle Swarm Optimization

PT Product Term

QMDD Quantum MV decision diagram

RMVLN Reduced Multi-Valued Logic Network

ROM Read Only Memory

SETA 50000 Sequentially Generated Data Set

SETB 19600 Randomly Generated Data Set

SETC 49998 Randomly Generated Data Set

SETUN Russian Computer Name

SoC System on Chip

List of Acronyms

XIX

SoP Sum of Product

VLSI Very Large Scale Integration

VM Voltage Mode

VM3T Voltage Mode 3 Transistor

WDC Weight Direct Cover

Glossary

XX

Glossary

na Definite value 1

A Set 1 of real values

cA Complement of A

b Scalar bias

nb Definite value 2

B Set 2 of real values

cB Complement of B

e Exponential

E Error

f Function 1 of x

nf Sub function of f

g
 Gradient

G Function 2 of x

NMG
 Gauss Newton Method

h
 Hessian matrix

H
 Hidden layer

i
 Sequence of inputs

I Implicant representation

aI
 Partial implicant 1

bI
 Partialnimplicant

Glossary

XXI

j
 Sequence of hidden neurons

J Jacobian matrix

k Standard odd detection

l
 Logic level

nl Output for a PT

nl Complement of nl

stateL
 Learning rate

MML
 Levenberg Marquardt Modification

m Standard even detection

mse
 Mean square error

constantM
 Momentum constant

n Logic Constant

OutputN Neuron output

p Logic operator output

R Set of real numbers

bv Level base voltage

ibv Initial base voltage value

nw Weight vector

x Continuous quantity

x Complement of x

mx Sub co-ordinate 1 of function

Glossary

XXII

mx Complement of mx

nx Sub co-ordinate 2 of function

nx Complement of nx

nx

Column vector

1X Set of definite values 1

2X Set of definite values 2

X Complement of definite value

a b

nX Window literal

y Radix

O

jy
 Output from output layer

H

jy
 Output of hidden layer

z Variable length

1 2,

1

b ba x Partial EXTENDED AND operator


 Transfer function

()v Hyperbolic tangent function


 Layer of neural network

input
 Total input to 1st layer

hidden
 Total hidden neurons from hidden layer

output
 Total output neurons from output layer

 Weights of neural network

H

ij
 Weights from input to hidden neurons

Glossary

XXIII

O

ij
 Weights from hidden to output neurons

H

j Inputs coming from input layer

O

j Input from hidden layer

w Weight change

previousw Previous weight change

Chapter 1: Introduction

1

Chapter 1

Introduction

In this era of globalization and communication, electronic devices have been

focused as the central role for efficient and cheap communication to be achieved. An

efficient electronic device would require an effective circuit in terms of memory size,

performance and the complexity of the circuit. This is where logic comes into the

picture.

The concept of logic has been introduced as early as 1979 by Gottlab Frege who is

often considered as the founder of logic especially in the basis of mathematics (Davis

1973). It is found by Frege that mathematics can be derived from logical principles.

This is achieved by separating pure logical principle of interference which is

represented by a mathematical proof (Frege 1977).

According to Clark and Reeves (1990), logic is a study which formalizes language

and reasoning. Logic indicates a concept of well-developed formula which is decided to

be semantic or syntactic (Gottwald 2007). It also acts as the very base of idea for

computer sciences as computer science being the product of problems and methods

developed using mathematical logic. Apart from being the root of computers science,

logic also plays a crucial role in systems of circuits’ design, relational data base

systems, experts system as well as model checkers and proof of theorem.

Chapter 1: Introduction

2

Binary logic or also known as the Boolean logic- taking the name of its formulator,

George Boole serves as one of the basics of computer science (Parkes 2002). In binary

logic, the expressions are evaluated to either 1 (true) or 0 (false). This shows that

expressions in binary logic have a finite number of variable which are either 1 or 0 in

order to determine the truth values for specific expressions. One of the crucial

applications of binary logic is to describe logic circuits mathematically (Gibson 2013).

Other application includes modeling for digital circuitry (Parkes 2002).

Although binary logic is used widely in electronics and computer science, there are

some limitations to it. As electronic circuits become more complex each day, circuits

especially the conventional one which uses binary logic tends to be limited in certain

aspects. Some of the limitations are large layout area required for the circuits with

binary logic. This will then lead to increase in power consumption as well as capacity

constraints (Sarif and Abd-El-Barr 2008). Other problems with usage of binary logic are

limited storage of data as well as less availability of bandwidth and spectrum in cable

together with wireless communications (Sarif and Abd-El-Barr 2008).

To overcome the limitations of Binary logic, Multi-Valued Logic (MVL) is often

taken as an alternative to the former logic (Temel and Morgul 2002). MVL is a system

which uses the variables that can take the cardinality of three and more discrete set

values (Miller and Thorntorn 2008). Often used in the high-level system design, MVL

specifically the multi-valued symbols represents the domain values of constants,

variables, and functions (Yuan, et al. 2013).The concept of MVL is first introduced

theoretically in 1920s by E.L Post (Post 1921). However, it took almost another 30

years to see application of MVL through the work of SETUN- a Russian computer

Chapter 1: Introduction

3

(Epstein, Frieder and Rine 1974). This is followed by a presentation by Dunderdale in

1969 on the design technique of ternary ECL circuit (Dunderdale 1969) which further

focused on the application of MVL. Also in the late 1960s, there were many major

attempts to formalize the process of MVL, its design of systems and minimization as

well as other related issues regarding MVL (Smith 1981).

Most research done on applications of MVL follows three main directions. One of

the direction lies is in escalation of binary system (Smith 1981). This approach is not

new as the usage of MVL can greatly improve binary mode in terms of reliability

especially by using the ternary MVL (Higuchi and Kameyama 1975). An example for

this is approach is to use MVL as a mean of representation for multiple-output Binary

logic function (Dubrova 1999). This is done by changing the Binary function to a

single-output MVL function which the output is treated as a single MVL variable

(Brayton, et al. 1996). Other example also includes application of MVL to analyze

binary switching circuits giving attention to Metal Oxide Semiconductor (MOS) Very

Large Scale Integration (VLSI) circuits.

Other direction of research done on MVL application is found in terms of increasing

memory. By using MVL, number of lines needed to transmit huge data in parallel can

be reduced (Smith 1981). This method will make betterment in terms memory

development which memory arrays can be compacted. One of the examples can be

observed in Read Only Memory (ROM) structures which were developed by Intel using

four-valued ROMs in two of their products namely the 8087 arithmetic coprocessor and

the 432-03 peripheral processor (Posa 1980). The four-valued ROM works as two-bit

encoding reduces the size of ROM in order to raise the array product availability (Stark

Chapter 1: Introduction

4

1981). Other example of MVL application in memory design is utilized in MVL serial

memory using Charged-Couple Device (CCD) (Yamada, Fujishima and

Nagasawa.Koichi 1978). This produces block-random-access memory systems which

makes the MVL storage cost effective due to the comparative balance cost in storage

cells and signal regeneration (Terman, et al. 1981).

Apart from that, MVL is also widely applied in the communication and signaling

field. The application ranges from the clear-cut connection among circuits and even

gates to the more complicated channel coding (Smith 1981). Specifically discussing the

communication aspect, MVL can be used to reduce the bandwidth of non-binary digital

signal as well as compressing the information transmitted (Smith 1988). This has been

first achieved by Motorola with the introduction of their product MC 145026/7/8 (Smith

1988). This product uses a customizable set of Complementary MOS (CMOS) chips in

remote control applications. Data is encoded in four-valued units which comprise two

binary digits by transmission between chips as a serial stream (Smith 1988). The MVL

coding manages to add the pair of chip’s addressing range from 2’= 512 to 39 = 19,683

which proved to be a great improvement in low-cost, pin-limited Dual In-line Package

(DIP) environment (Smith 1988). The concept of MVL is also used in the space vector

pulse-width modulation scheme as presented by Sagar, Shiny and Baiju (2013). In this

paper, MVL is utilized in the realization of computationally efficient space vector pulse-

width modulation via generation of MVL algorithm (Sagar, Shiny and Baiju 2013).

Other Motorola’s product that uses MVL is the Motorola Emitter Coupled Logic

(ECL) MC10194 dual line driver or receiver. It utilizes ternary signal which let full two-

way operation on high-speed multiport single line bus (Etiemble 1981). Now, it is

Chapter 1: Introduction

5

possible for any two devices on the bus communicating with each other with 3 valued-

signals. The same applies to communication between one device to other remaining

devices in a binary mode (Etiemble 1981; Ross 1977). In recent years, advanced

applications of MVL are also made. This can be seen in the research article by Rafiev,

Murphy and Yakovlev (2010) which utilizes MVL synthesis approach with security-

related technique that are implemented in the devices’ security such as smart card

(Rafiev, Murphy and Yakovlev 2010). Song, Park and Oh (2014) also uses MVL in

their research work for an Asynchronous Handshake Protocol. In this paper, the authors

presented a data encoding scheme which is used to reduce the wires needed in the

conventional delay-insensitive data encoding mechanisms (Song, Park and Oh 2014).

Other applications of MVL includes but not limited to designing logic systems together

with memory, coding of multi-level data and unique purpose digital processors (Sarif

and Abd-El-Barr 2006). A general summary of MVL applications are as Figure 1.1

below.

From many applications of MVL, it has been observed that MVL manage to super

pass the conventional binary logic. The application of MVL in replacing binary logic or

in augmentation to the latter reduces the need of power, improving speed and increasing

Figure 1.1: Main fields of MVL applications

 Main Fields of MVL

Applications
Communication and

Signalling

Memory Design

Augmentation of

Binary System

Chapter 1: Introduction

6

the packing density of circuits especially VLSI circuits. One example which portrays

reduce of energy can be observed in VLSI logic functions by using low-energy

adiabatic logic circuits. The integration between the low-energy adiabatic binary and

multiple valued CMOS logic is able to make a significant reduction of power

consumption in VLSI chips.

As for MVL increasing the data density, this is due to the use of MVL inside VLSI

chip which reduces the complexity of interconnection inside the chip. This will then

lead to make the device containing the chip more efficient in holding larger amount of

data in it. MVL increasing data density can also be achieved along with reduction of

delay time and reduction of interconnections by embedding the multiple logics on single

IC known as System on a Chip (SoC) (Romero, et al. 2014).

Next benefit of MVL is as an easy interface to binary logic. To explain further,

MVL or specifically in this case, quaternary logic make the interfacing to binary logic

easier as the radix 4=22 allowing simple encoding or decoding of circuits. MVL is also

able to boost the computational ability and is also applied in the fault diagnosis of

sensor of magnetic bearings (Hu, et al. 2004). The latter is done by generalizing the

binary algebra only two logic values. The application of MVL here is to measure state

magnetic bearing by dispensation of signals from sensors (Hu, et al. 2004).

All the above mentioned benefits of MVL will give a significant impact on

economy. The less number of interconnections used in chip and circuits contribute to

less cost on the materials in producing the chips and circuits of electronic devices. This

will start the chain of reaction where electronic devices available for sale at much lower

Chapter 1: Introduction

7

price than before without sacrificing the efficiency of the said devices. A general

summary of benefits of MVL is as Figure 1.2 below.

Figure 1.2: Benefits of MVL

As MVL is crucial in many circuits and chips in electronic devices, a synthesis of

the logic determines the efficiency MVL. Hence, research on MVL has mainly focused

on improving MVL and its applications. Synthesis of MVL carries the meaning of a

process that chose implicants to cover minterms in the said MVL function (Sarif and

Abd-El-Barr 2008).

One of the research done on MVL synthesis is by using algorithm to synthesize 4-

valued one-variable functions which will then be implemented using CMOS or Current

Mode CMOS Logic (CMCL) circuits (Abd-El-Barr and Al-Mutawa 2001). The

algorithm is introduced based on the usage of cost-table which comprises 48 functions.

The algorithm will select two functions from table to create new function until all

functions are synthesized (Abd-El-Barr and Al-Mutawa 2001).

Additional method of MVL synthesis includes the use of hybrid approach which is a

combination of current mode and voltage mode CMOS circuits (Chang and Lee 1994).

This method reduces one half of the synthesized circuit area hence making the synthesis

of MVL faster (Chang and Lee 1994). A method to improve reversible logic synthesis is

 Main Benefits of

MVL

Reduce Power

Consumption

Increase of Data

Packing Density

Improvement in Speed

of System

Chapter 1: Introduction

8

also proposed using Quantum Multiple-Valued Decision Diagram (QMDD) (Feinstein

and Thorntorn 2009). This synthesis can reduce the required gates and yet manage to

maintain minimum garbage outputs and ancillary inputs (Marinescu and Marinescu

2005). Another utilization of Multiple-Valued Decision Diagram (MDD) is as presented

by Mo, Xing and Amari (2014). Here, the MDD method is used to increase the

reliability analysis of a non-repairable binary-state phased-mission systems (Mo, Hing

and Amari 2014). Kostolny, Kvassay and Zaitseva (2014) also utilizes MDD to

represent complex system. This is because MDD manages to be processes efficiently on

computer as well as taking up less storage space (Kostolny, Kvassay and Zaitseva

2014). Design of circuit can also contribute to better way of synthesizing MVL. This is

shown in one of the researches which focus on the design and implementation of

Integrated Circuit (IC) gates’ universal set (Romero, et al. 2014).

Apart from that, the division of algebraic of MVL synthesis for MVL functions is

introduced in (Wang, Lee and E. 1994). The division contains two MVL boolean

properties (‘identical’ and ‘complementary’) in order to develop the new mix-algebraic

division procedure (Wang, Lee and E. 1994). Heuristics approach utilizing near optimal

product terms can also be used in MVL synthesis as seen in the proposed method of

Particle Swarm Optimization algorithm (PSO) in Sarif and Abd-El-Barr (2008). This

method is a population-based evolutionary algorithm which is also stochastic in order to

solve engineering problems (Sarif and Abd-El-Barr 2008).

Next research on MVL synthesis is using the Weighted Direct Cover (WDC) and

Ordered Direct Cover (Abd-El-Barr and Sarif 2007) which is also a type of heuristic

approach. WDC selects different minterm or implicant based on weighted sum approach

Chapter 1: Introduction

9

on different criteria. On the other hand, ODC selects minterm or implicant based on

priority (Abd-El-Barr and Sarif 2007).

Iterative heuristics approach also plays an important role in synthesis of MVL.

Among the researches done in iterative heuristic are as the papers by Yildirim, Butler

and Yang (1993), Kalganova, Miller and Fogarty (1998), Tirumalai and Butler (1988)

and Kalganova, Miller and Lipinitskaya (1998). Iterative heuristic explores bigger space

of solution in reaching at near optimal solutions (Sarif and Abd-El-Barr 2006). Another

example of iterative heuristic approach in synthesis of MVL is the Genetic Algorithm

approach in which the representation of solutions in form of chromosomes strings (Sarif

and Abd-El-Barr 2006).

Moving on to the next synthesis, involvement of multi-valued one and two-variable

functions synthesis utilizing logic operations existing in CCDs (Abd-El-Barr, Vranesic

and Zaky 1991) is discussed. As for the more current synthesis of MVL, the authors,

Sarif and Abd-El-Barr (Sarif and Abd-El-Barr 2008) found a new way to synthesis

MVL functions. The synthesis is done by an injection of multiple connected pseudo

minterms to reduce product terms needed in order to synthesis MVL functions (Sarif

and Abd-El-Barr 2008). The idea is gathered to make the function realization less

complex with reduction of implicants. This will make the circuits work better (Sarif and

Abd-El-Barr 2009).

In Abd-El-Barr and Sarif(2006), the Ant Colony Optimization (ACO) algorithm is

proposed to synthesize MVL functions. ACO works with the ants selecting the correct

minterm and implication and at the same time the ant will leave a pheromone trail as

extra information for the next ant to use while making the selection (Abd-El-Barr and

Chapter 1: Introduction

10

Sarif 2006). Programmable Logic Array (PLA) decomposition is another efficient

method to synthesize MVL. PLA decompose the system into smaller subsystem which

will lead to minimization of logic network (Sasao 1988). Summary of different

approaches are presented in Figure 1.3. These syntheses along with few current methods

in synthesizing MVL are discussed in details in the later part of the thesis.

Figure 1.3: Summary of some MVL synthesis approaches

This thesis is carried out with its main objective to explore various efficient methods

to synthesize MVL functions as improvements and additions to the current existing

methods discussed above. To achieve the objective stated above, the thesis presents

the development of several novel algorithms, postulates as well as the demonstration

Types of MVL

Synthesis

Evolutionary Approach

Algebraic Approach

Decomposition of

MVL Algorithm

Deterministic Heuristic

Iterative Heuristic

Hybrid Approach

ACO Approach

Genetic Algorithm

Weighted Direct Cover

Ordered Direct Cover

PLA Decomposition

MVL Algebraic

Division

PSO Approach

Chapter 1: Introduction

11

of reduction in gate count and lesser chip interconnections for digital design in

comparison to existing techniques.

The thesis is organized as below:

Chapter 2 presents the basis of MVL operators used to synthesis MVL. These

operators are used extensively for MVL synthesis throughout the thesis. The

definitions and background for each of these operators are described in details.

Apart from that, basic sets of benchmark circuit which are used in experiments and

analysis in the later part of the thesis are explained. Introduction to HEF4007UBP

integrated circuit is also made in this chapter.

In Chapter 3, a comprehensive study is made in regards to MVL synthesis

techniques. The chapter starts off with a discussion on synthesis of MVL using the

direct cover approach (Abd-El-Barr and Esam 2013), the iterative heuristic approach

(Sarif and Abd-El-Barr 2006), the decompositional method (Files, Drechsler and

Perkowski 1997), the algebraic approach (Romero, Martins and Santos 2009)and

last but not least the neural network approach (Hsu, et al. 1990). Under these

techniques, further researches are presented via few examples utilizing the each of

the techniques discussed. Comparison among the different synthesis techniques is

also made using synthesis of 5000 sequentially generated 4 valued 2 variable

functions. Chapter 3 ends with an analysis of the experiment carried to compare the

outcome of MVL synthesis using various techniques.

Next, Chapter 4 is outlined with explanations regarding the novel algebraic

postulates and logical operators whereby both the postulates and operators are used

Chapter 1: Introduction

12

in realizing MVL functions. Again in this chapter, definitions and the concept of all

the logic operators are presented in detail. They are also proven mathematically. The

chapter concludes with window lateral and short literal as MVL entity to be

different from the conventional ways.

The thesis continues with Chapter 5 in which High Deduction Algorithm (HDA-

MVL) is introduced as one of the way to synthesize MVL. First and foremost,

definition and the concept of HDA-MVL are discussed in this chapter. This is also

includes the necessary steps taken to synthesis MVL using HDA-MVL. Next, the

selection of minterm and implicant is explained followed by algorithmic

development of HDA-MVL. Chapter 5 also covers experimental analysis of variable

functions generated using HDA-MVL alongside comparison with other methods of

MVL synthesis. The chapter summarized that HDA-MVL outperforms other MVL

synthesis methods.

In Chapter 6, presentation of key steps on Neural Network Deployment Algorithm

(NNDA-MVL) is made. Next, neural architecture for EXTENDED AND, MIN and

MAX operators are explained consecutively. This part also shows how NNDA-

MVL works in order to produce trained neural operators. Then, the chapter is

continued with neural and minterm representation whereby the neural operators can

be used to construct neural network as well as train and representation of minterm as

main component to logic reduction. Neural network operators are also analyzed

before presenting the discussion on applications of trained neural MVL operators.

Chapter 1: Introduction

13

Chapter 7 continues the thesis with its focus on synthesis and reduced logic gate

realization of MVL functions by using NNDA-MVL. Firstly, synthesis procedure

using EXTENDED AND operator as an example is made followed by explanation

on basic construction of NNDA algorithm. Next, analysis of neural network

operators are made along with its experimental results. Comparison of MVL gate

count and network link of different neural net logic operators while synthesizing

MVL functions. Chapter 7 ends with conclusion of NNDA-MVL algorithm

managed to reduce gate and neural net internal link compared to other existing

methods.

Chapter 8 covers the topic of Non-Zero Multi-Valued Decision Diagram (NZMDD)

which is taken as base for the synthesis of MVL functions. The MVL functions can

be easily decomposed using decision diagrams (Files, Drechsler and Perkowski

1997). The first chapter goes to the surface of other researches done on construction

of decision diagrams (Miller and Drechsler 2002) as well as synthesis of MVL using

decision diagrams (Drechsler, Thornton and Wessels 2000). The chapter moves on

with an effort made to reduce Product Term (PT) for synthesizing MVL which is

represented as tree-like decision diagram, NZMDD which is addition to MDD

(Miller and Drechsler 2002). This includes detailed explanation on Reduced Multi-

Valued Logic Network (RMVLN) and the way NZMDD is used to RMVLN. After

that, synthesis of MVL using NZMDD is also carried and experimented using data

from (Chowdhury, Raj and Singh 2013) as well as comparing them with other

synthesis techniques. Chapter 8 concludes with NZMDD algorithm outperformed

ACO-MVL algorithm.

Chapter 1: Introduction

14

In Chapter 9, an introduction to logic gates are made. This follows with an

explanation of how HDA-MVL is used to realize MVL expression with the newly

proposed logic gates in this chapter. The chapter continues with representation of

MVL functions as implicants which are then synthesized using EXTENDED AND

operator. More details on the generation of implicants are discussed next. Also the

chapter presents an elaborate study on transistor level implementation. Different

MVL operators and their realizations using circuit are discussed. Then, the

construction of MV logic gates are explained with the built of circuits using NMOS,

PMOS transistors, resistors, diodes and comparators. Next in the chapter is an

experiment to verify functionality of circuits. This verification is done using

ORCAD PSpice transient analysis. The results from this experiment show that

representation of MVL functions can be done by the discussed circuit elements.

Lastly, Chapter 9 is summarized with comparison of the method with algebraic

synthesis.

Chapter 10 of this thesis introduces two different architecture MAX operator and its

application. Area efficient MAX operator for MVL realization is presented. The

chapter elaborates in details about the proposed MAX circuit following definition of

MAX operator and its algebraic properties. The proposed MAX circuit utilising two

transistors as its base provides minimal delay. An experiment is conducted to verify

the functionality of MAX using HSpice on 180nm technology. Secondly the chapter

focus on the discussion of low power MAX operator design for MVL system. This

second architecture MAX operator is realized in voltage mode, using limited

transistors. This is followed by an application on using MAX in binary logic.

Chapter 1: Introduction

15

Following next is a detailed description on proposed MAX circuit which utilizes

three transistors. A thorough understanding on NOR gate realization is also made.

This chapter will focus on realizing the MAX operator in voltage mode with

minimum number of transistors. After that, simulation results of proposed MAX

circuit on HSpice on 180nm technology are presented. Chapter 11 is summarized

that the proposed MAX circuit can achieved faster realisation and MAX based NOR

gate operates with minimal delay at low power level.

Lastly in Chapter 11, all the findings and results of each chapter are concluded with

some future directions.

Chapter 2: Preliminaries

16

Chapter 2

Preliminaries

In this chapter, fundamental basic of Multi-Valued Logic (MVL) operators are

presented as most of these existing operators will be widely used for MVL synthesis

throughout the presentation of thesis. Three basic sets of benchmark circuits which were

used in analysis and experiments in the thesis are also discussed. Then, a brief

introduction of Integrated Circuit (IC) HEF4007UBP is presented. IC HEF4007UBP

was used in the physical implementation of the proposed Maximum (MAX) gate. Next,

the highlight of feature sets which were investigated for the performance evaluation of

different synthesis approaches is made.

2.1 Notations and Background

In Voltage Mode (VM), MVL logic levels are represented by voltage levels in terms of

a base voltage. The initial base voltage value ibv is set to 1.5 Volt for the experiment.

Logic level l corresponded to an interval of the continuous quantity x. Hence, level 0

represents the null value and level 3 is associated with bv = 4.5V and so on. As the

logic level l changed bv changed such that : ()b ibv l v as explained in Jain, Bolton and

Abd-El-Barr(1993) and Temel, Morgul and Aydin(2006).

Chapter 2: Preliminaries

17

Following the consideration of z-valued y-variable function f(x), where

1 2{ , , , }mx x x x and xi takes on values from {0,1,2, , 1}R y  , where “y” is the

radix. The function f(x) is a mapping : yf R R . There are
myy different possible

functions. If y = 3 and z = 2, then there are
333 , meaning 19683 possible existing

functions available (Jain, Bolton and Abd-El-Barr 1993; Temel and Morgul 2002).

In this thesis, a maximum of 4 valued 2 variable functions were investigated for the

experiment purpose. For a maximum of 4 value, logic level l=3 would represent bv =

4.5V. A logic level l related to an interval of the continuous quantity x such that

(Gawande and Ladhake 2008; Jain, Bolton and Abd-El-Barr 1993).

 : | () ()ib ibx l x l v x l v  
 (2.1)

Definition 2.1.1- A Minimum (MIN) operator is defined as below, where na and nb is a

definite value and both of them are a member of set of all real values R. Hence

1 2, , , na a a R , 1 2, , , nb b b R and 0 { , } (1)a b y   . The operation is such that

1 2 1 2(, , ,)n nMIN a a a a a a and 1 2 1 2(, , ,)n nMIN b b b b b b (Smith 1988; Abd-

El-Barr and Al-Awami 2003). Therefore, (,)MIN a b a b a b   . If  1 1 2, , , nX a a a

and  2 1 2, , , nX b b b , then the representation of the MVL MIN operator is as Table 2-

1 below.

Chapter 2: Preliminaries

18

The MIN operator can be represented by the following relation (Gawande and Ladhake

2008; Temel, Morgul and Aydin 2006):

(,)
a if a b

MIN a b
b otherwise


 
 (2.2)

Definition 2.1.2- A MAX operator is defined for 1 2, , , na a a R , 1 2, , , nb b b R and

0 { , } (1)a b y   , where na and nb is a definite value and both of them are a member

of set of all real values R (Abd-El-Barr and Al-Awami 2003). The MAX operation

follows as 1 2 1 2(, , ,)n nMAX a a a a a a    and 1 2 1 2(, , ,)n nMAX b b b b b b    .

Therefore (,)MAX a b a b a b    .If  1 1 2, , , nX a a a and  2 1 2, , , nX b b b , then

representation of the MVL MAX operator is illustrated as Table 2-2. The MAX

operator could be represented by the following relation:

(,)
a if a b

MAX a b
b otherwise


 
 (2.3)

Table 2-1: Tabular representation of MVL MIN operator

2X

MIN Function (MVL AND Gate)

1X

0 0b  1 1b  2 2b  3 3b 

0 0a  0 0 0 0

1 1a  0 1 1 1

2 2a  0 1 2 2

3 3a  0 1 2 3

Chapter 2: Preliminaries

19

Definition 2.1.3- The complement of X or INVERTER is defined as below, where

X R . Also the range of X depends upon radix y , where 0 (1)X y   (Nakahara,

Sasao and Matsuura 2011). Table 2-3 shows the INVERTER operation.

Therefore complement of X or the INVERTER can be represented as,

1X y X   (2.4)

Table 2-3: Tabular representation of MVL INVERTER operator

X
X

Inversion

0 0X 
0 3 0 3X   

1 1X 
1 3 1 2X   

2 2X 
2 3 2 1X   

3 3X 
3 3 3 0X   

Table 2-2: Tabular representation of MVL MAX operator

2X

MAX Function (MVL OR Gate)

1X

0 0b  1 1b  2 2b  3 3b 

0 0a  0 1 2 3

1 1a  1 1 2 3

2 2a  2 2 2 3

3 3a  3 3 3 3

Chapter 2: Preliminaries

20

2.2 Benchmark Circuits and IC HEF4007UBP

A total of 119598 benchmark circuits were used in different experiments throughout

this thesis. Renowned researcher Mostafa Abd-El-Barr in his papers; Abd-El-Barr and

Sarif(2006) and Sarif and Abd-El-Barr(2006) self generated 50000 sequentially

generated benchmark circuits and compared them with different algorithms.

Based on his works, three different sets of benchmark circuits were generated using

different methods. Data generation and computation were performed on a Microsoft

windows XP, Intel Core2 duo 2.20GHz CPU, 0.98GB RAM machine. Generation of

data and results in this thesis might vary if they are performed on different machines.

SETA (50000 Sequentially Generated Data Set) data consists of 50000 sequentially

generated MVL benchmark circuits. This entire set of data was distributed in 14

different sections. Each section represents a fixed minterm- a combination of different

functions. For the 19600 randomly generated data set SETB, the data was distributed in

7 sections. The distribution for both data sets is shown in the Figure 2.1 and Figure 2.2

below.

Figure 2.1: SETA-Sequentially generated benchmarks

Minterm 1

1%
Minterm 2

5%

Minterm 3

13%

Minterm 4

21%

Minterm 5

23%

Minterm 6

18%

Minterm 7

11%

Minterm 8

5%

Minterm 9

2%

Minterm 10

1%

Chapter 2: Preliminaries

21

SETA was used in the analysis for HDA-MVL algorithm. It was also used to compare

DC against evolutionary algorithms. SETB distributed highest 27.00% of the data for 6

minterm MVL function generation. This data set was used for the analysis of NZMDD

algorithm to check the reduction in Product Term (PT). The algorithm was compared

against evolutionary ACO-MVL algorithm.

Figure 2.2: SETB-Randomly generated benchmarks

Minterm 3

2%

Minterm 4

8%

Minterm 5

17%

Minterm 6

27%

Minterm 7

26%

Minterm 8

16%

Minterm 9

4%

Figure 2.3: SETC-Randomly generated benchmarks

M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

0.03% 0.15% 0.55% 2.08%
5.15%

10.87%

18.01%
22.46%21.17%

13.18%

5.36%
1.00%

4 Valued 2 Variable MVL Functions

Chapter 2: Preliminaries

22

49998 randomly generated data SETC was randomly generated for a 12 section

distribution. Highest 22.46% data of the set was allocated for minterm 12. As it can be

observed from the Figure 2.3 shows a total of 49998 4-valued 2-varibale functions were

generated.

In this thesis, a novel MAX architecture is proposed and implemented using the IC

HEF4007UB. The IC is a dual complementary pair and inverter. The IC has three p-

channel and three n-channel enchancement mode Metal Oxide Semiconductor (MOS)

transistors. Each of the transistor’s can be accessed separetly. The operator is composed

of only one n-channel and one p-channel MOS transistor. Ease of accessebility to each

of the different enchancement mode MOS transistor is one of the vital reason to choose

this specific IC.

Throughout the thesis, this IC was used for two different experiments. One is in the

area efficient logic MAX operator which was realized and tested. Another is in the

analysis of the constraints such as delay, power consumption etc. which were compared

against the existing architecture. The IC was operated up to a maximum of 15V which

gave the opportunity to attempt various logic levels. Among many of this IC’s

applications are linear and high input impedance amplifiers, current drivers, high

impedance buffers and oscillators (Smith 1988).

2.3 Feature Set for Different Approach Analysis

Feature set analysis is carried for all the approaches and their experiments. Feature set

consists of terms which are compared against the existing architecture or algorithms. It

Chapter 2: Preliminaries

23

is necessary to justify each approach by evaluating the terms in the feature set. Table 2-

4 consisting of feature sets and techniques is presented as shown below.

Feature A denotes the logic expression and simulation based features. These

features can be found in Romero, Martins and Santos (2009) and Abd-El-Barr and Sarif

(2006) in their research articles. Simulation feature was used to confirm the logic level

verification process. Logic expression and PT was analyzed to verify the reduction of

the final synthesized function. A total of three features were analyzed.

Table 2-4: Feature set for different MVL synthesis approaches

Notation Synthesis

Techniques

Feature Set No. of Features

A Postulates  Product term (PT)

 Logic Expression

Reduction

 Simulation

3

B Neural Network

MVL operators
 Training Time

 Hidden Layer

Neuron Count

 Delay

 Accuracy

 Application

5

C NNDA algorithm  Simulation

 Interconnected

Links

 Gate Count

 Network

Architecture

4

D NZMDD algorithm  Reduction in

Network Size

1

E Circuit

Implementation
 Gate Input Count

 Gate Count

 Delay

 Power Consumption

 Transistor Count

 Simulation

 CMOS NOR

7

Chapter 2: Preliminaries

24

Feature B and C reflects the features for Neural Network (NN) approach. Gate count

and interconnected links were compared for the digital circuit implementation. Training

time, hidden layer neurons and accuracy were investigated for training MVL operators.

Results were compared against Zheng et al. (1998) and simulations were used for

operator output verification purposes. For the performance evaluation there are total of

four sections – Algebraic synthesis, Decision Diagram (DD) approach, Circuit

Implementation and Machine Learning (ML).

Feature D denotes the size reduction features of the decision diagram. This feature

was used to check the number of nodes taken to compactly represent a MVL function.

This feature also helped to analyze PT taken to synthesize each function. On the other

hand, last but not least notation E features many terms which were utilized for analyzing

the ideal environment for implementing MVL MAX gate.

2.4 MVL Over Binary System

MVL technology reduces the number of lines required for parallel transmission. Hence

the system is able to transmit more information with less transmission line.

 0/1 <MSB> 0/1/2 <MS>

 1 0/1 0/1/2 0/1/2

 1 0/1 0/1/2

0 0/1 0/1/2 0/1/2

0 0/1 0/1/2 0/1/2

0 0/1 0/1/2 0/1/2

1 0/1 0/1/2 0/1/2

1<LSB> 0/1 <LSB> 0/1/2<LS> 0/1/2<LS>

Figure 2.4: Binary Vs MVL parallel transmission

Receiving

Side

D7

D6

D5

D4

D3

D2

D1

D0

Transmitting

Side

D7

D6

D5

D4

D3

D2

D1

D0

Receiving

Side

D7

D6

D5

D4

D3

D2

D1

D0

Transmitting

Side

D7

D6

D5

D4

D3

D2

D1

D0

Chapter 2: Preliminaries

25

For example as shown in the Figure 2.4, in a parallel transmission scheme binary

with seven data line can produce 256 combinations of information. MVL produced

64.88% more information with lesser transmission lines. MVL does not only benefit us

in data transmission technology but also resolves bus connection and pin limitation

problems. This futuristic technology can be also used in conjunction with binary sub-

systems which will reduce wiring complexity. Lastly decreased power consumption

over binary gives MVL the opportunity to become a major research field of study for

the future technological advancement.

2.5 MVL Synthesis

Multi-level logic synthesis bridges all features of combinational logic, logic

optimization and design for testability and verification (Brayton, et al. 1996). MVL

synthesis is a process which helps accomplish desired circuit behavior which later forms

into logic gate design implementation. Throughout this thesis, a set of logic operations

are used for functional synthesis. The operators usually consist of MVL MIN, MAX,

ODD, EVEN, INVERTER, EXTENDED AND other logic gates.

MVL synthesis optimizes logic functions up to the optimal level. Logic gates are

used for the synthesis of MVL functions. A ternary function has up to 19683 possible

different functions. All of these functions are essential to be optimized before logic

level implementation. Higher functional optimization is achieved through lower

hardware cost and efficient design architecture. The Figure 2.6 below illustrates the

scope and contribution of this thesis in the process of MVL synthesis.

Chapter 2: Preliminaries

26

In conventional procedure, MVL functions are mapped and the minterms are extracted.

Only non-zero minterms are taken under consideration to produce efficient synthesis

algorithms. Various techniques are suggested by Yang and Wang (1990). In this section

of the thesis, a generalized view of MVL synthesis mechanism is presented. It is

assumed that 2 inputs and 1 output ternary function  1 2,G X X represented in terms of

all of its existing minterms, as shown below in Table 2-5.

Consider matrix NSG for the non synthesized function. NSG and its SoP representation is

shown accordingly in the equation (2.5) and(2.6).

Figure 2.5: Scope of research in the process of MVL synthesis

Table 2-5: A 2-input 1-output ternary function  1 2,G X X

2X

Function  1 2,G X X 1X

0 0b  1 1b  2 2b 

0 0a  1 0 0

1 1a  1 0 0

2 2a  2 1 1

Chapter 2: Preliminaries

27

1 0 0

1 0 0

2 1 1

NSG

 
 


 
  

 (2.5)

 
1 2 1 2 1 2 1 2

0 0 0 0 0 0 1 1 0 0 2 2 1 1 2 2 2 2 2 2

1 2 1 21 1 2 1 1

 1, 2 10000 10011 20022 11122

(

 1222

,)

2 5

X X

SoP G

G X X X X X X X X X

PT

X

X X

   

     





 (2.6)

 Synthesized MVL functions are represented with lesser product terms. Non

synthesized Sum of Product (SoP) required 5 PT, when synthesized expression required

3PT. Equation (2.7) shows the functional representation of synthesized  1 2,G X X .

Table 2-6 highlights the minimized section of the function. The technique of

minimizing the representation of these functions produces various synthesis algorithms.

In this thesis various approaches for synthesizing MVL functions are discussed in

detail.

  

0 0 0 1 0 0 2 2 1 2 2 2

1 21 2 1 2 1 21 2 1

 1, 2 10001 20022

(,)

 11222 3

X X

So

G X

P G X X

X X X X

T

X

P

 

 



  
 (2.7)

An efficient architecture of a synthesized function over original function differs

during digital and circuit implementation. Design complexity, power consumption,

Table 2-6: Minimized portion of  1 2,G X X during synthesis

2X

Function  1 2,G X X

1X

0 0b  1 1b  2 2b 

0 0a  1 0 0

1 1a  1 0 0

2 2a  2 1 1

Chapter 2: Preliminaries

28

delay, chip interconnections and number of transistors etc. plays important role in

determining a better output. A comparison Table 2-7 between original and synthesized

MVL function is represented as below.

Table 2-7: Difference between original and synthesized MVL function

MVL Function  1 2,G X X Original Synthesized

Number of Transistors Transistor increases upon

complete circuit

implementation of function

Lesser transistor used to

compared to original MVL

function

Chip Interconnections Higher number of

interconnections needed

Synthesized function

requires lesser

interconnections

Logic Level Design Complex and time

consuming

Simpler and efficient

Circuit Implementation Inefficient with respect to

enormous hardware cost

Efficient with respect to

lesser hardware cost

Chapter 3: Multi Valued Logic Synthesis Techniques

29

Chapter 3

Multi-Valued Logic Synthesis

Techniques

3.1 Introduction

Over the last three decades, synthesis and simplification of multi-valued logic functions

has become one of major research field in Integrated Circuits (IC) industry. Synthesis of

Multi-Valued Logic (MVL) is one of the crucial aspects that make MVL-related

systems and circuits more efficient and economical. In this chapter, a study covering

types of synthesis done on MVL is discussed.

 The chapter starts off with a discussion on synthesis of MVL using the direct

cover approach. This approach can be divided into two-the Weighted Direct Cover

(WDC) and Ordered Direct Cover (ODC) (Abd-El-Barr and Sarif 2007; Yang and

Wang 1990). Next, the chapter explains in detail about Iterative Heuristic approach in

synthesizing MVL. The Iterative Heuristic approach increases the possibilities to

discover wider solution space (Abd-El-Barr and Sarif 2006).Some of the synthesis that

utilized this approach is the Genetic Algorithm approach as discussed in Sarif and Abd-

El-Barr (2006) and the Ant Colony Optimization as discussed in Abd-El-Barr and

Sarif(2006).

Chapter 3: Multi Valued Logic Synthesis Techniques

30

 Apart from these, a wide research is also carried in the Algebraic approach of

MVL synthesis (Romero, Martins and Santos 2009). Besides that, the Neural Network

Approach has also been presented as another method in MVL synthesis (Hsu, et al.

1990); Abd-El-Barr and Esam 2013; Abd-El-Barr and Sarif 2007). Lastly, comparison

tabulation is made highlighting different synthesis methods of MVL. Another

comparison table is also constructed to depict product terms needed for MVL functions

using different types of synthesis.

3.2 MVL Synthesis Approach

There are few main categories of algorithms involved in the synthesis of MVL.

According to Sarif and Abd-El-Barr(2006), the first two algorithms are the deterministic

and the iterative heuristic algorithms. The other category of algorithm is the

decomposition based algorithm in Al-Rabadi (2003) and Chojnacki and Jozwiak (2000).

Different approaches are also observed from other literature (Allen and Givone 1968;

Mathew, et al. 2008).

3.2.1 The Direct Cover approach

The deterministic algorithm is the algorithm which takes the Direct Cover (DC)

approach as its basis. This algorithm focuses on selecting next minterm in order to be

covered. It also chooses the proper implicant for covering selected minterm in iterative

way using specific criteria state (Abd-El-Barr and Esam 2013; Yang and Wang 1990).

According to Yang and Wang(1990), this step is further clarified by minimizing MVL

logic truncated sum which selects both isolated minterms and implicants. Then, this will

lead to the production if saturated minterm which can be reduced to a don’t care

Chapter 3: Multi Valued Logic Synthesis Techniques

31

minterm to minimize the MVL logic done in the development of ND-algorithm. Here,

the don’t care minterms are used as much as possible. Based on the research done by

Abd-El-Barr (2011), the DC techniques to synthesize MVL are as following:

1. Choose a minterm

2. Identify a suitable implicant that covers the chosen minterm

3. Obtain a reduced function by subtracting the identified implicant from the

(remaining part of the) function, and

4. Repeat steps 1 to 3 until no more minterms remains uncovered.

 These steps are important especially to obtain the reduced number of products terms

in order to cover a function given (M. Abd-El-Barr 2011). The DC approach can also be

further classified into two approaches which can be used to combine all metrics from

different minterm/implicant selection criteria. These approaches are the Weighted

Direct Cover (WDC) which is used to specify weight for each selection criterion and the

Ordered Direct Cover (ODC) which put the selection criteria for both minterm and

implicant in order (Abd-El-Barr and Sarif 2007).

3.2.2 The iterative heuristic based approach

According toAbd-El-Barr and Sarif(2006), the iterative heuristic widens the chances to

explore bigger solution set in order to arrive at near optimal solutions. One of the

examples of the iterative heuristic approach is as discussed by Sarif and Abd-El-

Barr(2006). According to the paper, the solutions are obtained by using the Genetic

Algorithm approach (GA) where these solutions are taken as representation of strings of

Chapter 3: Multi Valued Logic Synthesis Techniques

32

chromosomes. Each chromosome representing a product term which consists of some

genes and each gene consist of five integer attributes. In the GA approach, the design of

the parameter is determined by the length of chromosome. This is further explained by

the inability for GA to find the best solution suited the chromosome. However, if the

chromosome is very big in length, the GA will lose a significant amount of time in

finding solution in the no-solution space. The best technique to use in this approach in a

straightforward way is to use the length of the truth table as the length of chromosome.

When this approach is compared to a DC approach, it is showed that the GA Approach

yielded better results especially taking into consideration the number of products needed

to synthesize functions (Sarif and Abd-El-Barr 2006).

Other iterative heuristic approach researched is the Ant Colony Optimization (ACO)

approach. This meta-heuristic approach combines the distributed computation and

autocatalysis in order to find the best solution for various number of combinatorial

optimization problems. This approach is carried by using the ‘ant’ to find the optimal

representation by selecting the right minterm and implicant (Abd-El-Barr and Sarif

2006). This approach is similar to DC approach to the extent that the best minterm is

selected first followed by the best implicant for the chosen minterm. Then, the reduction

of the MVL function table is reduced by removing selected implicant. However this

similarity stops when the ant leaves a trail of pheromone on minterm/implicant so that

the next ant will chose better based on the additional information left by the pheromone.

3.2.3 The decomposition method

Apart from the approaches mentioned above, MVL can also be optimized by using

novel symbolic functional decomposition methods. The decomposition of MVL

Chapter 3: Multi Valued Logic Synthesis Techniques

33

functions can lead to efficient implementation of logic circuits. This approach also

manages to represent data effectively in information systems (Files, Drechsler and

Perkowski 1997). This approach works by decomposing the system into few smaller

subsystems hence making them easier to be synthesized. The decomposition can be

implemented into various purposes. One of them is the programmable logic array (PLA)

decomposition which is based on decomposing the original function into components

matching to a set of interconnected PLA. As a result of this, the logic network will be

minimized. Apart from that, the decomposition approach can also be implemented to

reduce the space required in problems related to data representation in machine learning

(Kohavi, et al. 1994).

Quaternary decision diagrams have advantage in representing and evaluating

MVL functions (Sasao, Nakahara, et al. 2009). Other researchers like: Tsutomu Sasao

has mathematically shown that how many variables it requires to represent Multiple-

Valued incomplete specified functions (Sasao 2010). Daniel Stamate has shown that

extended logic programs could be used to represent Multiple-Valued Logic systems

(Stamate 2006). Arithmetic operators have also been implemented in multi-valued logic

(Balasubramanian, Narayana and Chinnadurai 2005; Nakahara, Sasao and Matsuura

2011). Combinational and sequential digital circuits are proposed by Balasubramanian,

Narayana and Chinnadurai(2005).

3.2.4 The algebraic approach

Another type of synthesis method is based on the Algebraic approach. This approach

focuses on synthesizing the algebraic form of function. The synthesis is mainly done on

the canonical form of the Sum of Extended Product (SoEP) terms, the duality and the

Chapter 3: Multi Valued Logic Synthesis Techniques

34

circuit simplification procedure (Romero, Martins and Santos 2009). From the result

gathered using this approach, its simplification techniques can be used to simplify

various classes of MVL digital circuits. Apart from that, this Algebraic approach also

allows the program tools to be implemented in order to simplify the limit imposed by

algorithm complexity (Romero, Martins and Santos 2009).

For the purpose of comparison between some of the approaches to synthesize

MVL, a benchmark consisting of 50000 sequentially generated 4 valued 2 variable

functions has been generated and synthesized. The Figure 3.1 provides comparison of

some approaches mentioned above. Average PT in regards to dissimilar numbers of

MVL functions’ minterms are used as benchmark. For the proposed method, MVL

functions are generated sequentially not randomly. The comparison is shown below

between Besslich (1986), Dueck and Miller (1987), Pomper and Armstrong(1981),

Ordered Direct Cover (ODC), Weighted Direct Cover (WDC), Ant Colony

Optimization (ACO), Genetic Algorithms (GA) and Revised Genetic Algorithms

(RGA).

It can be observed from Figure 3.1that the worst case scenario for ACO-MVL is

13 minterm where the average PT usage is 7.18. Where as in the Figure 3.2, the overall

average PT which is achieved by DC based algorithms and the Evolutionary heuristic

based techniques are also shown.

Chapter 3: Multi Valued Logic Synthesis Techniques

35

Figure 3.1: Comparison of proposed algorithm with existing evolutionary and direct

cover algorithms

Figure 3.2: Average product term needed to synthesize MVL functions using different

algorithms

Chapter 3: Multi Valued Logic Synthesis Techniques

36

The Figure 3.1 illustrates that the ACO-MVL algorithm outperforms all DC

based algorithms. Among all the existing algorithms, the ACO-MVL algorithm yield

better results regarding average product term required for synthesis of a given MVL

function.

3.2.5 The neural network approach

The synthesis of MVL can also be done from the Neural Network approach. This

approach is then can also be categorized further into few subsections. Hsu et.al. (1990)

explained in detail about the three-valued neural logic network. In this network, the

activations of nodes are limited to ordered pairs (1,0), (0,1) and (0,0) where the

meanings of the third pair are UNKNOWN in the Kleene’s logic and MEANINGLESS

in Bochvar’s logic (Hsu, et al. 1990). Besides that, the three-valued neural logic

network can also be generalized into two types of networks. One is the probabilistic

network which is used to predict recognition pattern and in expert system development.

The other type of network is the fuzzy interference where the three-valued logic is

comprehensive to handle the uncertainties in inference. The fuzzy interference network

is crucial to be used in decision-making expert system (Hsu, et al. 1990).

Other research in the synthesis of MVL from the neural network approach is the

error back-propagation in MVL system especially in the neural networks. The error

back-propagation can derive target output pairs for each layer in the system from the

global input-output data (Apostolikas and Konstantopoulos 2007). This propagation can

be done by the Fuzzy Description Logic System where the system can calculate the

input that is most approximate input for the fuzzy reasoned which is then used as

Chapter 3: Multi Valued Logic Synthesis Techniques

37

supervised training data for adaptive learning of the first-level classifiers(Apostolikas

and Konstantopoulos 2007).

Lastly, the synthesis of MVL can be carried by minimizing the multilayer

feedforward of neural networks where multiple-valued multiple-threshold perceptrons

are used as basic processing elements/nodes of the network (Ngom and Simovici 2004).

Apart from that, construction of near minimal multi-valued neural network for

computing given but arbitrary multiple-valued functions via implementation of

partitioning algorithm is also discussed.

3.3 Summary

This chapter covered the types of approach in order to synthesis the MVL. The

approaches of MVL synthesis discussed were the DC, iterative heuristic, decomposition

method, algebraic and the neural network. These approaches were presented in details

inclusive of various new techniques categorized under its specific approach.

The chapter also compared some types of synthesis discussed to measure its

efficiency synthesizing the MVL. The first comparison was done using a synthesis of

5000 sequentially generated 4 valued 2 variable functions. It was shown in the first

comparison that the ACO-MVL method outperformed the other types of synthesis in

terms of yielding results in individual PT required for synthesis of MVL functions

whereas the second comparison was done by comparing the resulting better outcome

regarding average PT required for synthesis of a specific MVL function.

This chapter also concluded that Evolutionary and Combined heuristic algorithms

gave benefits in terms of efficient functional synthesis. However, both of these

algorithms required much computational complexity, hence more time to generate

Chapter 3: Multi Valued Logic Synthesis Techniques

38

synthesized functions. Most of the existing efficient algorithms were computationally

complex and required enormous amount of time (CPU time) for synthesizing MVL

functions. The only draw-back of MVL algebra was the standard set of Logic rules and

Universal logic gates. Existing Algebraic Synthesis methods were not efficient enough

to compete against the recent evolutionary algorithms. However, with the current

approaches such as ACO and GA, this was reduced significantly. On the other hand,

more research should be presented to overcome these limitations.

Chapter 4: Logic Operators and Algebraic Postulates

39

Chapter 4

Logic Operators and Algebraic

Postulates

In this chapter a set of novel algebraic postulates and logical operators has been

proposed to realize Multi-Valued Logic (MVL) functions. All the postulates and

operators are shown proven. Window literal or short literal as a MVL entity is defined

complete differently as opposed to the conventional methods.

4.1 Introduction

MVL algebra has an important role in the synthesis of digital circuits (Lablan 2005-

2011). The only draw-back of MVL algebra is that it has the standard set of logic rules

and universal logic gates. Existing algebraic synthesis methods are not efficient enough

to compete against the recent evolutionary algorithms. The postulates presented in this

section are explained in detail. Some novel logical operators are suggested to realize

MVL functions. Combining two separate window literal a minterm has been formed.

Each column of a MVL functional matrix is shown as an implicant which can consist of

any non-zero minterm.

The proposed postulates will result in a generalized MVL algebraic synthesis which

is a unique approach to generate an efficient synthesis of MVL functions, compared to

Chapter 4: Logic Operators and Algebraic Postulates

40

other existing algorithms or rules. The operators are essential in minimizing the

hardware cost when realized. On the other hand, the discussed postulate rules help in

reducing logic expressions. Throughout this thesis, many different approaches have

utilized these operators and postulates to obtain better synthesis results.

4.2 Unique Multi-Valued Logic Operators

In this segment each of the proposed logic operators are presented and discussed in

details. MVL operators such as ODD, EVEN, EXTENDED AND, INVERTER,

EXTENDED COMPLEMENT and WINDOW LITERAL etc. are discussed along with

their definitions. Below all the necessary definitions of the logic operators are

explained,

Definition 4.2.1- The WINDOW LITERAL or short literal is defined as

0

a b
b if x a

x
otherwise


 
 (4.1)

Where, 1 2, , , na a a R , 1 2, , , nb b b R and 0 { , } (1)a b y   where b is called the

value of the literal. The definition of WINDOW LITERAL provides the opportunity for

eliminating the usage of COMPLIMENTARY LITERAL (CL). Thus in this thesis, CL

is not extensively used during the synthesis of MVL functions.

Definition 4.2.2- An EVEN operator is defined as below, where an, and m is a definite

value. m is defined as a standard value for detecting an even value, where m = 2. m is a

Chapter 4: Logic Operators and Algebraic Postulates

41

member of set of all real values R: 1 2, , , na a a R , 1 2, , , nb b b R , { , }p m R and

0 { , } (1)a b y   .

The even operator detects whether value p is even or not. If p is even then

()EVEN p true and ()EVEN p p otherwise ()even p false and () 0EVEN p  .

Therefore,

mod 0
()

0

p if p m
EVEN p

otherwise


 
 (4.2)

And the EVEN function could be represented by the following relation:

max((), ()) () || ()
_ (,)

0

EVEN a EVEN b if EVEN a EVEN b true
EVEN Func a b

otherwise


 


 (4.3)

For any even input the output will be even. The purpose of the even operator is to detect

any even input compared to odd input. If both even input is detected, the output is

prompt to zero.

Definition 4.2.3- An ODD operator is defined as below, where an, m and k is a definite

value. m is defined as a standard value for detecting an even value, where m = 2. k is

defined as a standard value for detecting an odd value, where k = 1. m ,k is a member of

set of all real values R: 1 2, , , na a a R , 1 2, , , nb b b R , { , , }p m k R and

0 { , } (1)a b y   . The ODD operator detects wither value p is odd or not. If p is odd

then ()ODD p true and ()ODD p p otherwise ()ODD p false and () 0ODD p  .

Chapter 4: Logic Operators and Algebraic Postulates

42

Therefore,

() 0 ()mod 0
()

0

p if p k and p k m
ODD p

otherwise

   
 


(4.4)

And the ODD function could be represented by the following relation:

max((), ()) () || ()
_ (,)

0

ODD a ODD b if ODD a ODD b true
ODD Func a b

otherwise


 


 (4.5)

For any odd input the output will be odd. The purpose of the odd operator is to detect

any odd input compared to even input. If both odd input is detected, the output is

prompt to zero.

Definition 4.2.4- The EXTENDED COMPLEMENT of x is defined as below, where x a

member of set of all real values R. Considering a MAX operation with the complement

of x, different representation could be achieved from the EXTENDED COMPLEMENT

operation. If MAX operation is performed with complement of x the following can be

represented:

x if x x
x x

x otherwise

 
  



(4.6)

If MIN operation is performed with complement of x the following can be represented:

x if x x
x x

x otherwise

 
  



(4.7)

Chapter 4: Logic Operators and Algebraic Postulates

43

Definition 4.2.5- Consider MIN and MAX operator is defined as below:

min(,)nl a b a b a b    or max(,)nl a b a b a b    

(4.8)

Considering a 3 valued 2 variables MVL min operation, there exist a 3x3 matrix. If any

ln has a slant bonding of only 2 then there is a possible switch.

Table 4-1: 3x3 matrix of complemented ln. arrows showing possible switch between the

slant bondings

(,)l MIN a b a 0 1 2

 b

 0 2(l1) 2(l2) 2(l3)

 1 2(l4) 1(l5) 1(l6)

 2 2(l7) 1(l8) 0(l9)

Phase 1 is a given MVL function. Below in Table 4-2 an example of a 4x4 matrix for 4

valued 2 variable min operations. All 4 phases are shown by example as below:

Table 4-2: An example of 4x4 matrix MIN function

(,)MIN a b a 0 1 2 3

 b

 0 0 0 0 0

 1 0 1 1 1

 2 0 1 2 2

 3 0 1 2 3

Chapter 4: Logic Operators and Algebraic Postulates

44

In Table 4-1, switch cannot be overlapped. For all ln in the matrix, complement

operation has to be applied before possible switching takes place. Below is a 3x3 matrix

of complemented ln. Arrows showing possible switch between the slant bondings: Phase

2 depicts by complementing all the minterms including “0” in the provided MVL

function. Table 4-3 reflects on phase 2 implementation.

Table 4-3: Phase 2 of the inverse MIN or MAX operation

(,)l MIN a b a 0 1 2 3

 b

 0 3 3 3 3

 1 3 2 2 2

 2 3 2 1 1

 3 3 2 1 0

Table 4-4 shows Phase 3 implementation. All possible switching between the slant’s

bondings are shown by the arrow.

Table 4-4: Possible switching of the minterms shown by both ended arrows

 Switch(l) a 0 1 2 3

 b

 0 3 3 3 3

 1 3 2 2 2

 2 3 2 1 1

 3 3 2 1 0

Chapter 4: Logic Operators and Algebraic Postulates

45

Phase 4 is the last phase of the inverse MIN or MAX operation. Table 4-5 represents

final outcome as a max function which is obtained from a min function.

Table 4-5: Final phase 4 representing the outcome as the MAX function

(,)MAX a b a 0 1 2 3

 b

 0 0 1 2 3

 1 1 1 2 3

 2 2 2 2 3

 3 3 3 3 3

Definition 4.2.6- An EXTENDED AND operator is defined as below:

1 2

1 2 1 1

,

1 2 2 2 2 1

0

b ba

b if x b and x a

x x b if x b and x a

otherwise

 


   



(4.9)

Where 1 2, , , na a a R , 1 2, , , nb b b R and 1 20 { , , , } (1)a b x x y   and 2x determines the

value of the EXTENDED AND. The definition of the operator provides the opportunity

of eliminating the usage of MIN operator twice in one logic expression. Thus in this

thesis EXTENDED AND is extensively used during the synthesis of MVL functions.

WINDOW LITERAL or short literal is explained in definition 4.2.1. Consider an

implicant from a MVL function as
0 1 1 1 0 2 2 2

1 2 1 2x x x x . The implicant can be used and

simplified using MVL algebraic rules for the EXTENDED AND operator. Both of the

WINDOW LITERALs
0 1

1x and
0 2

1x forms the implicant from the same column of the

Chapter 4: Logic Operators and Algebraic Postulates

46

matrix of the MVL function. The simplified implicant can be represented as

0 1,2 1 1 2 2

1 2 2()x x x . Considering coordinate 1 0x  and 2 2x  for the above mentioned

implicant. Therefore the implicant would achieve the output as, 0 1,2

1 (0 2)x  ,

0 1,2

1 22, 2x where x  2 2 2   .

Definition 4.2.7- An assignment of values to variables where the following condition

and rule satisfies is called a minterm. In an MVL matrix 1

a bx and 2

a bx represents the value

of a minterm. 1

a bx and 2

a bx both of them are WINDOW LITERALs. WINDOW

LITERALs help to form the representation of minterms with the assistance of

coordinate 1x and 2x . Table 4-6 represents a MVL function.

Table 4-6: Function f1 representing a 3x3 matrix of a random MVL function

Function f1 a 0

Column 1

1

Column 2

2

Column 3

 B

 0 0(l1) 2(l2) 1(l3)

 1 1(l4) 0(l5) 2(l6)

 2 2(l7) 1(l8) 0(l9)

Considering coordinate 1 2(,) (2,1)x x  , the value of the minterm at this point is 2. This

minterm is retrieved from column 2 of the MVL matrix. Since the minterm is 2, then b

= 2. 1 2x  therefore, 1 2a  and 2 1x  therefore, 2 1a  . So, representation could be

2 2 1 2

1 2x x . According to the definition 4.2.1 of WINDOW LITERAL this could be

Chapter 4: Logic Operators and Algebraic Postulates

47

represented as 2 2 1 2

1 2 2 2x x   or 2. Therefore an ideal minterm could be represented as

min operation of two WINDOW LITERALs as 1 2
m n m na b a b
x x , where, 1 2, , , ma a a R ,

1 2, , , nb b b R and 1 20 { , , , } (1)a b x x y   m m n na a and b b  . Therefore,

1 1 1 1 1 1

1

, min

0

a b
b if x a where b term value

x
otherwise

 
 


(4.10)

 2 2 2 2 2

2

, min

0

a b
b if x a where b term value

x
otherwise

 
 


(4.11)

4.3 Algebraic Postulates

For notation purposes MVL variables are denoted as nx or mx . MV Logic constant are

denoted with lower case alphabets such as m, n and normal alphabet such as k. The base

of the digital representation is denoted by y with domain R, {0,1,2, , 1}R y  , where

“y” is the radix. In MVL all identity and below mentioned postulates are represented by

MIN and MAX operator. The “+” symbol always stands for the MAX operator. Mostly

all the examples in this section of the thesis are performed considering y = 4 with

domain {0,1,2,3}R and y = 3 with domain {0,1,2}R . Mainly four MVL algebraic

postulates are being represented with their definitions. Distribution, Idempotent,

Identity and De Morgan relations are among them. Proof of the postulates from each of

the main four categories is provided within the definitions. Below four categories of

postulates are presented,

Chapter 4: Logic Operators and Algebraic Postulates

48

Category 1: MVL Distribution is shown by the equation presented below,

()n m n mx k x k k x x     ()m n m nx k x k k x x    

(4.12)

Category 2: MIN and MAX operators are used in the MVL Idempotent expressions.

Equations representing MVL Idempotent are shown below,

n n nx x x  () ()n n nk x k x k x    

(4.13)

 n n nx x x  n n nx x x  n n nx x x 

(4.14)

 n n nk x k x k x     () ()n n nk x k x k x    

(4.15)

Category 3: MVL identity for MIN and MAX operators are presented as below,

 0x x  0x x  (4.16)

 0 0x  0 0x   (4.17)

Category 4: MIN, MAX operators are also used in MVL De Morgan postulates. The

expressions representing the algebraic postulate is shown below,

 n m n mx x x x   n m n mx x x x  

(4.18)

n m n mx x x x   n m n mx x x x  

(4.19)

Definition 4.3.1- MVL Distribution operates on WINDOW LITERAL a bx and

independent value k. The definition of WINDOW LITERAL is represented in definition

4.2.1. k is an independent value whose range could be defined as 0 (1)k y   where

Chapter 4: Logic Operators and Algebraic Postulates

49

k R . The MIN and MAX operator (according to definition 2.1.1 and 2.1.2) acts as an

intermediate operator between short literal a bx and k.

Considering y = 4, then { , , } 0123x a b  . If a1 = 2 and b1 = 3, then 2 3

1 3x  . If a2 = 1

and b2 = 0, then 1 0

2 0x  . Now if 1k  ,
2 3

1 3x  and 1 0

2 0x  then according to MVL

Distribution,

() , ,a b a b a b a b a b a b

n m n m n mx k x k k x x where x x and     

(4.20)

2 3 1 0 2 3 1 0

1 2 1 21 1 1()x x x x    

(4.21)

  3 1 0 1 1(3 0) 1 1 1(3) 1 1 Pr oved         

(4.22)

In the above proof, even if the a b

nx and a b

mx are switched their places, the same output

would be achieved. In an MVL matrix, k could be different row of the same column.

But in order to achieve the MVL Distribution law, k has to reside in the same column of

the MVL matrix.

Definition 4.3.2- MVL Idempotent also operates on window literal a bx and sometimes

on independent value k, depending on the situation. If literal a bx is related to

independent value k with a MIN or MAX operation, then only MVL Idempotent

operates on k. MVL Idempotent algebraic rule can only be applied if and only if

1 1 2 2a b a b

n mx x because n m 1 2 1 2a a and b b  .

Considering y = 4, then { , , } 0123x a b  . If a = 2 and b = 3, then 2 3 3x  . Now if

1k  and 2 3 3x  , then according to MVL Distribution, () ()n n nk x k x k x    

, ,a b a b

n nwhere x x and

Chapter 4: Logic Operators and Algebraic Postulates

50

2 3 2 3 2 3 2 3

1 1 1(1) (1) 1()nx x x x    

(4.23)

 (3 1) (3 1) 1(3 3) 1 1 1(3) 1 1 Pr oved         

(4.24)

Another above mentioned MVL Idempotent proof is shown below.

() ()n n nk x k x k x     , ,a b a b

n nwhere x x and

(4.25)

2 3 2 3 2 3

1 1 1(1) (1) 1x x x     (4.26)

 (3 1) (3 1) 3 1 3 3 3 1 3 3 Pr oved          

(4.27)

Definition 4.3.3- MVL Identity is only shown against the logical value “0”. Other

logical values, such as (y-1)th values against MVL identity is described in the

EXTENDED COMPLEMENT section of definition 4.2.4. MVL identity 0 0x  is

similar to 0x x  and 0x x  is similar to 0x x  . Hence below only two of the

identities are shown.

 0 0x  (4.28)

 0x x  ;
0 1

0
0

x if x y
x

otherwise

   
  



(4.29)

Definition 4.3.4- MVL De Morgan’s algebraic postulate is the unique combination of

De Morgan theorem and multi-valued logic. According to De Morgan theorem,

 ()c c cA B A B   (4.30)

Chapter 4: Logic Operators and Algebraic Postulates

51

Representing conjunction with logical MIN operator and disjunction with logical MAX

operator,

 ()A B A B   (4.31)

Now considering A and B both of them representing set of y radix multiple values,

1 2, , , nA A A R and 1 2, , , nB B B R , where 0 { , } (1)A B y   .If set A is represented

by nx and set B is represented by mx , then the following postulate could be derived,

 n m n mx x x x   (4.32)

Considering y = 4, then { , , } 0123x a b  . If a1 = 2 and b1 = 3, then
2 3

1 3x  . If a2 = 1

and b2 = 0, then 1 0

2 0x  . Now if
2 3

1 3x  and 1 0

2 0x  then according to MVL De

Morgan,

2 3 1 0 2 3 1 0

1 2 1 2x x x x   (4.33)

, ,a b a b a b a b

n m n mwhere x x or x x 

(4.34)

 3 0 3 0 0 3 3 0 3 3 0 0 0 [Pr]oved            (4.35)

Similarly other MVL De Morgan postulates such as,
n m n mx x x x   ,

n m n mx x x x  

and
n m n mx x x x   also can be proved through substitution of MVL values.

4.4 Summary

The main drawback tends to make us realize the fact, that no universal set of logic

operators or algebraic postulates has been standardized. To overcome this issue, an

Chapter 4: Logic Operators and Algebraic Postulates

52

initiative was undertaken to generalize a set of universal logic operators and postulates.

The proposed logic operators can be used in various applications. The logic operators

were proven for MVL system. ODD and EVEN operator can be used for error detecting

codes in MVL serial communications. EXTENDED AND operator reduced PT in each

MVL function representation. Other logic operators were also essential for efficient

logic synthesis. Proposed postulates were existing binary algebraic postulates which

were used for better synthesized expressions in MVL system. Furthermore, MVL

universal operators can be also used in different approaches for synthesizing multi-level

functions.

Chapter 5: High Deduction Algorithm

53

Chapter 5

High Deduction Algorithm

In this chapter, High Deduction Algorithm (HDA-MVL) is presented to synthesize

Multi-Valued Logic (MVL) functions at an optimal level. It utilizes the proposed

postulate and logical operators for the synthesis and realization of MVL functions.

5.1 Introduction

Many heuristic and evolutionary algorithms had been proposed in the literature for

synthesis of MVL functions. Evolutionary and combined heuristic algorithms benefits

in terms of efficient functional synthesis but requires much computational complexity,

thus requires extensive amount of time to generate synthesized functions. Most of the

existing efficient algorithms are computationally complex and requires enormous

amount of time for synthesizing.

In this section of the thesis, HDA-MVL algorithm synthesizes and extracts the

expression for each MVL function. The advantages of HDA-MVL algorithm is

demonstrated with reduced function representation. Furthermore these synthesized

expressions are realized with digital circuit to compare the feasibility of the experiment

in the later section of this thesis.

Experimental analysis of HDA-MVL algorithm is based on synthesizing a

benchmark of 50000 sequentially generated 4 valued 2 variable functions. The obtained

Chapter 5: High Deduction Algorithm

54

results has shown that the average number of Product Term (PT) needed to synthesize

each MVL function using HDA-MVL outperforms conventional DC based heuristics

and evolutionary techniques To the extent of literature done, the proposed method

shows that the number of gate count in digital circuitry reduces remarkably using HDA-

MVL algorithm.

5.2 HDA-MVL Algebraic Synthesis

HDA algorithm is a Direct Cover (DC) based approach. This algorithm only considers

non-zero minterm for implication selection. The main steps for representing HDA

techniques for synthesis of MVL functions are provided below:

(1) Choosing non-zero minterm from the function.

(2) Identify each column of the function as an effective implicant that covers all the

non-zero minterms.

(3) Obtain a reduced function by applying algebraic manipulation.

(4) Repeat steps 1 to 3 until no more minterms and columns remain uncovered.

Firstly, the algorithm converts a MVL function into a matrix. Then, the algorithm

determines all the non-zero minterm from 1st column to nth column. Each column of the

matrix represents an effective implicant of HDA-MVL synthesis method. Each of the

implicant is formed with one effective min operation. The steps stated above are

important because they not only cover an entire function but also provide lesser PT to

represent it.

Assume an implicant is composed of
0 1 1 1 0 2 2 2

1 2 1 2x x x x , from a MVL function.

Also, assume the implicant is derived from column one. By using the algebraic law of

Chapter 5: High Deduction Algorithm

55

MVL distribution, derivation of 0 1,2 1 1 2 2

1 2 2()x x x is made. This expression can be further

simplified using EXTENDED AND operator. After simplifying all the implicants,

MAX operator operates on all the implicants to prompt the final output y.

5.2.1 Minterm and implicant selection

According to the key steps of HDA-MVL algorithm, the minterm selection criterion is

specifically dependable on all the non-zero minterm from 1st column to nth column.

Each of the columns represents an implicant, if and only if the column contains at least

one non-zero minterm. Hence an implicant can consists of any non-zero minterm for a

specific column. The algorithm reads each index of the matrix and determines the end

of a column. Each of the minterms of a specified column consists of window literal 1

a bx

and 2

a bx .

Table 5-1: Function f1 representing a 3x3 matrix of a random MVL function

Function f1 a 0

Column 1

1

Column 2

2

Column 3

 B

 0 0(l1) 2(l2) 1(l3)

 1 1(l4) 0(l5) 2(l6)

 2 2(l7) 1(l8) 0(l9)

These WINDOW LITERALs represent the coordinate of the matrix for any specific

minterm. The WINDOW LITERALs 1

a bx and 2

a bx are always relating to each other

Chapter 5: High Deduction Algorithm

56

forming a MIN relation between them. All the minterms for any column are related

together forming a MAX relation between them. The consideration of MVL function

f1is made as explained in Table 5-1 above, where y = 3 and a, b are the coordinate of the

minterm ln.

In the first column of the functionf1, bold minterm 1 and 2 generates the implicant.

Similarly in the second column, bold minterm 2 and 1 and in the third column, minterm

1 and 2 generates the implicants consecutively. The following Table5-2 shows minterm

representation for each coordinate of the MVL matrix and implicant 1 2(,)I x x for each

column.

Table 5-2: Extracting minterm and implicant from function f1

Function f1
1 2,x x y Minterm Implicant 1 2(,)I x x

Column

1st 0,0 0 -

1st 0,1 1 0 1 1 1

1 2x x
0 1 1 1 0 2 2 2

1 2 1 2x x x x

1st 0,2 2 0 2 2 2

1 2x x

2nd 1,0 2 1 2 0 2

1 2x x

2nd 1,1 0 - 1 2 0 2 1 1 2 1

1 2 1 2x x x x

2nd 1,2 1 1 1 2 1

1 2x x

3rd 2,0 1 2 1 0 1

1 2x x

3rd 2,1 2 2 2 1 2

1 2x x
2 1 0 1 2 2 1 2

1 2 1 2x x x x

3rd 2,2 0 -

Each of the implicant is related together forming a MAX relation between each other.

Definition 4.2.1 shows how EXTENDED AND operator can be used in the synthesis of

Chapter 5: High Deduction Algorithm

57

MVL functions or to be more precise, implicants. Below is an example of how

EXTENDED AND operator functions on each implicant from different column.

0 1 1 1 0 2 2 2 1 2 0 2 1 1 2 1 2 1 0 1 2 2 1 2

1 1 2 1 2 1 2 1 2 1 2 1 2f x x x x x x x x x x x x      (5.1)

0 1,2 1 1 2 2 1 2,1 0 2 2 1 2 1,2 0 1 1 2

1 1 2 2 1 2 2 1 2 2() () () ()Synthesized f x x x x x x x x x     

(5.2)

Table 5-3: Output y is checked using the synthesized expression from function f1

f1
1 2,x x

Synthesized Expression y

Col. 0 1,2 1 1 2 2 1 2,1 0 2 2 1 2 1,2 0 1 1 2

1 2 2 1 2 2 1 2 2() () ()x x x x x x x x x    

1st 0,0 1,2 (0 0) 0,0 (2 0) 0,0 (1 0) 1,2 0 0,0 2 0,0 1 0 0 0              0

1st 0,1 1,2 (1 0) 0,0 (0 0) 0,0 (0 2) 1,2 1 0,0 0 0,0 2 1 0 0              1

1st 0,2 1,2 (0 2) 0,0 (0 1) 0,0 (0 0) 1,2 2 0,0 1 0,0 0 2 0 0              2

2nd 1,0 0,0 (0 0) 2,1 (2 0) 0,0 (1 0) 0,0 0 2,1 2 0,0 1 0 2 0              2

2nd 1,1 0,0 (1 0) 2,1 (0 0) 0,0 (0 2) 0,0 1 2,1 0 0,0 2 0 0 0              0

2nd 1,2 0,0 (0 2) 2,1 (0 1) 0,0 (0 0) 0,0 2 2,1 1 0,0 0 0 1 0              1

3rd 2,0 0,0 (0 0) 0,0 (2 0) 1,2 (1 0) 0,0 0 0,0 2 1,2 1 0 0 1              1

3rd 2,1 0,0 (1 0) 0,0 (0 0) 1,2 (0 2) 0,0 1 0,0 0 1,2 2 0 0 2              2

3rd 2,2 0,0 (0 2) 0,0 (0 1) 1,2 (0 0) 0,0 2 0,0 1 1,2 0 0 0 0              0

Table 5-3 represents the synthesized expression for each column and breaks down the

expression to evaluate the output. The curly bracket “ { }” covering part of the

expression in each column actually showing the active EXTENDED AND operator for

the implicant. The output y represents each minterm from the function f1. After the

synthesized expression has been evaluated the values are definitely matching with the

output y, which proves that the expression is correct.

Chapter 5: High Deduction Algorithm

58

5.3 Algorithm: HDA-MVL Algebraic Synthesis

Based on the rough structure of the HDA-MVL a pseudo code has been prepared. Later

this pseudo code was converted to JAVA high level programming language. Below in

Figure 5.1 the entire pseudo code for the algorithm is represented.

Do

Generate Sequence of all possible nth variable 2 input combinations

Locate each index of respective sequence using array

Check minterms in each of the sequence

oneMinterm = checkOneMinterm(func_Sequence)

twoMinterm = checkTwoMinterm(func_Sequence)

.... nthMinterm = checkNthMinterm(func_Sequence)

for each sequence

Decomposed each PT is decomposed into  (x,y) coordinate

Sort all PTs in the array sequence

save primary term sequences

for each minterm coordinate (x,y) of primary term

save coordinate (x,y)

Chapter 5: High Deduction Algorithm

59

Figure 5.1: HDA-MVL pseudo code

check 1st term (primary term) with other terms (secondary term)

nextColumn():

for each PT of the MVL Function

foreach column match

jump to next column

save secondary term sequencesu

for each minterm coordinate (x,y) of secondary term save coordinate

(x,y)

if secondary term = primary term

update the result

else if secondary term != primary term

gotonextColumn();

if primary term  last term

update result

ifcheckLastTerm=true

 do nothing

else ifcheckLastTerm = false

 check secondary term

do

checkLastTerm();

while(countMinTerm<finish.length())

getReducedMinterm();

 getAvgPTResults();

close file

while(full_Column != true)

end

Chapter 5: High Deduction Algorithm

60

5.3.1 Calculating average PT results

The pseudo code in Figure 5.2 below generates the result of average PT. Considering an

example of 500 combinations for 16 minterm. The average PT needed would be

calculated based on the synthesis method.

Figure 5.2: Pseudo code generating average PT used per minterm combination of the

synthesized function

5.4 Simulation Results

Benchmark digital circuit have been developed for 4 valued 2 variable MVL functions.

In this section, a benchmark consisting of 50000 sequentially generated 4 valued 2

variable functions has been generated and synthesized using HDA-MVL Algorithm.

Table 5-4 provides comparison of the proposed HDA-MVL and ACO-MVL. Mostafa

Abd-El-Barr in his paper synthesized MVL functions of 4 valued 2 variable using

evolutionary techniques (M. Abd-El-Barr 2012). He has implemented Ant Colony

getAvgPTResults():
X denotes from minterm 16 to minterm 1 in different functions

Y denotes limitation of functions per minterm combinations

iffunctions_X<Y &&mintermCount==X

 function_array_X[functions_X] = h

 incrementfunctions_X}

ifminterm counter “functions_X” reaches their limit

 checkMIN = false

call next function to check next sequence

nextSeq = callNextSequence(nextSeq, reference)

do

function_X_Total = function_X_Total + function_array_X[total_PT];

total_PT++;

while(total_PT<functions_X)

function_X_Avg = (double)function_X_Total / total_PT;

save results

Chapter 5: High Deduction Algorithm

61

Optimization (ACO-MVL) algorithm with a benchmark consisting of 50000 randomly

generated 4 valued 2 variables. HDA-MVL sequentially generates MVL functions, not

randomly. The comparison is shown below.

Table 5-4: Comparison of proposed algorithm with existing evolutionary and direct

cover algorithms (Abd-El-Barr and Sarif 2006; Sarif and Abd-El-Barr 2006)

Min-

term

Functions

(Randomly

Generated)

ARM BS DM ODC WDC ACO-

MVL

Functions

(Sequential

Generated)

HDA-

MVL

(proposed)

16 500 7.59 7.56 7.00 7.08 7.01 6.73 500 4.00

15 2679 8.29 8.30 7.51 7.48 7.50 7.05 2679 4.00

14 6589 8.35 8.40 7.56 7.51 7.55 7.16 6589 4.00

13 10585 8.27 8.35 7.54 7.49 7.54 7.18 10585 4.00

12 11230 8.04 8.09 7.38 7.33 7.38 7.08 11230 3.00

11 9003 7.70 7.75 7.12 7.08 7.13 6.90 9003 3.00

10 5434 7.32 7.36 6.83 6.78 6.83 6.66 5434 3.00

9 2575 6.87 6.87 6.47 6.43 6.47 6.35 2575 3.00

8 1038 6.30 6.32 6.02 5.97 6.02 5.93 1038 2.00

7 277 5.72 5.75 5.52 5.48 5.52 5.48 277 2.00

6 75 5.13 5.14 4.97 4.96 4.98 4.96 75 2.00

5 13 4.00 4.00 4.00 3.92 4.00 3.92 13 2.00

4 1 4.00 4.00 4.00 4.00 4.00 4.00 1 1.00

3 1 3.00 3.00 3.00 3.00 3.00 3.00 1 1.00

Chapter 5: High Deduction Algorithm

62

It was clearly observed that the proposed HDA-MVL algorithm outperformed all other

techniques, regardless the number of minterms generated by each MVL function. The

lowest number of product term was used by the proposed algorithm. The worst case

scenario for ACO-MVL was 13 minterm where the average PT usage was 7.18.

In the same scenario the proposed HDA-MVL algorithm required on an average of 4

PT, which was almost the half of what was required by ACO-MVL. For minterm 3 and

4, both of the algorithm output similar result. It was observed that this huge difference

represented a substantial improvement. HDA-MVL generated sequential sample

functions were a representation of a population which consists of 416 functions. A

graphical comparison of the HDA-MVL against other algorithm can be overseen by the

Figure5.3.

Figure 5.3: Graphical comparison of HDA-MVL algorithm and other existing

algorithms, representation of PT used per minterm combination

Chapter 5: High Deduction Algorithm

63

The overall average PT achieved by DC based algorithms and the evolutionary heuristic

based techniques are shown in the Table 5-5. The tabulation illustrates that the proposed

HDA-MVL algorithm outperformed all DC based algorithms. Among all the existing

algorithms, the proposed HDA-MVL algorithm achieved better results in terms of

average product term needed to synthesize a given MVL function.

Table 5-5: Overall PT reduction using different algorithms (Sarif and Abd-El-Barr

2006; Abd-El-Barr and Sarif 2006)

 A
lg

o
ri

th
m

A
R

M

B
S

D
M

O
D

C

W
D

C

V
G

A
M

V
L

R
V

G
A

-

M
V

L

A
C

O
-M

V
L

H
D

A
-M

V
L

(p
ro

p
o
se

d
)

PT 7.89 7.94 7.25 7.20 7.25 7.18 7.13 6.96 3.00

5.5 Summary

Various DC based algorithms were proposed in the field of MVL synthesis. Even

though DC based algorithm is time consuming, they are more accurate in term of

retrieving logic expressions. In this chapter, HDA-MVL algorithm has been proposed

which uses the postulates and logical operators to perform MVL synthesis. The results

obtained using the HDA algorithm is compared using a benchmark consisting of 50K 4-

valued 2-variable sequentially generated functions. The results achieved have shown

that the HDA-MVL algorithm outperforms the conventional DC and evolutionary based

techniques. In the experiment analysis it is observed that overall average PT reduction

achieved by HDA-MVL algorithm is 56.88%. .HDA-MVL algorithm achieved 45.46%

more success in reducing PT over evolutionary ACO-MVL algorithm.

Chapter 6: Multi-Valued Logic Neural Network Operators

64

Chapter 6

Multi-Valued Logic Neural Network

Operators

A novel Neural Network Deployment Algorithm (NNDA-MVL) has been presented to

show how this algorithm trains Multi-Valued Logic (MVL) operators. In this chapter of

the thesis, main steps for NNDA is presented and shown how this algorithm benefits in

producing trained neural operators. The algorithm is equipped with back-propagation

learning capability and novel MVL operators.

6.1 Introduction

One of the synthesizing techniques for MVL functions is the Neural Network approach.

This approach can be further categorized into few subsections. Hsu et al. explained in

detail about the three-valued neural logic network (Hsu, et al. 1990). The lack of any

learning algorithm for MVL networks is an important restraint to many applications.

 Hence, in this section the novel NNDA-MVL algorithm focus on training MVL

neural operators with higher accuracy and synthesis of MVL functions with trained

operators. Firstly the algebraic synthesis is carried out to extract the synthesized

expression of the MVL function by the EXTENDED AND operator. Each of the

Chapter 6: Multi-Valued Logic Neural Network Operators

65

EXTENDED AND, MIN and MAX MVL operators are trained with separate neural

networks consisting 4 hidden layer neurons.

 Synthesized expressions are realized with the MVL neural operators to ensure the

feasibility of the experiment. To the extent of literature done, the proposed method

shows that higher accuracy is achieved with lesser training period using NNDA-MVL

algorithm. The proposed method depicts that MVL neural network is a novel approach

to train novel MVL operators and utilize them for efficient logic synthesis as an

application.

6.2 Neural Architecture for MVL Operators

The neural architecture has three basic layers. First layer of neurons is called the input

layer. The second layer of neurons which takes the input is called the hidden layer. The

third layer of neurons which takes the input from the hidden layers is called the output

layer. Feedforward backpropagation algorithm is applied to multiple layers of neurons.

The output layer and the input layer are separated by the hidden layer.

There are maximum five different inputs for the input layer. Unlike other MVL

operators, EXTENDED AND can reach up to a maximum of five different inputs for

the input layer. Depending on the MVL operator the number of inputs varies. The rth

column of each input is represented as a column vector
nx which varies between 0, 1, 2

and 3. The column vector consists of real entities where, , 0,0 5x R x n    and

0 1 4{ , }nx x x x . The column vector can be represented as
0 1 4[,]T

nx x x x

(Matsumoto, Ueda and Nomoto 2000; Zheng, Ishizuka and Tanno 1995).

Chapter 6: Multi-Valued Logic Neural Network Operators

66

Five different input column vectors are represented as below (Ngom and Simovici

2004; Zheng, Cao and Ishizuka 1998). Each of these input vectors represent the input

layer of the neural network as

0 0 1 1 0 1 2 0 1 3 0 1 4 0 1[,] ; [,] ; [,] ; [,] [,]T T T T T

r r r r rx x x x x x x x x x x x x x x x and x x x x    
.

The weights are distributed evenly with each of the inputs. The rth column of each

synaptic weight is represented as a column weight vector
nw which varies between -1 to

1. The weight vector consists of real entities where, , 1 1,w R w n r     and

0 1{ , }n rw w w w . Weight vector can be represented as below,

 0 1[,]T

n rw w w w

(6.1)

The corresponding weights for each of the inputs are multiplied with their respective

inputs. The summation of the weights multiplied by the inputs could be represented as

below,

0 0 1 1

0

,
r

i i r r

i

w x w x w x w x


 (6.2)

Where,
0 0 1 1[,]n n r rw x w x w x w x . The bias b is scalar. The bias is added to the

summation of weight and input to adjust the output from the neuron. Bias b is similar to

weight, but the only difference between bias and weight is that the bias has a constant

input of 1. The transfer function  can be different in functionalities depending on the

desired output. The hyperbolic tangent sigmoid transfer function ()v is presented in

equation (6.3).

Chapter 6: Multi-Valued Logic Neural Network Operators

67

The characteristics of tangent sigmoid function and a basic neuron unit can be observed

from the Figure 6.1and 6.2 below.

Figure 6.1: Hyperbolic tangent sigmoid function

Figure 6.2: Basic neuron structure characteristics

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-5 to 5 input range to Transfer Function

-1
 t

o
1

ou
tp

ut
 r

an
ge

 f
ro

m
 T

ra
ns

fe
r

F
un

ct
io

n

Hyperbolic Tangent Sigmoid Transfer Function

Chapter 6: Multi-Valued Logic Neural Network Operators

68

The hyperbolic tangent sigmoid transfer function can be represented as below,

2 2

2 2 2

2 1 1
() 1 ; []

1 1 1

n n

n n n

e e
v where n v

e e e


  

    

 
    

  
 (6.3)

()v is a tangent sigmoid transfer function, where
n nv w x b  . The output of the

neuron can be shown as below,

 
0

r

Output n n n i i i

i

N w x b w x b 


  
     

  


(6.4)

The transfer function tangent sigmoid has a very important property such that the

derivative of the function can be presented as below,

   

 

2 22

22
2

2 12
()

1 1

n nn

n
n

e ed e
v OR

dv e e


 





 

 

(6.5)

 
 

2

2

2

4
()

1

1

n

n

d
v

dv

e
e








 
 

  

 (6.6)

Hence the summarized derivative can be represented in terms of the transfer function

itself as below,

2() 1 ()
d

v v
dv
  

(6.7)

The output layer neuron has also the same transfer function which is hyperbolic tangent

sigmoid. The network layer is represented by . Therefore total number of inputs in the

Chapter 6: Multi-Valued Logic Neural Network Operators

69

input layer can be identified by
input . Similarly total number of hidden and output

neurons from hidden and output layer can be identified by hidden and
output . The neural

network’s weight is presented by .

As mentioned previously, all the inputs have their own corresponding weights.

Therefore, weights from inputs to hidden neurons can be represented as H

ij , where “H”

represents the hidden layer, “i” represents the sequence of inputs, “j” represents the

sequence of hidden neurons and  0,1 hiddenj  .
jb represents the bias associated with

the respective neuron. Weights from hidden neurons to output neurons can be

represented as O

ij , where “O” represents the output layer, “i” represents the sequence of

hidden neurons, “j” represents the sequence of output neurons and 0,1 outputj   

.Inputs coming from the input layer associated with respective weight and bias can be

represented by the equation below,

  
0

input

H H

j ij i j

i

x b



 


 

(6.8)

The hidden layer output for respective hidden neurons can be represented as below,

  H H

j jy  

(6.9)

Similarly hidden layer input and output layer output can be represented as shown below,

 

0

hidden

O O H

j ij i j

i

y b


 


 

(6.10)

  O O

j jy  

(6.11)

Chapter 6: Multi-Valued Logic Neural Network Operators

70

The learning function calculates the weight change w . The previous weight change

previousw is stored inside learning state stateL . The learning rate stateL is initially set to 0.01

and constantM is set to 0.90. Both the learning rate and the momentum constant values

can be defined according to the need of the learning capability of the neural net. The

neuron’s input vector
nx , the weight vector

nw or bias
jb , error E , momentum constant

tancons tM and learning rate rateL are considered in equation representation. Momentum

weight and bias learning function are key factors in gradient descent. The gradient can

be represented as below,

  1c previous c rate gradientw M w M L w    

(6.12)

On the other hand, mean square error (mse) function is used for performance evaluation.

This is the mse function. The network is provided with an input vector. The estimated

output is determined based on the inputs. The network consists of a target. The actual

output is subtracted by the expected output. This way the error is calculated. The mse is

dependent on the subtraction value generated from the network. Assume
^

O is the vector

of predicted r output and O is the vector of actual output. The predicted output can be

represented by the equation below,

2
^

0

1 r

i i

i

mse O O
r 

 
  

 


(6.13)

The training function used in this architecture updates the weight and bias values

according to Levenberg-Marquardt optimization (Demuth, Beale and Heagen 2010).

Chapter 6: Multi-Valued Logic Neural Network Operators

71

Levenberg-Marquardt backpropagation is chosen as it is a high performance supervised

algorithm. This algorithm speeds up the training without computing the Hessian matrix.

When the mse function develops the form of sum of squares, then the Hessian matrix

and the gradient can be expressed as below,

T TH J J and g J e  (6.14)

Jacobian matrix is expressed with J . With respect to the weights
nw and biases

jb , J

contains the first derivative of the network errors e , where e is the vector of network

errors (Demuth, Beale and Heagen 2010). The Jacobian matrix can be shown as below,

0 0 0

0 1

1 1 1

0 1

0 1

m

m

n n n

m

e e e

w w w

e e e

w w wJ

e e e

u w w

      
      
 
      
 
       
 
 
      

       

 (6.15)

Training weights exist in Gauss Newton method. The equation is presented as below,

1

1 T

NM r k T
G x x J e

J J
  

  

 (6.16)

Levenberg-Marquardt modification to Gauss Newton method is shown below,

1

1 T

MM r k T
L x x J e

J J I
  

  

 (6.17)

Chapter 6: Multi-Valued Logic Neural Network Operators

72

When  is large this becomes gradient descent with a small step size. Newton’s method

is not only faster moreover it has more accuracy with a near minimum error. Thus  is

decreased after each successful step and it is increased only when an uncertain step

increases the mse function. This way the mse is reduced for each iteration.

6.3 Neural Operator and Minterm Representation

In this section of the thesis, the functioning of neural logic operators and NNDA

algorithm has been demonstrated briefly as an overview on the process of function

realization. NNDA algorithm utilizes proposed MVL operators to construct neural net

and train. Composed of series of trained neural networks such as, EXTENDED AND,

MIN and MAX operators are used to realize the MVL functions. Minterm

representation is the key to logic expression reduction. Hence, minterm representation is

also discussed in brief. Trained MVL neural operators are used to represent minterms.

 An assignment of values to variables where the following condition and rule

satisfies is called a minterm. In an MVL matrix
1

a bx and
2

a bx represents the value of a

minterm.
1

a bx and
2

a bx both of them are WINDOW LITERALs. They help to form the

representation of minterms, with the assistance of coordinate 1x and 2x . A three valued

two variable MVL function is shown in Table 6-1.

Chapter 6: Multi-Valued Logic Neural Network Operators

73

Table 6-1: MVL function representing a 3x3 matrix of a random MVL function

MVL

Function

f1

Columnsa

0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

*Columns are denoted by a and Rows are denoted by b

6.4 Key Steps for Neural NNDA

The key steps are the guidelines for the deterministic NNDA algorithm. Based on the

steps, the entire algorithm is formed in the later section of this thesis. NNDA not only

reduces the Product Term (PT) but also reduces the neural net block for representing

each of the MVL functions. NNDA converts a MVL function into a matrix. Then the

algorithm finds each column and their respective row’s for any non-zero minterms. The

algorithm determines all the non-zero minterm from 1st column to nth column. The main

steps for representing NNDA techniques for synthesis of MVL functions are given as

below,

1. Choose each column consisting window literal
1

a bx .

2. For each column of
1

a bx find each related row consisting of window literal
2

a bx

3. For each of  1 2,a b a bx x relations find the relations which consists non-zero

minterm of the specified column.

Chapter 6: Multi-Valued Logic Neural Network Operators

74

4. Each column is related with other column by a MAX logic operator.

5. Realize each of the respective relations in terms of MIN and extended AND

MVL operator.

6. Repeat steps 1 to 5 until no more columns and non-zero minterms remain

uncovered.

7. Create separate feedforward backpropagation neural network architecture for

the logic operators.

8. Train each of the neural network’s with extended AND and MIN relations of

the specified column.

9. Train neural network with MAX operator for relating every two columns.

10. Obtain a reduced function by applying trained neural network.

11. Repeat steps 6 to 8 until the neural net performance function “mse” is less than

0.01to obtain a directly synthesized MVL function.

Each column relations can be represented by  0 1,0 2,0 2,1 2,, ,a b a b a b a b

nR x x x x   where 0R

represents the first column relation of the matrix, 1,0

a bx denotes the first column of

window literal
1

a bx , 2,0

a bx represents the first row of window literal
2

a bx . For each

column the respective related rows can reach up to 2,0 2,1 2,,a b a b a b

nx x x   . Each column

of the matrix represents one or more effective implicants of NNDA-MVL synthesis

method. Each of the implicant is formed of different number of extended AND and

MIN operators. Below the equation for predicting number of logic operator

C

numberExAND per column,

Chapter 6: Multi-Valued Logic Neural Network Operators

75

min

2

0

non zero

C

number

term
floor

ExAND

otherwise


  
  

  



 (6.18)

Total number of the logic operator for any MVL function can be expressed by the

equation below by T

numberExAND ,

 0

n
T i

number number

i

ExAND ExAND




(6.19)

Below, the equation for predicting number of logic operator C

numberMIN per column,

1 min 1

1 min 3

0

non zero

C

number non zero

if term

MIN if term

otherwise








 



 (6.20)

Total number of the logic operator for any MVL function can be expressed by the

equation below by T

numberMIN ,

 0

n
T i

number number

i

MIN MIN




(6.21)

Each EXTENDED AND operation with respect to different column is trained by a

different neural network. The neural net EXTENDED AND is formed, where i is the

sequence for the operator. MIN is trained by a neural network then, the neural net MIN

is formed. Every two column, logic operators are combined by MAX logic operator.

MAX is trained by a neural network and then the neural net MAX is formed. It is

assumed that implicant from a MVL function is composed of

Chapter 6: Multi-Valued Logic Neural Network Operators

76

0 1 1 1 0 2 2 2 0 3 3 3

1 2 1 2 1 2x x x x x x  . It is also assumed that the implicant is derived from the

column one.

Now, the partial implicant can be represented as 0 1,2 1 1 2 2

1 2 2()aI x x x  . The other

half of the implicant can be expressed as 0 3 3 3
2 2 .bI x x

This expression can be further

simplified using EXTENDED AND operator. 0 1,2 1 1 2 2

1 2 2()aI x x x  is further simplified

using neural EXTENDED AND and MIN operator. The neural MVL operators are later

trained to realize the synthesized expressions which are the a bI I I  or

0 0_ _I NN ExAND NN MIN  . After simplifying all the implicants, neural MAX

operator operates on all sub-implicants to prompt the final output for the consecutive

columns.

6.5 Analysis of Neural Network MVL Operators

MVL operations are observed by training a specifically designed neural network. Some

novel and basic MVL operators are trained by the NNDA algorithm. It has been

observed that the neural network takes less than 300 iterations to fully converge to the

behavior of the logic operator. A sample of 5000 benchmark training sets has been

sequentially created to train each of the neural network logic operators. For all the logic

operators the neural architecture remains the same. All operators are trained with

additional 1K benchmark. Table 6-2 in the later part of this chapter will summarize the

simulation results for all operators.

Chapter 6: Multi-Valued Logic Neural Network Operators

77

6.5.1 Neural EXTENDED AND operator

The neural network EXTENDED AND architecture consists of feedforward

backpropagation. 1 1 2, , ,x a b b and 2x parameters were used to train the neural network. The

network took five inputs and predicted the possible outputs. The neural network trained

itself until it fully converges to the behavior of the logic operator. The validation and

training performance is as observed in Figure 6.3. The neural network EXTENDED

AND was used as one of the basic components to realize and synthesizes the MVL

functions. The performance of the logic operator was observed by mse function and it

reached as low as 0.00011 within 71 epochs. The best linear fit has been observed

approximately 99.97%. Among 5000 training benchmarks, a random quantity of data

has been chosen for testing and validation. Floating point variables were avoided for the

training purpose.

 Figure 6.3: Performanceof EXTENDED AND after 71 epochs

0 10 20 30 40 50 60 70
10

-6

10
-4

10
-2

10
0

Best Validation Performance is 0.0001069 at epoch 65

M
ea

n
S

qu
ar

ed
 E

rro
r

(m
se

)

71 Epochs

Train

Validation

Test

Best

Chapter 6: Multi-Valued Logic Neural Network Operators

78

6.5.2 Neural ODD operator

Basic neural ODD was trained with 4 valued 2 variable MVL functions. A random

quantity of data was chosen for testing and validation. It was observed that the mse

reached as low as 0.69628 within 107 epochs. The accuracy was observed to be

approximately 75.97%. Floating point variables were considered for the training

purpose for better linear data fit. The inputs to the network were fixed to 0-3 range.

Testing performance and validation was observed as shown in Figure 6.4.

Figure 6.4: Performance of ODD after 107 epochs

6.5.3 Neural EVEN operator

The MVL-EVEN was trained similarly to ODD. The performance of the logic operator

was observed by mse function. Figure 6.5 show the performance analysis. It was also

observed that the mse reached as low as 0.04879 within 135 epochs. The best accuracy

which was observed is 97.38%. Floating point variables were considered.

0 10 20 30 40 50 60 70 80 90 100

10
-1

10
0

10
1

Best Validation Performance is 0.69628 at epoch 101

M
ea

n
S

qu
ar

ed
 E

rro
r

(m
se

)

107 Epochs

Train

Validation

Test

Best

Chapter 6: Multi-Valued Logic Neural Network Operators

79

Figure 6.5: Performance of EVEN after 135 epochs

6.5.4 Neural MIN operator

The MVL MIN and MAX were trained with 4 valued 2 variables MVL. Testing

performance of the extended operator is observed as Figure 6.6 below.

Figure 6.6: Performance of MIN after 111 epochs

0 20 40 60 80 100 120

10
-2

10
-1

10
0

10
1

Best Validation Performance is 0.04879 at epoch 129

M
ea

n
Sq

ua
re

d
Er

ro
r

(m
se

)

135 Epochs

Train

Validation

Test

Best

0 20 40 60 80 100

10
-1

10
0

10
1

Best Validation Performance is 0.29224 at epoch 105

M
ea

n
S

qu
ar

ed
 E

rro
r

(m
se

)

111 Epochs

Train

Validation

Test

Best

Chapter 6: Multi-Valued Logic Neural Network Operators

80

From the observation, mse reached as low as 0.29224 within 111 epochs. The best linear

fit tha has been observed was approximately 80.03%. Floating point variables were

considered for the training purpose for better linear data fit. The inputs to the network

was limited by 0, 1, 2 and 3.

6.5.5 Neural MAX operator

The mse reached as low as 0.86794 within 72 epochs. The observation shos that the best

linear fit was 62.14%. An additional of 1000 benchmarks was used for testing the logic

operator after training. Floating point variables were considered for the training purpose

for better linear data fit. The inputs to the network were fixed by 0, 1, 2 and 3. Testing

performance accuracy of the MAX operator is observed in Figure 6.7.

Figure 6.7: Performance of MAX after 66 epochs

0 10 20 30 40 50 60 70

10
-1

10
0

10
1

Best Validation Performance is 0.86794 at epoch 66

M
ea

n
Sq

ua
re

d
Er

ro
r

(m
se

)

72 Epochs

Train

Validation

Test

Best

Chapter 6: Multi-Valued Logic Neural Network Operators

81

Table 6-2: Post training comparison among different MVL neural net operators

MVL Operator

Post Training Criteria

Time taken

to train

Input to

Output

Delay

Inputs

to NN

Hidden

Layer

Neurons

Accuracy (%)

MIN 11.885 0.037 2 4 80.03%

MAX 9.654 0.019 2 4 62.14%

Extended AND 22.060 0.038 5 4 99.97%

EVEN 14.315 0.013 2 4 97.38%

ODD 9.095 0.009 2 4 75.97%

INVERTER 8.520 0.008 2 2 98.55%

6.6 Applications

The trained neural MVL operators can be utilized to realize the synthesized expressions

of multi-valued logic functions. WINDOW LITERALs in each function represents the

coordinate of the matrix for any specific minterm. All the minterms for any column are

related together forming a MAX relation between them. The algorithm reads each index

of the matrix and determines the end of a column. Considering the MVL function f1from

Table 6-1, where y = 3 and a, b are the coordinate of the minterm ln. In Column 1 of the

function, bold minterm 1 and 2 generates the implicant. Similarly, in column 2 bold

minterm 2 and 1 and column 3 minterm 1 and 2 generates the implicants consecutively.

Chapter 6: Multi-Valued Logic Neural Network Operators

82

Each of the implicant is related together forming a MAX relation between each other.

Below is an example of how EXTENDED AND operator functions on each implicant

from different column.

0 1 1 1 0 2 2 2 1 2 0 2 1 1 2 1 2 1 0 1 2 2 1 2

1 1 2 1 2 1 2 1 2 1 2 1 2f x x x x x x x x x x x x      (6.22)

0 1,2 1 1 2 2 1 2,1 0 2 2 1 2 1,2 0 1 1 2

1 1 2 2 1 2 2 1 2 2() () () ()Synthesized f x x x x x x x x x     

(6.23)

 

2

2

2

0 1,2 1 2,1 2 1,2

1 1 1 1

0 1,2 1 2,1 2 1,2

1 1 1 1

1 1 2 0 1,2 1 2,1 2 1,2

1 1 1 1

(0 0) (2 0) (1 0) : 0

(1 0) (0 0) (0 2) : 1
,

(0 2) (0 1) (0 0) : 2

0

x

x

a b a b

x

x x x if f

x x x if f
f x x

x x x if f

otherwise

      


     
 

     



 (6.24)

Each of the extended AND relations of the function 1f can be represented as below,

0 1,2 1 1 2 2

1 1 2 2()af x x x  (6.25)

 1 2,1 0 2 2 1

1 1 2 2bf x x x  (6.26)

 2 1,2 0 1 1 2

1 1 2 2, cTherefore f x x x 

(6.27)

Each of these sub functions 1af , 1bf and 1cf is replaced with a neural network Extended

AND. The network is trained with five inputs 1 1 2, , ,x a b b and 2x . The final output y is

represented with the equation below. All the neural operators are interconnected based

on the final expression. The desired output has been observed with a 5 layered MVL

neural network operators.

 1 1 1a b cy f f f  

(6.28)

Chapter 6: Multi-Valued Logic Neural Network Operators

83

6.7 Summary

MVL neural operators were used to synthesize the functions. The synthesized

expressions were obtained by novel MVL neural operators. NNDA-MVL algorithm’s

advantages were demonstrated with the accuracy of realization for MVL neural

operators. The evaluation of NNDA-MVL algorithm was based on the features such as

input to output delay and accuracy achieved in training with 4 hidden neurons. In a

brief, an effort of training MVL neural operators as well NNDA_MVL as an application

to synthesize logic have been observed.

 NNDA algorithm was utilized for generation of trained MVL neural operators.

Logic functions were also synthesized by using these neural operators. As an

application, the hybrid combination of MVL and NNDA resulted in efficient synthesis.

The simulation results obtained using the NNDA-MVL algorithm was compared against

other logic operators. The results achieved have shown that the NNDA-MVL algorithm

managed to achieve an accuracy of 99.97% for extended AND neural operator. The

result depicted the fastest as 0.008 seconds and the slowest as 0.038 seconds of input to

output delay respectively for MVL inverter and extended AND operator.

Chapter 7: Neural Network Deployment Algorithm

84

Chapter 7

Neural Network Deployment

Algorithm

7.1 Introduction

Most of the efficient Multi-Valued Logic (MVL) synthesis algorithms do not have the

learning capability. The lack of any learning algorithm for MVL networks is an

important restraint to many applications. In the process of learning adaption also

provides a degree of robustness by compensating for minor variability. It has been

observed that the neural network MVL synthesis takes more hardware in terms of

neuron count and interconnections (Zheng, Ishizuka and Tanno 1995). In this chapter,

an effort to reduce the number of neuron in network for synthesizing MVL functions is

explored.

This chapter will also tackle a representation of Neural Network Deployment

Algorithm (NNDA) -MVL synthesis algorithm. This algorithm is able to realize and

synthesize MVL using neural network. NNDA-MVL algorithm is combined with feed-

forward backpropagation learning capability and novel MVL operators (Chowdhury,

Raj and Singh 2013). In the first part of this chapter, an elaborative description of MVL

operators is presented. These operators are trained and tested using NNDA for synthesis

Chapter 7: Neural Network Deployment Algorithm

85

purpose. A basic construction platform for NNDA is created which serves as the basis

for realizing all the MVL operators. Separate module for each gate is constructed. Each

of the neural net logic operators is used for the synthesis of the logic expression. To the

extent of literature done, the proposed method shows that the number of neuron count in

the quaternary function networks reduces remarkably using NNDA-MVL algorithm.

The proposed method is a MVL neural network synthesis which is a novel approach to

generate efficient synthesis of MVL functions.

7.2 EXTENDED AND Operators in MVL Synthesis

In this section, a brief synthesis procedure is demonstrated. This is followed by a

detailed discussion on construction of network architecture as a base for all neural

operators. In view of EXTENDED AND operator’s definition, the operator provides an

opportunity for eliminating the usage of casual MIN operator twice in one expression.

Thus, EXTENDED AND is extensively used during the synthesis of MVL functions in

this chapter. For example, if there exist an implicant of
0 1 1 1 0 2 2 2

1 2 1 2x x x x , the

implicant can be used and simplified using MVL algebraic rules for EXTENDED AND

and the simplified implicant can be represented as
0 1,2 1 1 2 2

1 2 2()x x x .

The MVL matrix 1

a bx and 2

a bx represent the value of a minterm. Both of them are

WINDOW LITERALs. This one input-output logic helps to form the representation of

minterms with coordinates 1x and 2x . An MVL function f1 is given as [012201120].

Considering coordinate 1 2(,) (2,1) 2x x   , the value of the minterm at this point is 2.

Since the minterm is 2 then b = 2. 1 2x  therefore 1 2a  and 2 1x  therefore 2 1a  . So

Chapter 7: Neural Network Deployment Algorithm

86

2 2 1 2

1 2x x representation could be achieved. According to the definition of window

literal the logic expression could be presented as
2 2 1 2

1 2 2 2x x   or 2. Therefore an

ideal minterm can be presented as MIN operation of two WINDOW LITERALs as

1 2
m n m na b a b
x x ,where 1 2, , , ma a a R , 1 2, , , nb b b R , 1 20 { , , , } (1)a b x x y   ,

m m n na a and b b  . The literal bounds are defined as below:

 1 1 1 1 1 1

1

, min

0

a b
b if x a where b term value

x
otherwise

 
 


 (7.1)

 2 2 2 2 2

2

, min

0

a b
b if x a where b term value

x
otherwise

 
 


 (7.2)

7.3 Construction of NNDA Architecture

The construction algorithm for NNDA architecture is presented in this section. The

architecture serves as a basic platform for creating different module for different logic

operators. Next, a pseudo-code for NNDA algorithm is introduced. An elaborative

discussion on how NNDA algorithm synthesizes MVL functions is shown in later part

of the section.

7.3.1 Algorithm and procedure

The construction of the MVL neural net begins with the algorithm provided below in

Figure 7.1. The algorithm initializes all the input, output and targets. Based on this

procedure the NNDA algorithm would perform further processing in realization.

Chapter 7: Neural Network Deployment Algorithm

87

Procedure BuildNetworkArchitecture();

Each neuron output function  
0

:
input

L L

Output nNL ij i nNL

i

N x b



 


  

Each neuron transfer function
   

 

2 2
2

2 2
2

2 12

1 1

Output Output
Output

Output
Output

N N
N

N
N

e ee

e e

 








 

do

Initializing input_Vector from input file

input_Vector := input.file();

Initializing target_Vector from target file

target_Vector := target.file();

if(sizeof (input_Vector) != sizeof(target_Vector))

Create a r-layered feed-forward backpropagation network

neural_network := createNetwork (mvl_Input_Vector,

mvl_Target_Vector, 4);

Set Function property and divide them

Divide vectors into three sets using random indices

neural_network.divideFunction();

 else

 do nothing;

Reinitialize the weights and bias of each layer

0 1_ _ : [,]Tn rmvl Input Vector x x x

0 1_ arg _ : [,]Tn rmvl T et Vector t t t

Chapter 7: Neural Network Deployment Algorithm

88

neural_network := init (neural_network);

while (sizeof (input_Vector) != sizeof(target_Vector))

set expected_MSE = 0.01

define

2
^

0

1 r

i i

i

mse O O
r 

 
  

 


do

Train the neural_network using 1

1 T

r k T
x x J e

J J I
  

  

[neural_net, tr]:=train(neural_net, input_Vector, target_Vector);

calculate(MSE);

while(MSE>expected_MSE)

Figure 7.1: The procedure which builds the MVL neural architecture

NNDA not only reduces the product term but also reduces the neural net block for

representing each of the MVL functions. NNDA converts a MVL function into a matrix.

Then the algorithm finds each column and their respective rows for any non-zero

minterms. The algorithm determines all the non-zero minterm from 1st column to nth

column.

Each column of the matrix represents one or more effective implicants of NNDA-

MVL synthesis method. Each of the implicant is formed from different number of

EXTENDED AND and MIN operators. MIN logic operator is only trained once during

the synthesis. MIN is also a universal operator and it does not change depending on the

column sequence. MIN is trained by a neural network and then, the _ iNN MIN is

formed. Every two column logic operators are combined by the logic operator MAX.

Chapter 7: Neural Network Deployment Algorithm

89

Similar to the MIN operator, the MAX logic operator is also trained once during the

synthesis as it is a universal operator and it does not change depending on the column

sequence. MAX is trained by a neural network and which will from the _ iNN MAX .

As mentioned in Chowdhury and Singh (2014), an implicant is composed of

0 1 1 1 0 2 2 2 0 3 3 3

1 2 1 2 1 2x x x x x x  , from a MVL function. Also assume the implicant is

derived from column one. Now the partial implicant can be represented as

0 1,2 1 1 2 2

1 2 2()aI x x x  . The other half of the implicant can be expressed as

0 3 3 3

2 2bI x x This Expression could be further simplified using EXTENDED AND

operator.
0 1,2 1 1 2 2

1 2 2()aI x x x 

is simplified using EXTENDED AND operator. Therefore

a bI I I  or 0 0_ _I NN ExAND NN MIN  .

After simplifying all the implicants, MAX operator operates on all the sub-

implicants to prompt the final output for the 1st column. Based on the NNDA, a pseudo

code has been prepared. Below the entire pseudo code for the algorithm is represented

in Figure 7.2.

Do

Generate Sequence of all possible 4 valued 2 variable combinations

Locate each Column of respective window literal using array

track_Term=0;

 for each column :iC i m

Find each related column consisting 1

a bx

Chapter 7: Neural Network Deployment Algorithm

90

 for each row :jR j n

 Find each related row consisting 2

a bx

 Check minterms in each of the relations

 1 2,a b a b

jR x x

 if( 1 2, 0a b a bx x )

getLiteral[track_Term]=getWindowLiteral(track[track_Term],Rj,Ci);

track_Term++;

 else

 exit loop;

NN_MIN = BuildNetworkArchitecture();

NN_MAX = BuildNetworkArchitecture();

NN_ExAND = BuildNetworkArchitecture();

 Get NN_MIN and NN_MAX using track_Term;

 reset track_Term=0;

 getReducedMinterm();

 getAvgPTResults();

while()

end

getWindowLiteral(Term[],row,column):

 ();min ijminterm termC ck Rhe

 _ min ;jtrack track Term term

jminterm null

Chapter 7: Neural Network Deployment Algorithm

91

for each column find 1
a bx

 for each row find 2
a bx

 get(a,b,x2)

 value1 = getValue(a,b,x2);

x2 = get(a,b,x2);

return x2;

x1 = get(a,b,x1);

value2 = getValue(a,b,x2);

return x1;

Figure 7.2: NNDA-MVL pseudo code

7.4 Simulation Analysis

MVL operations were analysed by specifically designed NNDA algorithm. MVL

operators were trained by the algorithm. It was observed that the neural network took

less than 300 iterations to fully converge to the behaviour of the logic operator. A

sample of 5000 benchmark training sets was sequentially created to train each of the

neural network system. For all the logic operators, the basic neural architecture

remained the same.

Chapter 7: Neural Network Deployment Algorithm

92

7.4.1 EXTENDED AND neural network

EXTENDED AND architecture consisted of feedforward backpropagation and five

inputs. The inputs
1 1 2, , ,x a b b and

2x were used to train the neural network. The network

took the inputs and predicted the possible outputs. The construction of neural network

section explained the details on how the basic architecture of the network was created.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Training ROC

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Validation ROC

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Test ROC

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
All ROC

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Figure 7.3: ROC observation for EXTENDED AND

Chapter 7: Neural Network Deployment Algorithm

93

The neural network trained itself until it fully converged to the behaviour of the

logic operator. The operator was used as one of the basic component to realize and

synthesize the MVL functions. The neural operator was trained with 3 valued 2 variable

MVL functions. The training, validation and test Receiver Operating Characteristics

(ROC) can be observed in Figure 7.3 and 7.4 above. The more the values are leaning

towards the left axis and closer to “1”, the better the classification stands. ROC was

used to check the quality of the classifiers.

It was observed that the performance mean square error (mse) reached as low as

0.00011 within 71 epochs. The best linear fit has been observed approximately 99.97%.

Among training benchmarks, a random quantity of data was chosen for testing and

validation. An additional of 1K benchmarks was used for testing the logic operator after

training. Floating point variables were avoided for the training purpose. The inputs to

0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

2

2.5

Targets T

O
u
tp

u
ts

 Y
,

 L
in

e
a
r

F
it
:

Y
=

(1
)T

+
(-

0
.0

0
9
)

 Outputs vs. Targets, R=0.99967

 Data Points

Best Linear Fit

Y = T

Figure 7.4: Accuracy of EXTENDED AND operation

Chapter 7: Neural Network Deployment Algorithm

94

the network were limited by 0, 1 and 2 values. The testing performance and post

training accuracy is shown in Figure 7.4. Random weights were initialized with every

input to the network. A total of 20 weights which were associated with inputs can be

observed from Figure 7.5. After the training, it was observed that within 71 epochs the

gradient reached 0.00020 and 6 validation checks had commenced. The gradient

analysis and the validation check can be observed in the Figure 7.6.

0 2 4
-1

-0.5
0

0.5

Weights from Input 1

0 2 4
-1

-0.5
0

0.5

Weights from Input 2

0 2 4
-1

-0.5
0

0.5

Weights from Input 3

0 2 4
-1

-0.5
0

0.5

Weights from Input 4

0 2 4
-1

-0.5
0

0.5

Weights from Input 5

10
-5

10
0

10
5

g
ra

d
ie

n
t

Gradient = 0.000203, at epoch 71

0 10 20 30 40 50 60 70
0

2

4

6

v
a
l
fa

il

71 Epochs

Validation Checks = 6, at epoch 71

Figure 7.5: Weight initialization for
1 2 1 2, , , ,x x b b a

Figure 7.6: Gradient and validation after 71epochs

Chapter 7: Neural Network Deployment Algorithm

95

7.4.2 ODD neural network

Basic neural ODD was trained with 4 valued 2 variable benchmarks. Among all

benchmarks, a random quantity of data was chosen for testing and validation. The mse

reaches as low as 0.69628 within 101 epochs. The best linear fit was observed

approximately 75.97%. An additional of 1K benchmarks was used for testing the logic

operator after training. Floating point variables were considered for the training purpose

and better linear fit data. The inputs to the network were limited by 0, 1, 2 and 3.

Weight initialization, post training accuracy and gradient analysis were as observed in

Figure 7.7, 7.8 and 7.9. It was observed that within 107 epochs the gradient reached

0.10650 and 6 validation checks was commenced.

-1 0 1 2 3 4
-1

-0.5

0

0.5

Weights from Input 1

-1 0 1 2 3 4
-1

-0.5

0

0.5

Weights from Input 2

Figure 7.7: Weight initialization for
1 2,x x

Figure 7.8: Accuracy of ODD operation

Chapter 7: Neural Network Deployment Algorithm

96

Figure 7.9: Gradient and validation after 107 epochs

7.4.3 EVEN neural network

MVL-EVEN was trained with 4 valued (0-3) benchmarks. Additional benchmark was

used for post-training evaluation. Floating point variables were considered for the

training purpose for better linear data fit. The best linear fit that was observed is to be

approximately 97.38%. The mse reached as low as 0.04879 within 129 epochs. Total of

8 weight initialization, testing performance and gradient analysis of the EVEN operator

can be observed in Figure 7.10, 7.11 and 7.12.

10
-2

10
-1

10
0

10
1

gr
ad

ie
nt

Gradient = 0.1065, at epoch 107

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6
va

l f
ai

l

107 Epochs

Validation Checks = 6, at epoch 107

-1 0 1 2 3 4
-1

-0.5

0

0.5

Weights from Input 1

-1 0 1 2 3 4
-1

-0.5

0

0.5

Weights from Input 2

Figure 7.10: Weight initialization for 1 2,x x

Chapter 7: Neural Network Deployment Algorithm

97

10
-2

10
-1

10
0

10
1

gr
ad

ie
nt

Gradient = 0.023534, at epoch 135

0 20 40 60 80 100 120
0

2

4

6

va
l f

ai
l

135 Epochs

Validation Checks = 6, at epoch 135

Figure 7.12: Gradient and validation after 135 epochs

Figure 7.11: Accuracy of EVEN Operation

Chapter 7: Neural Network Deployment Algorithm

98

-1 0 1 2 3 4
-1

-0.5

0

0.5

Weights from Input 1

-1 0 1 2 3 4
-1

-0.5

0

0.5

Weights from Input 2

-1 0 1 2 3 4
-1

-0.5

0

0.5

Weights from Input 1

-1 0 1 2 3 4
-1

-0.5

0

0.5

Weights from Input 2

7.4.4 MIN and MAX neural network

The MIN and MAX operators were trained with 5K 4-valued benchmarks. 1K

benchmark was used for testing the logic operators. Floating point variables were

considered for better linear data fit. The mse was measured up to 0.29224 for MIN and

0.86794 for MAX consecutively within 105 and 66 epochs. MIN obtained the best

linear fit of 80.03% compared to 62.14% of MAX. For MAX, the gradient has reached

0.01201 within 111 epochs. On the other hand, MIN has reached 0.03418 within 72

epochs. On both cases, validation check is 6. Weight initialization, testing performance

and gradient analysis of the MIN and MAX operator can be observed in Figure 7.13,

7.14, 7.15, 7.16 and 7.17.

Figure 7.13: Weight initialization of MIN and MAX operator

Chapter 7: Neural Network Deployment Algorithm

99

Figure 7.14: Accuracy of MIN operation

Figure 7.15: Accuracy of MAX operation

Chapter 7: Neural Network Deployment Algorithm

100

10
-4

10
-2

10
0

10
2

gr
ad

ie
nt

Gradient = 0.012009, at epoch 111

0 20 40 60 80 100
0

2

4

6

va
l f

ai
l

111 Epochs

Validation Checks = 6, at epoch 111

10
-2

10
-1

10
0

10
1

gr
ad

ie
nt

Gradient = 0.034184, at epoch 72

0 10 20 30 40 50 60 70
0

2

4

6

va
l f

ai
l

72 Epochs

Validation Checks = 6, at epoch 72

Figure 7.16: Gradient and validation analysis for neural MIN operator

Figure 7.17: Gradient and validation analysis of MAX neural operator

Chapter 7: Neural Network Deployment Algorithm

101

7.5 Discussion and Comparisons

MVL gate count and network link count is observed when different neural net logic

operators are interconnected to realize synthesized MVL functions. Figure 7.16

illustrates the entire reduced neural network for realizing the quaternary function in the

paper by Jain, Bolton and Abd-El-Barr (1993). Table 7-1 shows NNDA-MVL

algorithm has managed to reduce logic operators and interconnected link in the neural

network.

Table 7-1: Post training comparison among different MVL neural net operators

 Zheng, Cao and

Ishizuka (1998)

NNDA-MVL Improved Reduction

Achievement (%)

*MVL MIN Operator 17 8 52.941%

MVL MAX Operator 13 13 00.00

Interconnected Links 77 59 23.377%

*In Table 7-1 MVL MIN operator consists of MIN and EXTENDED AND

operator.

The reduced neural network incorporates lesser MVL neural operators for

synthesizing a logic expression. The network also reduces the number of internal

connections among the logic operators. For some MVL operators the network provides

an efficient and fast output. A total of logic operator is used for the network

architecture. 2 _NN MIN , 6 _ ,NN ExtAND 16 _NN CONVERTER and

13 _NN MAX .

Chapter 7: Neural Network Deployment Algorithm

102

Figure 7.18: Networks for a synthesized MVL function

A comparative analysis is carried out for different MVL neural network operators in

this section of the chapter. Some specific criteria such as, CPU time taken to train, input

Chapter 7: Neural Network Deployment Algorithm

103

to output delay, number of inputs, hidden neurons and accuracy. INVERTER not only

takes the least amount of time 8.52 seconds to train, but also it has the least transition

delay of 0.00842 seconds. The highest accuracy of 99.97% is observed by EXTENDED

AND neural operator. Among MIN, MAX, EVEN and ODD operators, ODD not only

takes the least amount of time of 9.09 seconds to train but also has the least input-output

delay of 0.00988 seconds. EVEN has the highest accuracy of 97.38%.

7.6 Summary

In this chapter, an evolutionary technique for synthesizing MVL functions using NNDA

was presented. The algorithm was combined with back-propagation learning capability

and novel MVL operators. The advantages of NNDA-MVL algorithm was also

demonstrated with realization of synthesized MVL function by lesser number of MVL

operators. The comparison against NNDA-MVL algorithm was based on the reduction

of MVL gate count, network link count, network input to output delay and accuracy

achieved in training. As a summarisation, an effort of reduced network size was

observed for synthesized MVL functions in this chapter. Overall the algorithm showed

an improvement of 52.94% for MVL MIN gate reduction and reduced MVL neural net

internal link connections of 23.38% compared to existing techniques.

Chapter 8: Non-Zero Multi-Valued Decision Diagram

104

Chapter 8

Non-Zero Multi-Valued Decision

Diagram

8.1 Introduction

There are several researches of Multi-Valued Logic (MVL) synthesis based on Decision

Diagrams (DD). According to Files, Drechsler and Perkowski (1997), the MVL

functions can be functionally decomposed using the decision diagrams. DDs can also be

used to represent and manipulate MVL functions. The DD packages as discussed in the

chapter by Drechsler, Jankovic and Stankovic (1999) are based on recursive synthesis

operations. The author discussed an approach which can be easily utilised to prototype

the MVL DD packages. Drechsler, Thornton and Wessels (2000) utilised the decision

diagram for the synthesis of MVL specifically MVL Networks (MVLN) by developing

an edge-mapping approach for MVLN. The resulted circuits have linear size with

respect to the initial DDs (Drechsler, Thornton and Wessels 2000).

Miller and Drechsler (2002) examined the constructions of Multi-Valued Decision

Diagrams (MDD). The evaluation is achieved by comparing the recursive MIN and

MAX as primitive operations in MDD. The authors also used the cyclic negations and

complements as MDD edge operations to reduce the MDD node count. Jiang, Matic and

Chapter 8: Non-Zero Multi-Valued Decision Diagram

105

Brayton (2003) studied the optimum functional evaluation problem for a multi valued

relation. The Generalized Co-factoring Diagram (GCD) proposed in this paper is tested

on multi valued relations which can be used in logic simulation, software synthesis for

embedded control applications and functional decomposition in logic synthesis (Jiang,

Matic and Brayton 2003). It has also been observed that many existing algorithm

requires more hardware compared to evolutionary algorithms (Sarif and Abd-El-Barr

2006).

In this chapter, an effort to reduce the Product Term (PT) for synthesizing MVL

functions is studied. It represents a tree-like decision diagram, Non Zero MDD

(NZMDD) which is an extension of the existing MDD. Firstly, the MVL function is

represented as the Reduced MVLN (RMVLN). RMVLN is reduced to only two rows in

height. Next, RMVLN is mapped to NZMDD for synthesis process. The synthesized

compact form of NZMDD is evaluated as MVL expressions. MVL gates such as,

WINDOW LITERAL, EXTENDED AND, MIN and MAX is used to realize the logic

expressions. Two sets of randomly generated benchmark circuits are generated to

evaluate the experimental results. First set initially consist of 1 million randomly

generated MVL functions, out of which 19600 circuits are used to represent 3-valued

MVL synthesis. 4-valued 49998 MVL benchmark circuits are used for synthesis and

comparison against ACO-MVL algorithm. This algorithm is the latest research finding

on the evolutionary algorithm which synthesizes MVL functions. Therefore, ACO-

MVL algorithm is chosen to be compared against the proposed NZMDD algorithm.

Among all the evolutionary algorithms, the ACO-MVL exhibits the best PT reduction

Chapter 8: Non-Zero Multi-Valued Decision Diagram

106

rate. Hence, ACO-MVL algorithm is compared against the proposed NZMDD

algorithm to justify the improvement in PT reduction.

8.2 Details of RMVLN and NZMDD

In this section, a description of nodal logic gates is presented. A detailed elaboration of

RMVLN is introduced and how NZMDD is used to synthesize from RMVLN is also

discussed. The structure of NZMDD and its working are elaborately explained. A brief

sight of MVL expression is presented to show how these are used to form the circuits.

8.2.1 Model of RMVLN and its nodal logic gate

Multi-Valued Logic (MVL) functions are represented as RMVLN. RMVLNs are

formed as a directed acyclic graph which consists of vertices V and edges E . The graph

is represented as  ,C V E . One of the basic cell’s which comprises of an Initial Input

(II) or Initial Output (IO) is labeled with each of the vertex v V . There exists a set of

fundamental cells in RMVLN which consists of WINDOW LITERAL, EXTENDED

AND, MIN and MAX logic gates. If an output of a cell related with u is connected to

the input of another cell related with v , then there exists an edge  ,E u v from vertex

u to v . The vertex information about their input and output is embedded in every edge.

The first node of the network is labeled as II since it has no incoming edge. Nodes that

have no outgoing edges are labeled as IO . The basic cells interact with each other

through edge and later help forming logic expressions. The network has a maximum of

two rows of nodes. Incoming and outgoing edge of a node is considered to decide the

form of fundamental cell and their inputs.

Chapter 8: Non-Zero Multi-Valued Decision Diagram

107

In a RMVLN the II values are determined from an ordered finite set S , where

 0, , 1S k  and k denotes the logic levels. Terminals  0 1,, , tT T T T are available

for each of the II . Terminal values are determined by the ordered finite set sT , where

 1, , 1sT k  . The terminal values for initial input x are defined as

   1, , 1t iT x k  .

A WINDOW LITERAL consisting of bounds

     , , , 0a b and a b S a b k    has one input and output. As proposed in

(Abd-El-Barr and Sarif 2006) for a given input x with bounds  ,a b the literal or short

literal is defined as:

0

a b
b if x a

x
otherwise


 


(8.1)

Where 1 2, , , na a a R , 1 2, , , nb b b R and 0 { , } (1)a b k   andb is called the value of

the literal. In an MVL function 1

a bx and 2

a bx represents the value of a minterm. Window

literal helps to form the representation of non-zero minterms, with the assistance of

coordinate  1 2,x x . Considering coordinate 1 2(,) (2,1) 2x x   the minterm is retrieved

from 3rd column 2nd row of the function. Since the minterm is 2, then b = 2. 1 2x 

therefore 1 2a  and 2 1x  therefore 2 1a  . Hence the literal could be represented as

2 2 1 2

1 2 2 2 2x x    . Therefore an ideal minterm could be represented as MIN

operation of two WINDOW LITERALS as 1 2
m n m na b a b
x x where ,m m n na a b b  and:

Chapter 8: Non-Zero Multi-Valued Decision Diagram

108

1 1 1 1 1 1

1

, min

0

a b
b if x a where b term value

x
otherwise

 
 


(8.2)

2 2 2 2 2

2

, min

0

a b
b if x a where b term value

x
otherwise

 
 


(8.3)

Consideration of given input 1 2,

1 2

b ba x and x of EXTENDED AND operator as

proposed by Chowdhury, Raj and Singh(2013) is defined as below.

1 2

1 2 1 1

,

1 2 2 2 2 1

0

b ba

b if x b and x a

x x b if x b and x a

otherwise

 


   



(8.4)

Where 1 20 { , , , } (1)a b x x k   , 2x determines the value of the operator if an implicant

from a MVL function as
0 1 1 1 0 2 2 2

1 2 1 2x x x x exist. The implicant can be simplified

using EXTENDED AND operator. The simplified implicant can be represented as

0 1,2 1 1 2 2

1 2 2()x x x . Considering coordinate 1 0x  and 2 2x  , the implicant achieves

0 1,2 0 1,2

1 1 2(0 2) 2, 2x x where x    and the output is 2.

8.2.2 NZMDD generation using RMVLN

Functions ranging in    : 1, , 1 1, , 1
n

f k k   represents NZMDD. This decision

diagram only maps the non-zero minterms in the multi-valued logic network. Hence, the

edges from a node which are relevant to the non-zero minterms are considered and

mapped to the RMVLN. From root to terminal, the nodes are defined from a set

Chapter 8: Non-Zero Multi-Valued Decision Diagram

109

 0 0 0 1,, , r nN N N N where  0,1r  . The node contains fundamental cells. Based

on the incoming and outgoing edges, the cell is selected.

Each internal node has minimum one outgoing and maximum 1k  outgoing edges,

where for a particular edge    1, , 1x t ie T x k   . Each r nN has an if-else clause to

determine the flow of incoming edges. The flow leads to the non-zero terminal of the

decision diagram. NZMDD does not contain vertices with isomorphic sub-graphs or

with all successors pointing to the same node. On all such paths of this DD the variables

are not encountered in the same order. Hence, NZMDD is reduced but not ordered. The

remaining of this paper focus on reduced NZMDD.

The function  1 2(,) 012111000f x x  is a two variable three valued vector presented

as shown Table 8-1. Figure 8.1 exhibits a diagram of a reduced and ordered MDD of the

same function and Figure 8.2 represents diagram of reduced NZMDD.

Table 8-1: Matrix of function 1 2(,)f x x

Functionf1 0

Column 1

1

Column 2

2

Column 3

 b A

 0 0 1 0

 1 1 1 0

 2 2 1 0

Chapter 8: Non-Zero Multi-Valued Decision Diagram

110

 Figure 8.1: Ordered-reduced MDD Figure 8.2: Reduced NZMDD

A directed acyclic RMVLN can be constructed based on function ()f x for which a

corresponding NZMDD can be generated as below:

I. Nodes are labeled with II and IO . Terminal nodes 0 0 0 1,, , r nN N N are created,

where the value of N is    1, , 1t iN T x k   .

II. In reduced RMVLN for each of the II a vertex or variable is created in the

NZMDD. The node checks all non-zero minterm  1 2

0

,
n

i i

i

f x x


 .

III. Based on the nodal clause the outgoing edge points to the terminal nodes. The

logic gates of the reduced RMVLN are visited in a topological order. Each of the

logic gates has its corresponding NZMDD operation which is carried out.

The two rows of reduced RMVLN assure a complete visit of all the nodes in a

topological manner. This also ensures that all input edges are known before it is

evaluated through logic gate expression. After visiting all the nodes the 'IO s of the

NZMDD is evaluated.

Chapter 8: Non-Zero Multi-Valued Decision Diagram

111

In Figure 8.3 an example of a nodal simulation of NZMDD is shown through logic

gates. The logic gates consists of EXTENDED AND and MVL MAX gate. The input to

gate corresponds to the outgoing edge of 1x and outgoing edge of 2x . Input to the MAX

gate depends on the repeated incident edge of 2x . The output edges of the gates

correspond to the nodal relation that is represented by the NZMDD.

Figure 8.3: A nodal simulation of NZMDD using MAX and EXTENDED AND

(a)

(c)

(b)

Chapter 8: Non-Zero Multi-Valued Decision Diagram

112

8.3 NZMDD Synthesis of MVL Benchmarks

Consider an NZMDD representing a k valued two variable function which is initially

provided for the synthesis purpose. The function ()f x is the cumulative set of all sub-

functions of the main       0 1() nf x Z x Z x Z x    . Each of the sub-function’s

representing intermediate nodes of NZMDD. Root node and Terminal nodes are not

considered as sub-functions of the DD. Each  2nZ x consist of variable 2x with input

edges from 1x and outgoing edges from the node are mapped to a set of logic gates. The

incoming edges and outgoing edges of  2nZ x is represented as
0 1
, , ,

na a ae e e and

0 1
, , ,

nx x xe e e . If the function being computed is ()f x , then the number of logic gates

require can be represented by    
0 0

n m

i j

i j

Z x e x
 

  
  

   
  . All the sub-functional output

edges are input to a MAX gate. The output from the MAX gate is the final output of the

function ()f x . In order to compute the functions, the basic gates used are EXTENDED

AND, MIN, MAX and WINDOW LITERAL. It is assumed that each intermediate node

is referring to a fundamental logic cell, where the inputs are from incoming edge

0 1
, , ,

na a ae e e , outgoing edge
0 1
, , ,

nx x xe e e and output is terminal node

   1, , 1t iT x k  .Each incidental repeating outgoing edge of intermediate node of

NZMDD is translated to EXTENDED AND and MAX gate. Other outgoing non-

incidental edges are translated into MIN gate. Output edges of EXTENDED AND and

MIN serves as the final input for MAX2 gate. The MAX2 gate produces the final value

for the specified sub-function.

Chapter 8: Non-Zero Multi-Valued Decision Diagram

113

As shown in Figure 8.4 below, three inputs to the MAX1 gate originate from the

repeating outgoing edge of 2x . The predecessor edge of 2x and output from MAX1 gate

serves as the input to the EXTENDED AND. Non incidental outgoing edge for 2x and

predecessor edge serves as the input for MIN gate.

Figure 8.4: A 4 valued 2 variable MVLN, its sub-functional synthesis to MVL gates

(b) (d) (e)

(b) (a)

(c)

Chapter 8: Non-Zero Multi-Valued Decision Diagram

114

The circuit portion in Figure 8.4(d) and 8.4(e) shows the relevant inputs and gates

related to outgoing edge
2 3x xe and e , predecessor edge

3ae and intermediate node

 3 2Z x . Considering the NZMDD in Figure 8.4 if a realization for node  3 2Z x is to be

constructed, incoming edge
3ae and outgoing edge

2 3
,x xe e are needed. Redundant single

input-output WINDOW LITERAL gates can be replaced with a single pass. MAX gates

which determine the final output of the function  f x can be shared across all the

output edges of the sub-functional nodes.

For a k valued logic level each intermediate node in the NZMDD can accommodate

at max 1k  outgoing edges,
2

k
incidental repeating outgoing edges. A worst case

scenario may appear when at least one outgoing edge is incidental repeating. In these

circumstance the total number of logic gates required to express a sub-functional

intermediate node can be observed by
0

2
i

n

x

i

e


 
 
 
 and

0

2 1
i

n

x

i

e


 
  
 
 . Using EXTENDED

AND in all the outgoing edges decreases the number of MIN gates but increases the

number of MAX gate. The best outcome has been achieved when at most one of the

edge has utilized EXTENDED AND operator.

8.4 Experimental Analysis

An NZMDD analyzer was constructed to generate experimental results using 19600 and

49998 benchmark circuits. This benchmark generating method was also used by Sarif

and Abd-El-Barr (2006), Abd-El-Barr and Sarif (2006) and Chowdhury, Raj and Singh

(2013). Two sets of experimental datum were generated using the analyzer. The first

Chapter 8: Non-Zero Multi-Valued Decision Diagram

115

and second set consecutively consisted of 19600 and 49998 randomly generated MVL

functions. The first set benchmarks were 3 valued 2 variable functions, while the second

set consisted of 4 valued 2 variable MVL functions. The benchmark did not contain any

sequential circuits.

All measurements were performed on a Microsoft windows XP, Intel Core2 duo

2.20GHz CPU, 0.98GB RAM machine. The 3 valued combinational benchmarks were

used to observe the average number of product term (PT) needed to synthesize each

MVL function provided in Table 8-2. The number of minterms the function contains is

shown in the first column. The proposed NZMDD column denotes the average PT

needed to synthesize the group of functions.

Table 8-2: Average PT used in 3-valued MVL benchmarks using NZMDD method

Minterm

Generated

MVL Functions

NZMDD (proposed)

Avg. PT

9 799 5.214

8 3067 4.968

7 5178 4.645

6 5319 4.273

5 3338 3.823

4 1461 3.261

3 438 2.625

Chowdhury, Raj and Singh (2013) had experimented on synthesizing MVL

functions of 4 valued 2 variable using evolutionary techniques. It can be clearly

Chapter 8: Non-Zero Multi-Valued Decision Diagram

116

observed that evolutionary algorithm had outperformed all other previous synthesis

techniques. Considering the experimental results shown in Table 8-3, it is observed that

the proposed method synthesizes an average 10.5 minterm 4-valued MVL functions for

an average of 4.975 PT. ACO-MVL required an average of 6.286 PT for the same

experiment. The synthesis using NZMDD reduced the number of PT by 52.62%, while

ACO-MVL reduced PT by 40.13%. Hence the proposed NZMDD synthesis method

outperformed ACO-MVL algorithm by 12.49% of improvement. Further reduction in

synthesis could be achieved if the NZMDD could be reduced to its optimal size.

Table 8-3: PT reduction using NZMDD over ACO-MVL for 4-valued MVL functions

Minterm MVL Functions ACO-MVL NZMDD (proposed)

16 500 6.730 6.316

15 2679 7.054 6.124

14 6589 7.163 5.852

13 10585 7.182 5.719

12 11230 7.086 5.483

11 9003 6.904 5.210

10 5434 6.660 4.782

9 2575 6.356 4.626

8 1038 5.934 4.429

7 277 5.480 4.094

6 75 4.960 3.987

5 13 3.923 3.077

Chapter 8: Non-Zero Multi-Valued Decision Diagram

117

As NZMDD managed to reduce PT better than ACO-MVL and other synthesis

techniques, this will result in the reduction of logic gates used. With smaller number of

logic gates, there will be less hardware involves in the logic circuit realization. In return,

reduction of input to output delay as well as the economic cost involving the use of

extra hardware can be achieved with the use of NZMDD method in synthesizing MVL.

8.5 Summary

Decision Diagrams (DD) was known to be one of the effective ways to synthesize

MVL. In this chapter, a presentation and evaluation of the tree-like decision diagram

have been made. NZMDD was considered as an extension to MDD, which synthesizes

reduced MVL functional networks. The synthesized MVL functions were realized with

MVL gates. The compact form of NZMDD reduced the size of logic expression, which

in turn reduced the size of the circuit.

The results obtained using the NZMDD was compared using randomly generated

49998 non-sequential benchmark circuits against ACO-MVL evolutionary algorithm.

The results achieved have shown that the NZMDD outperformed the existing

evolutionary ACO-MVL algorithm in the paper by Chowdhury, Raj and Singh (2013).

The result depicted an improvement of 12.49% for reduction in PT for synthesizing 4-

valued MVL functions compared to ACO-MVL algorithm.

Chapter 9: Implementation and Realization at Gate and Transistor Level

118

Chapter 9

Implementation and Realization at

Gate and Transistor Level

In this chapter of the thesis, Multi-Valued Logic (MVL) gates are represented using

traditional logic gate elements. The logic gates are used to realize MVL functions.

Furthermore realization of MVL operators are performed by using N-channel Metal

Oxide Semiconductor (NMOS), P-channel Metal Oxide Semiconductor (PMOS),

transistors, resistors, diodes and comparators.

9.1 Introduction

Logic gate representation of synthesized MVL function is important, as it provides a

clear view of hardware requirement. The logic gates differ in their functionality over

conventional binary gates. It is observed that MVL realization requires lesser logic gates

compared to the existing MVL architecture. For MVL systems, there are various

logical operators, mainly MIN, MAX and EXTENDED AND. These logical operators

operate on the WINDOW LITERALS which represent the minterm of MVL functions,

or in other words it operates on the coordinates of the minterm of a MVL matrix.

Operator MIN signifies the Product Term (PT) in function representation. Hence, an

Chapter 9: Implementation and Realization at Gate and Transistor Level

119

initiative was undertaken to reduce MIN operator in function realization, by substituting

EXTENDED AND operator.

In this chapter, synthesized MVL expressions from High Deduction Algorithm–

MVL (HDA-MVL) algorithm are used for realization using proposed logic gates. Each

row of MVL function represents an implicant. Each of these implicants are synthesized

using EXTENDED AND operator. A three valued two variable function can generate

up to maximum three implicants. MVL functions and their implicants are presented

before converting to gate level. Each implicant and its relevant gate expression are

carefully scrutinized before merging all of them with MAX gate. Realization reveals

better result compared to existing algebraic synthesis techniques.

Furthermore, MVL Function realization is shown achievable by implementing logic

gates in transistor level. During implementation voltage mode architecture is

considered. In voltage mode, MVL levels are represented by voltage levels in terms of a

base voltage value. The initial base voltage value,
bv is set to 1.5 Volt for the

experimental analysis. Logic level l corresponds to an interval of the continuous

quantity x. Hence, level 0 represents the null value and level 3 is associated with
bv =

4.5V and so on.

9.2 Logic Circuit Presentation at Gate Level

Most of the logic operators requires two inputs and prompts one output. Exceptional

operators such as EVEN, ODD and INVERTER requires only one input and output.

Throughout this thesis, in various MVL function realizations these logic operator

elements are used. Romero, et al.(2009) in the research article presented basic MVL

Chapter 9: Implementation and Realization at Gate and Transistor Level

120

operators and utilized them for realization. Inspired by the paper, an initiative was

undertaken to present similar approach for the logic circuit elements. Extended and

novel logic operators are introduced to reduce gate count during the synthesis procedure

as an improvement to the MVL operators presented by Romero, et al. (2009). Some of

the basic logic circuit elements of these logical operators are shown below in Figure 9.1.

Figure 9.1: Representation of essential logic circuit elements

Romero, et al. (2014) in his paper represented MVL functions of 4 valued 2 variable

using algebraic synthesis methodology. Below in Table 9-1, a MV logic function

G(a1,a2) and logic circuit representation of function G(a1,a2) from his paper is

elaborated.

Table 9-1: Example of a MVL function f1

Function f1 0

Column 1

1

Column 2

2

Column 3

b a

0 0 2 1

1 1 0 2

2 2 1 0

Chapter 9: Implementation and Realization at Gate and Transistor Level

121

Synthesized MVL functions are represented with the logic circuit elements. These

circuit elements are realized at transistor level to observe the realization and behaviour.

The synthesized functional expression for the above function is represented as below. A

series of EXTENDED AND is expressed in the form of SoP. Table 9-2 represents

 1 2,G a a

0 1,2 1 1 2 2 1 2,1 0 2 2 1 2 1,2 0 1 1 2

1 1 2 2 1 2 2 1 2 2() () () ()Synthesized f x x x x x x x x x     
 (9.1)

MVL function f1 was realized with the pre-defined logic operators as shown below in

Figure 9.2. The entire system had two inputs and one output. Intermediate or successor

operators were the first layer of operators which initiated inputs to the second layer. The

second layer consisted of OR logic operator. The output from the OR operator and

another input went into EXTENDED AND operator.

The other input was always generated from input x2. A total of three EXTENDED

AND operator generated three outputs. Each of these operators represented an implicant

from the main function. Three of the outputs from the operators were fed into a three

Table 9-2: Example of a MVL function  1 2,G a a from (Romero, Martins and

Santos 2009)

Function G(a1 ,a2) 0 1 2

3

2a
1a

 0 1 0 0 0

 1 0 3 2 1

 2 0 2 3 0

 3 0 0 0 0

Chapter 9: Implementation and Realization at Gate and Transistor Level

122

input MAX operator. The MAX operator generated the final output of the entire MVL

function. Instead of a three input MAX operator, a two input MAX operator could be

also considered. If a two input MAX was considered, the amount of MAX operator in

the design would increase by 20%. The successor or first layer operators occupied

46.15% out of total operators in the design. On the other hand, 23.08% of the MIN

operators and 30.77% MAX operators were used in the entire design of the MVL

function. Existing MVL logic circuit implementation of the function G(a1 ,a2) has been

shown in Figure 9.3.

Figure 9.2: Realization of function f1 using logic circuit design

Chapter 9: Implementation and Realization at Gate and Transistor Level

123

Figure 9.3: MVL circuit implementation according to Romero, Martins and Santos

(2009)

The circuit representation clearly revealed that six MIN operator was used along with

five MAX operators. Number of inputs were two and number of intermediate operators

or successor operators were four. HDA-MVL algorithm syntheseized the G(a1 ,a2)

function, after synthesizing MVL functional expression was retrieved. The logic

representation of the proposed methodology is shown as Figure 9.4 below.

1 2

MAX

A

1 2 MAX

MIN

1

2
3

1

2
3

1

2
3

MAX

1

2
3

1

2
3

1 2

1

2
3

MIN

MIN

MIN

INV

1

2
3

MAX

MIN

INV

1

2
3

MAX

B

1

2
3

MIN

1

2
3

1 2
INVINV

OUT

1

2
3

Chapter 9: Implementation and Realization at Gate and Transistor Level

124

Figure 9.4: Logic circuit representation according to the proposed method

Chapter 9: Implementation and Realization at Gate and Transistor Level

125

9.3 MVL Operator Realization at Transistor Level

In this section, different MVL operators are widely discussed and realized on

transistor level. Level 3 models of NMOS and PMOS transistors are used to build the

converter logic. Threshold voltage
0t

V =0.8V is set for NMOS transistor whereas
0t

V =-

0.9V is set for PMOS transistor. Diode-switch model is used to represent some of the

circuits. Circuits like EXTENDED AND is a combination of both Diode-Switch (DS)

and Metal Oxide Semiconductor (MOS).

A maximum of 4 valued 2 variable functions is investigated for experimental

purpose. For a maximum of 4 value, logic level l=0 will represents
bv = 0V, l=1 will

represents
bv = 1.5V, l=2 will represents

bv = 3V and l=3 will represents
bv = 4.5V. All

the experiments are conducted in ORCAD CAPTURE CIS Lite tool. Simulation results

are investigated to show the expected output of each MVL operator. ODD, EVEN,

MIN, MAX, differential comparator, INVERTER, CONVERTER and EXTENDED

AND MVL circuits are also used in the experimental analysis. ORCAD Capture tool is

used to design the circuits with level 3 transistor parameters.

9.3.1 MIN circuit

Design of this converter needs a circuit that gives maximum outputs of two voltages.

Two diodes (D8-D9) are used as switches. The diode with the lowest input voltage will

turns on. Considering D8 has the lowest voltage, it turns on its diode raising the voltage

at the output and the other diode D9 is turned off. Construction of the circuit is needed

to replace the ground with a voltage which is more than the input voltage can become

(Max, Min, Average Circuits 2010). The MIN circuit is shown in Figure 9.5.

Chapter 9: Implementation and Realization at Gate and Transistor Level

126

Figure 9.5: Circuit realization of a MIN logic operator (Gawande and Ladhake 2008;

Max, Min, Average Circuits 2010)

9.3.2 Differential comparator circuit

The schematic of comparator is shown in Figure 9.6. The differential comparator

comprises of MOS transistors M1-M8 which compares the level-shifted input A with

the fixed reference voltage. The reference voltage differs from circuit to circuit as

different realization of voltage level requires different reference voltage.

Figure 9.6: Differential comparator

Chapter 9: Implementation and Realization at Gate and Transistor Level

127

For realizing
1 1

1x WINDOW LITERAL the reference voltage is set to 0.73 volt which is

set for logic 1, i.e. 1.5 volt. The output of comparator is fed to MIN circuit. The other

input of the MIN circuit is the level shifted input A. The level shifting of a signal occurs

due to the presence of diode. Voltage source V1 is the supply of the comparator. Input

A is the positive terminal and Input B is the negative terminal of the comparator.

9.3.3 CONVERTER circuit

The CONVERTER is capable of converting a specific voltage to a different voltage

level. This CONVERTER actually represents the output (voltage) of a WINDOW

LITERAL of a MVL expression. Considering
2 1

1x , if the input is 2 then the output is 1.

Since in MVL voltage mode circuitry logic levels are represented with voltage, then l=2

would represent vb = 3V and l=1 would represent vb = 1.5V. That means the

CONVERTER for this specific WINDOW LITERAL will output 1.5V, given the

condition that the input voltage level is 3V. For all other voltage level, the output is 0V.

Definition 4.2.1 explains how a WINDOW LITEERAL steps up to an output. A

CONVERTER is a representation of a WINDOW LITERAL.

Conversion: 0V to (0V, 1.5V, 3V, 4.5V) output

The circuit for 0V to 1.5V conversion is shown in Figure 9.7. VS1.txt generates the

amount of voltage input to be supplied to the circuit to check the circuit output. The

VDC is set to 1.5V to achieve the output of 1.5V which is of logic level 1.

Chapter 9: Implementation and Realization at Gate and Transistor Level

128

Figure 9.7: A typical circuit realization of 0V to 1.5V CONVERTER

The CONVERTER is designed for
0 1

1x WINDOW LITERAL. The circuit only

outputs 1.5V when the input voltage is 0V. For any other level of voltage input between

0-5V the output is always 0V. Two transistors (M4-M5) are used to control the output

voltage level of the CONVERTER. If input is non zero, transistor M4 is switched off

and M5 is switched on, hence ground potential switch the output to 0V. If the input is

zero volts, M4 is switched on and 1.5V is drawn to the output from voltage source V6.

Conversion: 1.5V to (0V, 1.5V, 3V, 4.5V) output

The CONVERTER schematic is shown in Figure 9.8. VS1.txt generates the amount of

voltage input to be supplied to the circuit to check the circuit output. V13 is the Direct

Cover (DC) supply voltage of 5 volt of the comparator.

Chapter 9: Implementation and Realization at Gate and Transistor Level

129

Figure 9.8: Circuit realization of a 1.5V to 1.5V CONVERTER

V15 is the supply for the MIN circuit set to 6 volt. A switch is used to control the

final output of the circuit. The Sbreak VSWITCH model parameters are set as,

Roff=1e6, Ron=1.0, Voff=0.73 and Von=0.0. The V16 VDC is set to 2.25V to achieve

the output of 1.5V which is of logic level 1. V12 VDC = 0.73V determines the 1.5V

input peak. There exists a 2.25V decrement or increment per logic level representation.

For example, to represent l=2, the VDC needs to be set as 4.5V. The converter is

designed for
1 1

1x WINDOW LITERAL. The circuit only outputs 1.5V when the input

voltage is 1.5V. For any other level of voltage input ranges between 0-5V the output is

always 0V.

Chapter 9: Implementation and Realization at Gate and Transistor Level

130

Conversion: 3V to (0V, 1.5V, 3V, 4.5V) output

The schematic for this conversion realization is shown in Figure 9.9. The

CONVERTER’s V12 is set to DC voltage of 0.73V which determines the 3V input

peak. This V12 voltage supply is the only entity that differs between the 2nd and

3rdCONVERTER.

Figure 9.9: Circuit realization of a 3V to 4.5V CONVERTER

VS1.txt generates the amount of Voltage input to be supplied to the circuit to check

the circuit output. V13 and V15 have the same supply voltage. A switch is used to

control the final output of the circuit. The Sbreak VSWITCH model parameters are set

as, Roff=1e6, Ron=1.0, Voff=0.73 and Von=0.0. The V16 VDC is set to 6.75V to

achieve the output of 4.5V which is of logic level 3. There exists a 2.25V decrement or

increment per logic level representation. For example, to represent l=2, the VDC needs

Chapter 9: Implementation and Realization at Gate and Transistor Level

131

to be set as 4.5V. The CONVERTER is designed for
2 3

1x WINDOW LITERAL. The

circuit only outputs 4.5V when the input voltage is 3V. For any other level of voltage

input ranges between 0-5V the output is always 0V.

Conversion: 4.5V to (0V, 1.5V, 3V, 4.5V) output

Figure 9.10 shows the converter schematic. Like the earlier convertors discussed, this

CONVERTER as well VS1.txt text file generates the amount of voltage input to be

supplied to the circuit to check the circuit output. A switch is used to control the final

output of the circuit. The Sbreak VSWITCH model parameters are set as, Roff=1e6,

Ron=1.0, Voff=0.156 and Von=0.0. The V9 VDC is set to 4.5V to achieve the output of

4.5V which is of logic level 3. The converter is designed for
3 3

1x window literal. The

circuit only outputs 4.5V when the input voltage is 4.5V. For any other level of voltage

input ranges between 0-5V the output is always 0V.

Figure 9.10: Circuit realization of a 4.5V to 4.5V CONVERTER

Chapter 9: Implementation and Realization at Gate and Transistor Level

132

9.3.4 ODD and EVEN logic operator

The circuit is shown in Figure 9.11 which comprises of four diodes, two comparators,

two min circuit, and CMOS OR gate to select the max number. The logic level is

divided into 4 voltage levels where logic 0 is 0 volt, logic1 is 1.5 volt, logic 2 is 3 volt,

and logic 3 is 4.5 volt. The diodes D1-D2 acts as level shifter which decreases the

voltage level of input A in order to be compared to the reference voltage.

The reference voltage is set as such to depend on the reference which the circuit

performs the logic level selection. The 1st comparator comprises of Metal Oxide

Semiconductor (MOS) transistors M1-M8 which compares thelevel-shifted input A

with the fixed refrence volatge 0.69 volt which is set for logic 2, i.e. 3 volt. The output

of comparator is fed to MIN circuit in which other input is the level shifted input A.

Depending on the MIN circuit input combination, the switch S1 gives the output of

required logic according to the value of voltage V7. The voltage V7 is the desired

voltage source of output.

The full sechematic of EVEN logic operator is illustrated as in Figure 9.11.

Similarly, the diodes D3-D4 acts as level shifter for input B which acts as input to 2nd

comparator made of transistors M9-M16. The 2nd comparator compares the level shifted

input B to the fixed refrence voltage of 0.69 volt. The output of 2nd comparator is fed to

MIN circuit and switch S2 outputs the required logic depending on V10. These two

switch ouputs is fed back to standard CMOS OR gate made of M17-M22 which

performs the required EVEN function, i.e. gives output for any of the input comprising

the logic two an even number. For ODD logic operator only the CONVERTER block is

changed.

Chapter 9: Implementation and Realization at Gate and Transistor Level

133

Figure 9.11: EVEN logic operator

M
9

M
b
re

a
k
N

M
1
1

M
b
re

a
k
P

M
1
3

M
b
re

a
k
P

M
1
0

M
b
re

a
k
N

M
1
4

M
b
re

a
k
N

V
2

M
1
2

M
b
re

a
k
N

M
1
5

M
b
re

a
k
P

M
1
6

M
b
re

a
k
N

0

0

D
b
re

a
k

D
7

D
b
re

a
k

D
8

R
8

21

V
9

6
V

d
c

0

+

-

+

-

S
b
re

a
k

S
2

R
9

21

V
1
0

V
5

C
:\V

S
1
.tx

t

0

R
4

21

0

V
1
1

V
3

0

M
1
9

M
b
re

a
k
N

M
2
2

M
b
re

a
k
N

M
2
1

M
b
re

a
k
N

0

D
b
re

a
k

D
2

D
b
re

a
k

D
4

D
b
re

a
k

D
3

M
2
0M
b
re

a
k
P

M
1
7

M
b
re

a
k
P

M
1
8

M
b
re

a
k
P

D
b
re

a
k

D
5

D
b
re

a
k

D
6

R
6

21

V
6

0

+

-

+

-

S
b
re

a
k

S
1

R
7

21

V
7

D
b
re

a
k

D
1

V
4

C
:\V

S
1
.tx

t

0

R
3

21

0

V
8

R
1

21

IN
P

U
T
 A

IN
P

U
T
B

O
U

T
P

U
T

M
1

M
b
re

a
k
N

M
3

M
b
re

a
k
P

M
5

M
b
re

a
k
P

M
2

M
b
re

a
k
N

M
6

M
b
re

a
k
N

V
1

M
4

M
b
re

a
k
N

M
7

M
b
re

a
k
P

M
8

M
b
re

a
k
N

0

R
2

21

Chapter 9: Implementation and Realization at Gate and Transistor Level

134

9.3.5 EXTENDED AND Operator

The schematic to perform EXTENDED AND function is shown in Figure 9.12 where

the MOS transistors M1 and M2 checks the condition for x1 to satify ‘a’ which in this

case is assumed to be 0 volt. Once the condition is satisfied, the output checks the

condition for x2. For x2 variable, the S1 and S2 switch alternatively as per the condition

gets true. The logic behind EXTENDED AND operation can be observed in (Nakahara,

Sasao and Matsuura 2011). The switch S1 and S2 is set to value b1 and b2 respectively.

Figure 9.12: EXTENDED AND schematic for
0 1.5,3

1 2x x

Chapter 9: Implementation and Realization at Gate and Transistor Level

135

9.4 Simulation Results

ORCAD PSpice transient analysis simulation verified the functionality of the circuits

discussed in the previous sections. All simulations used Cadence ORCAD Pspice MOS

level 3 model and parameters. Below, simulation of a 0V to 1.5V CONVERTER is

shown in Figure 9.13.

Figure 9.13: Transient analysis of the circuit realization of
0 1

1x window literal

Simulation of a 1.5V to 1.5V CONVERTER is shown in Figure 9.14.

Figure 9.14: Transient analysis of the circuit realization of
1 1

1x WINDOW LITERAL

 Time

0s 2s 4s 6s 8s 10s 12s 14s 16s 18s 20s 22s 24s 26s 28s 30s 32s

V(M4:s)

0V

2.5V

5.0V

V

o

l

t

a

g

e

SEL>>

Output (1.5V)

V(V7:+)
0V

2.5V

5.0V

V
o
l
t
a
g
e

Input

 Time

0s 2s 4s 6s 8s 10s 12s 14s 16s 18s 20s 22s 24s 26s 28s 30s 32s

V(S2:3)

0V

2.5V

5.0V

V

o

l

t

a

g

e

Output (1.5V)

V(V10:+)
0V

2.5V

5.0V

V
o
l
t
a
g
e

SEL>>

Input

Chapter 9: Implementation and Realization at Gate and Transistor Level

136

Below a 3V to 4.5V and 4.5V to 4.5V CONVERTER simulation results is presented as

a transient analysis in Figure 9.15 and Figure 9.16.

Figure 9.15: Transient analysis of the circuit realization of
2 3

1x WINDOW LITERAL

The following simulation represents 4.5V to 4.5V CONVERTER,

Figure 9.16: Transient analysis of the circuit realization of
3 3

1x WINDOW LITERAL

 Time

0s 2s 4s 6s 8s 10s 12s 14s 16s 18s 20s 22s 24s 26s 28s 30s 32s

V(S2:3)

0V

2.5V

5.0V

V

o

l

t

a

g

e

SEL>>

Output (4.5 V)

V(V10:+)
0V

2.5V

5.0V

V
o
l
t
a
g
e

Input

 Time

0s 2s 4s 6s 8s 10s 12s 14s 16s 18s 20s 22s 24s 26s 28s 30s 32s

V(S1:3)

0V

2.5V

5.0V

V

o

l

t

a

g

e

Output (4.5V)

V (V 8:+)
0V

2.5V

5.0V

V
o
l
t
a
g
e

SEL>>

Input

Chapter 9: Implementation and Realization at Gate and Transistor Level

137

Below, simulation of EXTENDED AND logical operator is presented. It was assumed

that the variable ‘a’ and ‘x1’ was taken as 0 volt. The value of b1 and b2 was set as 1.5V

and 3V respectively. Depending on x2 values, the switch S1 and S2 were activated and

the output was switched between b1 and b2.

Figure 9.17: Transient analysis of the circuit realization of EXTENDED AND logic

operator (Variable x1)

Figure 9.18: Transient analysis of the circuit realization of EXTENDED AND operator

(Variable x2)

Chapter 9: Implementation and Realization at Gate and Transistor Level

138

Figure 9.19: Transient analysis of the circuit realization of EXTENDED AND logic

operator (Var: b1,b2 and y)

Considering the proposed circuit elements, the design had higher successor operator

compared to the existing technique. According to  1 2,G a a , Figure 9.3 and Figure 9.4

establish different scenarios. The design ensured its stability in reducing MIN operator.

Table 9-3 and 9-4 below shows an elaborative comparision on logic operator usage

between the two methods.

Table 9-3: Operator usage during logic circuit representation of function G(a1 ,a2)

 In Design Implementation Proposed Method against

Romero, Martins and Santos

(2009)

Proposed Romero, Martins

and Santos (2009)

Incline Decline

MIN Operator 4 6 66.00% -

MAX Operator 5 5 0.00% 0.00%

Successor Operator 8 4 - 50.00%

Interconnected Lines 27 27 0.00% 0.00%

Chapter 9: Implementation and Realization at Gate and Transistor Level

139

Table 9-4: Comparison of work by Romero, Martins and Santos (2009) and proposed

method

 Romero, Martins

and Santos (2009)

Proposed Algebraic

Method

Improvement

(%)

Gate Input Count 2 2 0.00%

Gate Count (MIN/MAX) 11 9 18.00%

As explained above, novel logic operators are proposed then implemented using diode,

NMOS and PMOS transistors. Upon implementation, the behaviour for the respective

logic gate is observed through simulation result. The simulation results reveal that the

output from logic circuit has less distortion and represents accurate logic depending on

respective voltage level. The simulation results verify the characteristic of the logic

circuits. The logic circuits are then further utilized for realizing logic expressions.

Similar strategy is observed by Romero, Martins and Santos (2009).

In their research, Romero, Martins and Santos (2009) realized particular logic

expression with MIN/MAX logic gates. The proposed EXTENDED MIN operator

reduces the MIN gate count by 18% for similar example. Lesser logic gate count

indicates a reduction of hardware utilization for the logic realization. Hence, this will

minimize the cost for hardware used in realizing MVL functions at the same time

increasing the efficiency in the realization process. As a practical implementation, the

MVL operators can be further utilized to form arithmetic and logic unit.

Chapter 9: Implementation and Realization at Gate and Transistor Level

140

9.5 Summary

Based on the experimental results it had been observed that the number of MIN gate

decreased according to the proposed methodology. The logic circuit representation

revealed that four MIN operator was used along with five MAX operator. An overall

reduction of 33.00% was achieved for the MIN operator.Improvement declined in terms

of successor operator. No difference was observed in case of interconnected links and

MAX operator.Finally it was concluded that the number of gate count in logic circuitry

remarkably reduced when compared to the exiting technique.

Also an initiative was taken to implement all the basic MVL operators at transistor

level. Basic NMOS and PMOS transistor were used to implement the circuits.

Simulated results and circuit implementation of all these basic digital circuit elements of

logical operators indicated that, synthesized MVL functions could be represented by

these circuit elements. It was observed that the simulated results were providing near to

optimal output. Hence, the logic operator circuits could be practically implemented and

had many beneficial applications.

Chapter 10: Area Efficient and Low Power MAX Operator and Its Application

141

Chapter 10

Area Efficient and Low Power MAX

Operator and Its Application

10.1 Introduction

Research has shown that current-mode Multi-Valued Logic (MVL) circuit

implementation reduces power consumption (Temel, Morgul and Aydin 2006; Temel

and Morgul 2002). If the MVL functions could be synthesized close to optimal level, it

will reduce the cost of circuit implementation. As of the most recent researches done,

the main aspect of MVL is to reduce bus connection and produce efficient circuit level

logic component. MVL synthesis and realization is mainly observed through logic gates

such as MIN and MAX.

However, MVL has proven its performance over binary operation in the last few

decades. The realization of MVL functions using CMOS architectures still provides to

be a challenging aspect for researchers. Though many circuits has been proposed in

literature by Jain, Bolton and Abd-El-Barr (1993); Temel, Morgul and Aydin (2006);

Thoidis, et al. (1998) and Da Silva, Boudinov and Carro (2006) to perform MVL

operations, the low power still remains as motivation to urge researchers in searching

for better alternatives. Device minimization for low power computing is a general trend

Chapter 10: Area Efficient and Low Power MAX Operator and Its Application

142

followed by researchers. Yet compared to voltage mode, some of the realization is done

by current-mode circuits. However, realizations using current-mode circuits are faster in

speed but consume more power. In voltage-mode circuits, the information is transferred

by voltage levels (Gawande and Ladhake 2008; Thoidis, et al. 1998; Da Silva,

Boudinov and Carro 2006).

This chapter will focus on realizing the MAX operator in voltage mode with two

different architectures. The proposed area efficient MAX operator shows its advantage

in reduced delay and transistor count. Apart from that, comparison of NOR gate logic

has been done using proposed MAX and standard Complementary Metal Oxide

Semiconductor (CMOS) logic. The chapter is divided into few sub-sections as follows.

The second part of the chapter covers the area efficient proposed MAX circuit using

two transistors. Third part covers second architecture of MAX operator using three

transistors. Its application as a NOR gate realization also presented in detail. Next

section presents experimental results of the area efficient MAX operator. Fifth section

covers the simulation results for realization of NOR logic gate. Lastly, a chapter

summary is made.

10.2 Proposed Area Efficient MAX Operator

MVL levels are represented by voltage levels in terms of a base voltage in the

voltage mode circuits. In the first section of this chapter, an experiment is conducted

where the initial base voltage value ibv is set to 1 Volt. Logic level l corresponds to an

interval of the continuous quantity X.

Chapter 10: Area Efficient and Low Power MAX Operator and Its Application

143

Hence, level 0 represents the null value and level 10 is associated with  10bv V

and so on. As the logic level l changes, bV changes such that,

 : ()b ibv l v (10.1)

Also for the experimental analysis, a maximum of 11 valued 2 variable functions are

investigated using a novel voltage-mode MAX circuit which is realized using only two

MOS transistors. For a maximum of 11 value, logic level l=10 would represent

10bv V . A logic level l relates to an interval of the continuous quantity x.

10.2.1 MAX Circuit Analysis

Following the definition of MAX operator and its algebraic property, the proposed

MAX circuit is shown in Figure 10.1. It uses one PMOS (MP1) and one NMOS (MN1)

transistor. Under normal condition, the PMOS is ON when its source-to-gate voltage

 SGPV is greater than threshold voltage  TPV and in similar fashion NMOS require its

gate-to-source voltage  GSNV greater than threshold voltage  TNV . The MP1 transistor

source terminal is connected to output node while the drain and gate are tied together

and is connected to supply rail AV .

Similarly, for MN1 the drain terminal is connected to output node whereas the gate

and source terminals are tied together to supply rail BV . Since, the MN1 has

 0GSNV V , it is OFF throughout the circuit operation. The only possibility arises by

the bulk potential to create the channel for MN1 to be ON. The body terminals of the

Chapter 10: Area Efficient and Low Power MAX Operator and Its Application

144

respective transistors are tied to their source terminals to avoid threshold variation effect

caused by bulk-to-source  SBV effect.

Figure 10.1: Proposed MAX circuit

Throughout the circuit operation, the output switches to the voltage according to (10.1).

The expression for the output voltage is

,

,

A DS PMOS

OUT

B DS NMOS

V V

V or

V V




 
 

(10.2)

The circuit uses two power supplies AV and BV as input which can have different

voltage levels and the output is switched to maximum supply with slight drop in voltage

level according to (10.1). When AV is at 0 potential, SGPV do not get enough potential to

overcome threshold voltage TPV and MP1 is OFF. When AV rises to some potential and

BV is maintained at 0 potential, the SGPV turns to negative voltage which makes MP1 to

remain in OFF condition. When AV and BV both rises to some potential, this condition

still does not affect the mode of transistors. The only case when both get condition: ON

and the saturation is moved in is when AV is maintained at 0 potential whereas BV

Chapter 10: Area Efficient and Low Power MAX Operator and Its Application

145

acquire some potential. Under this condition, SGPV makes MP1 to be in saturation and

through bulk potential MN1 is also tuned in saturation region. The output switches to

maximum supply of circuit.

10.2.2 Experimental Results

The circuit simulation was performed on ORCAD CAPTURE CIS LITE Tool. The

dimension of MN1 and MP1 were set to their minimum value  
1,2

0.24 0.24W L  .

Figure 10.2 shows the simulation results. The output follows the maximum of input

with an offset of near to 0.6V. Figure 10.3 shows the delay calculation which was about

100ps. These enhanced parameters suited best for complex computation. Furthermore,

the experimental validation was done using enhancement mode PMOS (MP1) and

NMOS (MN1) transistors of IC HEF4007UBP as shown in Figure 10.4.

Figure 10.2: Transient simulation of proposed MAX

Chapter 10: Area Efficient and Low Power MAX Operator and Its Application

146

The PMOS source, gate, drain and bulk terminals corresponded to Pin no. 2, 3, 1 and 14

respectively. For NMOS transistor, the source, gate, drain terminals were Pin number 9,

10, 12 and 7 respectively. Pin number 7 was taken as common ground terminal.

Figure10.3: Delay calculation for MAX operator

The supply input voltage for AV and BV ranged from 0V to 10V. Table 10-1 shows the

measured voltage fluctuation in output. Figure 10.4 illustrates IC HEF4007UBP.

Figure 10.4: IC HEF4007UBP

Chapter 10: Area Efficient and Low Power MAX Operator and Its Application

147

Table 10-1: Output voltage under DC supply to MAX operator

Input AV (Volt) Input BV (Volt) Output (Volt)

0 10 9.330

1 9 8.950

2 8 7.530

3 7 6.460

4 6 5.370

5 5 4.780

6 4 5.360

7 3 6.560

8 2 7.270

9 1 8.680

10 0 9.890

10 10 9.950

Table 10-2 shows the comparison of proposed circuit against existing MAX circuit by

Temel and Morgul (2004). This research article is one of the few detailed works that

focus on logic operators in transistor level. In the article, Temel and Morgul (2004)

previously proposed the MAX circuit in current mode. However, an initiative is taken

to propose the MAX circuit in voltage mode which exhibits the improvement in

transistor count against existing technique. The proposed work proved to be a better

reduction in transistor count thus saving effective area. Due to reduced transistors, the

less parasitic capacitance offered by transistors made the circuit faster.

Chapter 10: Area Efficient and Low Power MAX Operator and Its Application

148

Table 10-2: Comparison to existing MAX circuit

Ref. Mode Transistor count Delay(nS)

Temel and Morgul (2004) Current 7 1.400

Proposed work Voltage 2 0.100

10.3 Proposed 3-Transistor MAX Operator

Considering the definition of MAX operator and its algebraic property, Figure 10.5

shows the proposed circuit. The circuit utilizes two PMOS (MP1 and MP2) and one

NMOS (MN1) transistor.

Figure 10.5: Proposed MAX circuit

Normally, the PMOS is ON when its source-to-gate voltage  SGPV is greater than

threshold voltage  TPV . Same goes for the NMOS as it requires its gate-to-source

voltage  GSNV greater than threshold voltage  TNV . Connection between MP1 transistor

source terminal and the output node is made. As for the MP2 transistor, drain is

MP1

MN1

Input A

Input B

Out

MP2

Chapter 10: Area Efficient and Low Power MAX Operator and Its Application

149

connected to its gate. The gates of MP1 and MN1 are used for signal input A. The other

signal input B is connected to gate of MP2. The source terminal of MP2 and drain

terminal of MN1 are tied together. The body terminals of the respective transistors are

tied to their source terminals to avoid threshold variation effect caused by bulk-to-

source  SBV effect.

10.3.1 Application: MVL NOR logic realization

The circuit behaves as a binary NOR logic gate. Even though the underlying concept of

the architecture is based on MVL, the circuit can be implemented in binary system with

reduced delay. The MVL MAX operator consists of MP1, MN1 and MN2. An

additional inverter (MN2 and MP3) is added to MAX to form MAX NOR operator.

Figure 10.6: NOR gate realization using proposed MAX circuit

MP1

MN1

Input A

Input B

VDD

MAX NOR

MP3
MP2

MN2

Chapter 10: Area Efficient and Low Power MAX Operator and Its Application

150

The circuit uses two power supplies input A and input B. The mode of operation of

each of these transistors is determined by the voltage difference between these input

signals. Depending on the magnitude of whichever signal input is higher, the output

track the input. Further using the MAX circuit, a NOR gate realization is done as shown

in Figure 10.6. It is also compared with the conventional CMOS NOR gate.

10.3.2 Simulation Results

The proposed MAX circuit simulation was performed on ORCAD CAPTURE CIS

LITE Tool. The W/L ratio of MOS transistors used in all circuits was kept at its

minimal value which was 0.24u/0.24u.

Figure 10.7: Simulation result of proposed MAX operator

Chapter 10: Area Efficient and Low Power MAX Operator and Its Application

151

Figure 10.8: Simulation result of NOR gate using CMOS and proposed MAX operator

Figure 10.7 and Figure 10.8 respectively show the simulation results of Figure 10.5

and Figure 10.6 respectively. In Figure 10.4, the NOR gate realization done using

proposed MAX operator was compared with conventional CMOS NOR gate. To

evaluate the advantage of using MAX based NOR does gate, Figure 10.9 show where a

single pulse was analyzed for delay response. From the plot below, it has become quite

clear that the MAX based realization resulted in minimal delay and requirement of less

current extraction from supply voltage. This made the circuit to reduce power

Chapter 10: Area Efficient and Low Power MAX Operator and Its Application

152

consumption by 50 percent. The comparison results for delay and power is shown in

Table 10-3.

Figure 10.9: Analysis of delay for NOR gate using CMOS and proposed MAX operator

Table 10-3: Performance comparison of NOR gate

Logic Transistor

count

Rising

Delay (nS)

Falling

Delay (nS)

Power (uW)

CMOS 4 0.450 0.280 13.400

Proposed MAX based 5 0.350 0.004 10.000

As shown above, the proposed MAX based realization works better in terms of

reducing both rising delay and falling delay. This will contribute to saving of effective

area. Apart from that, the reduction of transistors which utilized parasitic capacitance is

also achieved. Hence, the operation of the circuits become more efficient and less time

consuming. The proposed MAX based realization also gives resulted in less

requirement for current extraction from the supply voltage when compared to the use of

Chapter 10: Area Efficient and Low Power MAX Operator and Its Application

153

CMOS. It is shown that CMOS requires more power than the proposed MAX based

realization. Less power used by the circuit will reduce the economic cost needed.

10.4 Summary

A novel voltage-mode MAX circuit for implementation of Multi-Valued Logic (MVL)

system was presented in this chapter. The proposed circuit was based on two transistors.

The proposed MAX operated for wide range of supply voltage. The novelty of circuit

lay in realizing the MAX operation by only two transistors with minimal delay of

100pS. After verifying the functionality of MAX, the further experimental validation of

proposed circuit was done on enhancement mode transistors offered by IC

HEF4007UBP. It showed that the use of less transistor count was not only effective in

terms of area saving but also increased the speed of circuit due to less presence of

parasitic capacitances. Since MAX is a basic operator for synthesizing MVL function,

the optimized MAX operator could do fast realization with increased efficiency.

Furthermore, a voltage-mode three transistor based MAX circuit for implementation

of MVL system was proposed in this section. The proposed MAX operated at very low

power consumption ranging in micro watts. To evaluate MAX performance, a NOR

gate realization was done and compared to standard CMOS NOR gate. The simulation

result confirmed that the MAX based NOR gate operated with minimal delay at low

power level.

Chapter 11: Conclusion

154

Chapter 11

Conclusion

This chapter gives overall conclusions to the thesis. It also discusses the findings of the

thesis as well as future research directions related to the synthesis of Multi-Valued

Logic (MVL).

Chapter 11 can be divided into two sections. The first section will highlight the

summaries made in each chapter of this thesis. On the other hand, the second section

will discuss future research directions.

11.1 Summary of Thesis

In the 21st century of technological advancement, MVL is often considered as an

alternative to the binary logic system. MVL system has numerous advantages over the

previous one. The MVL application ranges from connection among circuits to

complicated channel coding, communication and signaling field, huge data

transmission, memory design and cost effective storage system etc. To ensure better

efficiency and reliability, MVL is used as a transitional subs system in binary logic.

The major fact behind the success of MVL system is the minimization of hardware

cost for efficient logic design. Synthesis algorithms are built to retrieve efficient logic

expressions. Logic design entirely depends upon the logic expression. Hardware cost

depends upon the efficiency of the logic design. Hence, MVL synthesis algorithms are

Chapter 11: Conclusion

155

important and reflect the hardware cost for a given system. There were many major

attempts to enhance the process of MVL synthesis design and its minimization.

Existing techniques such as evolutionary algorithms produces the finest result but

lacks in algorithmic minimalism, computation time etc. Taken under consideration the

aforementioned issues, this research involved implementing different synthesis

approaches. Nevertheless of the capability of MVL system, in any of its application

synthesis algorithm plays an important role. Synthesis algorithms tend to minimize the

hardware representation before physical implementation. In this thesis, Chapter 1 gave

an overview of the MVL system, its past, present and recent research activities, benefits

and others. Chapter 2 briefly outlined the basic MVL operators and their algebraic

representation.

In chapter 3, a comprehensive literature review on different MVL synthesis

techniques was presented. Several comparisons were also presented to discuss different

synthesis techniques. Research gap between latest research works were investigated.

This managed to provide the opportunity to realize the fact that there was no universal

set of MVL operators and postulates.

Chapter 4 gave an overview of a set of novel algebraic postulates and logical

operators. These operators and postulates were proposed to realize MVL functions and

their synthesis. Proofs for each postulate were provided in each definition. Examples

were presented to elaborate the efficiency of using these operators and postulates.

In chapter 5, a novel synthesis algorithm entitled High Deduction Algorithm (HDA-

MVL) was presented. A total of 50000 sequentially generated 4-valued 2-variable MVL

functions were generated for experimental analysis. Proposed MVL operators were used

Chapter 11: Conclusion

156

in logic function synthesis. Experiments revealed that a reduction of 18.00% was

achieved in reducing the gate count. It was observed that overall average Product Term

(PT) reduction achieved by HDA-MVL algorithm is 56.88%.A remarkable 33.00%

reduction was observed in reducing the usage of MIN operator for synthesizing MVL

functions. In the worst case scenario proposed HDA-MVL algorithm achieved 45.46%

more success in reducing PT over evolutionary ACO-MVL algorithm.

Furthermore in chapter 6, Neural Network Deployment Algorithm (NNDA-MVL)

had been proposed. Main algorithmic steps were presented. NNDA-MVL is combined

with back-propagation learning capability. NNDA-MVL utilized the proposed MVL

operators to train. The results achieved showed that the NNDA-MVL algorithm

managed to achieve an accuracy of 99.97% for EXTENDED AND neural operator.

Experiments also depicted the fastest 0.008 and slowest 0.038 seconds of input to

output delay for trained operators. 5000 randomly generated sample benchmarks were

generated for the training purpose.

In chapter 7, the entire pseudo code was provided for the NNDA-MVL algorithm.

The advantages of NNDA-MVL algorithm was demonstrated with realization of

synthesized MVL function with lesser MVL operators. Overall the algorithm showed an

improvement of 52.94% for MVL MIN gate reduction and reduced MVL neural net

internal link connections of 23.38% compared to existing techniques.

A tree-type decision diagram based approach was investigated in chapter 8. In this

chapter, an alternative approach synthesizing RMVLNs using NZMDD was proposed.

A total of 49998 randomly generated 4-valued 2-variable benchmarks were generated

for experimental purpose. Apart from that, another set of approximately 20K

Chapter 11: Conclusion

157

benchmarks were generated. It was observed that reduced average PT was achieved in

MVL synthesis using NZMDD.During Synthesis NZMDD reduced the number of PT

by 52.62% while ACO-MVL reduced by 40.13%.

In chapter 9, all logic operators were realized with transistors. ORCAD CAPTURE

PSpice software was used to design architecture for each operators. Simulation results

had shown logic level realization. Finally, a comparison is shown with existing

algebraic synthesis to show the efficiency of the process. Realization revealed better

result compared to existing algebraic synthesis techniques. In this section of the thesis,

as a continuation of the logic operator, realization MV logic gates were constructed by

building circuits with NMOS, PMOS transistors, resistors, diodes and comparators. The

basic electronic elements that were used to build each of the circuit to represent the

logical operator had differed from operator to operator.

Further experiment was conducted on a VM2T and VM3T based MAX circuit in

chapter 10. A novel voltage mode MAX operator was designed and physical

implemented. Digital implementation of the proposed operator required only 28.57%

transistors compared to existing architecture. The validation of the MAX circuit was

done on enhancement mode transistors offered by IC HEF4007UBP. Proposed voltage

mode MAX operator performs better in terms of delay reduction. On the contrary, the

simulations results confirmed that proposed VM3T MAX had a lesser rising edge delay

of 22.22% compared to existing CMOS NOR. It was also observed that proposed

operator consumes 25.37% less power than the existing operator. In this chapter, it was

presented that optimized MAX operator could do fast realization with increased

Chapter 11: Conclusion

158

efficiency. An effective use of this operator was shown by realizing NOR gate and its

comparison with standard CMOS NOR gate.

11.2 Future Research Directions

Day by day MVL is expanding towards becoming a next generation technology. Yet,

many more different approaches can be investigated to produce better and efficient

synthesis algorithms. Area efficient MAX operator can be further investigated to

optimize power efficiency. ODD and EVEN logic operators can be further utilized in

applications such as, MVL wireless signal processing system. Architecture 2: low

power MAX operator can be tested using latest HSpice technology to verify its

significance and usage in the electronic industry. Switching effect of the proposed

architecture can be further investigated to optimize its rising and falling delay.

In Information Technology (IT) industry, corporations such as, IBM and Intel have

developed memory and processor using MVL technology. Yet this efficient technology

is considered costly to reach the door step of every common people. Research initiative

can be focused to reduce the production cost for individual MVL operators and devices.

Also, the proposed novel MVL operators can be thoroughly scrutinized to find its

implication in the computing industry. As a practical implementation, MVL circuitry

can be incorporated as an intermediate subsystem to binary counterpart. Most

evolutionary algorithms derived from real life activities. Approaches such as, shortest

path detection, Food source vs. Ant attraction, Tree growth vs. Sunlight direction, Jelly

fish neural architecture are among the many examples of future research directions that

can be introduced to obtain simple and efficient synthesis techniques.

Bibliography

159

Bibliography

Abd-El-Barr, M. "Evolutionary Techniques in Synthesis of Multiple-Valued Logic

Functions." International Journal of New Computer Architectures and Their

Applications 2 , no. 3 (2012): 410-421.

—. "Hybrid Fuzzy Direct Cover Algorithm for Synthesis of Multiple-Valued Logic

Functions." International Journal of Computer Science Issues 8, no. 2 (2011): 158-166.

Abd-El-Barr, M., and A., Khan. Esam. "Improved Direct Cover Heuristic Algorithms

for Synthesis of Multiple-Valued Logic Functions." International Journal of Electronics

(Taylor & Francis) 101, no. 2 (2013): 1-16. doi:10.1080/00207217.2013.780296

Abd-El-Barr, M., and B.A.B. Sarif. "Synthesis of MVL Functions - Part II: The Ant

Colony Optimization Approach." International Conference on Microelectronics. IEEE

Conference Publications, 2006. 158-161. doi: 10.1109/ICM.2006.373291

—. "Weighted and Ordered Direct Cover Algorithms for Minimization of MVL

Functions." The 37th International Symposium on Multi-Valued Logic. IEEE

Conference Publications, 2007. 48. doi: 10.1109/ISMVL.2007.60

Abd-El-Barr, M., and L. Al-Awami. "Analysis of Direct Cover Algorithms for

Minimization of MVL Functions." Proceedings of the 15th International Conference on

Microelectronics. IEEE Conference Publications, 2003. 308-312. doi: 10.1109/

ICM.2003.1287819

Abd-El-Barr, M., and M. Al-Mutawa. "A New Improved Cost-Table-Based Technique

for Synthesis of 4-Valued Unary Functions Implemented using Current-Mode CMOS

Circuits." Proceedings of the 31st IEEE International Symposium on Multiple-Valued

Logic. IEEE Conference Publications, 2001. 15-20. doi: 10.1109/ISMVL.2001.924549

Abd-El-Barr, M., Z.G. Vranesic, and S.G. Zaky. "Algorithmic synthesis of MVL

Functions for CCD implementation." IEEE Transactions on Computer 40, no. 8 (1991):

977-986. doi: 10.1109/12.83641

Bibliography

160

Allen, C.M., and Donald D. Givone. "A Minimization Technique for Multiple-Valued

Logic Systems." IEEE Transactions on Computers (IEEE Jounals and Magazines) C17,

no. 2 (1968): 182-184. doi: 10.1109/TC.1968.227407

Al-Rabadi, A.N. "Iterative Symmetry Indices Decomposition for Ternary Logic

Synthesis in Three-Dimensional Space." Proceedings of 33rd International Symposium

on Multiple-Valued Logic. IEEE Conference Publications, 2003. 139-145. doi:

10.1109/ISMVL.2003.1201398

Apostolikas, G., and S. Konstantopoulos. "Error Back-Propagation in Multi-valued

Logic Systems." International Conference on Computational Intelligence and

Multimedia Applications. IEEE Conference Publications, 2007. 207-213. doi:

10.1109/ICCIMA.2007.362

Balasubramanian, P., M.R.L. Narayana, and R. Chinnadurai. "Design of Combinational

Logic Digital Circuits using a Mixed Logic Synthesis Method." Proceedings of the

IEEE Symposium on Emerging Technologies. IEEE Conference Publications, 2005.

289-294. doi: 10.1109/ICET.2005.1558896

Besslich, P.W. "Heuristic Minimization of MVL functions: A Direct Cover Approach."

IEEE Transactions on Computer (IEEE Journals and Magazines) C-35, no. 2 (1986):

134-144. doi: 10.1109/TC.1986.1676731

Brayton, R.K., et al. "VIS: A System for Verification and Synthesis." Proceedings of

the 8th International Conference on Computer Aided Verification. Springer Lecture

Notes in Computer Science, 1996. 428-432.

Chang, Yeong-Jar, and Chung Len Lee. "Synthesis of multi-variable MVL functions

using hybrid mode CMOS logic." Proceedings of the 24th International Symposium on

Multiple-Valued Logic. IEEE Conference Publications, 1994. 35-41. doi: 10.1109/

ISMVL.1994.302222

Chojnacki, A., and L. Jozwiak. "Multi-Valued Sub-Function Encoding in Functional

Decomposition Based on Information Relationships Measures." Proceedings of 30th

Bibliography

161

IEEE International Symposium on Multiple-Valued Logic. IEEE Conference

Publications, 2000. 83-90. doi: 10.1109/ISMVL.2000.848604

Chowdhury, A.K, and A.K. Singh. "An Analysis of Novel MVL Neural Operators using

Feed Forward Back-Propagation, Realization and Applications of Logic Synthesis."

Manuscript submitted for publication. 2014.

Chowdhury, A.K, N. Raj, and A.K. Singh. "A Novel High Deduction Algorithm for

Synthesizing Multiple-Valued Logic and Circuit." Manuscript submitted for

publication, 2013.

Clarke, Michael, and Steve Reeves. Logic for Computer Science. London: Addison-

Wesley Publishers Ltd, 1990.

Da Silva, R.C.G., H. Boudinov, and L. Carro. "A Novel Voltage-Mode CMOS

Quaternary Logic Design." IEEE Transactions on Electron Devices (IEEE Journals and

Magazines) 53, no. 6 (2006): 1480-1483. doi: 10.1109/TED.2006.874751

Davis, Martin. "Hilbert's Tenth Problem is Unsolvable." The American Mathematical

Monthly 80, no. 3 (1973): 233-269.

Demuth, H., M. Beale, and M. Heagen. Neural Network Toolbox 6: User's Guide. 2010.

http://www.manualslib.com/manual/392845/Matlab-Neural-Network-Toolbox-

6.html?page=3#manual (accessed September 23, 2013).

Drechsler, R., D. Jankovic, and R.S. Stankovic. "Generic Implementation of DD

Packages in MVL." Proceedings of 25th EUROMICRO Conference. IEEE Conference

Publications, 1999. 352-359. doi: 10.1109/EURMIC.1999.794491

Drechsler, R., M. Thornton, and D. Wessels. "MDD-Based Synthesis of Multi-Valued

Logic Networks." The 30th IEEE International Symposium on Multi-Valued Logic.

IEEE Conference Publications, 2000. 41-46. doi: 10.1109/ISMVL.2000.848598

Dubrova, Elena. "Multiple-Valued Logic in VLSI: Challenges and Opportunities."

Proceedings of NORCHIP. 1999. 340-350.

Bibliography

162

Dueck, G., and D.M. Miller. "A Direct Cover MVL Minimization Using the Truncated

Sum." Proceeding of The 17th International Symposium on Multi-Valued Logic. IEEE

Conference and Publications, 1987. 221-227.

Dunderdale, H. "Current-mode circuits for ternary-logic realisation." Electronic Letters

5, no. 23 (1969): 575-577. doi: 10.1049/el:19690433

Epstein, George, Gideon Frieder, and David C. Rine. "The Development of Multiple-

Valued Logic as Related to Computer Science." Computer 7, no. 9 (1974): 20-32.

doi: 10.1109/MC.1974.6323304

Etiemble, D. "Multivalued Integrated Circuits for Signal Transmission." Proceedings of

COMPCON. 1981, 1981. 205-208.

Feinstein, D.Y., and M.A. Thorntorn. "On the Guidance of Reversible Logic Synthesis

by Dynamic Variable Reordering." Proceedings of 39th International Symposium on

Multiple-Valued Logic. IEEE Conference Publications, 2009. 132-138.

doi: 10.1109/ISMVL.2009.31

Files, C., R. Drechsler, and M.A Perkowski. "Functional Decomposition of MVL

Functions using Multi-Valued Decision Diagrams." Proceedings of the 27th

International Symposium on Multiple-Valued Logic. IEEE Conference Publications,

1997. 27-32. doi: 10.1109/ISMVL.1997.601370

Frege, Gottlab. "A Formula Language,Modeled upon that of Arithmethic for Pure

Thought." In From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931,

by Jean Van Heijenoort, 10-76. Harvard University Press, 1977.

Gawande, A.D., and S. A. Ladhake. "Constraints In the Design of CMOS MVL

Circuits." Proceedings of the 7th WSEAS International Conference on Instrumentation,

Measurement, Circuits and Systems. 2008. 108-113.

Gibson, James R. Electronic Logic Circuits. New York: Taylor and Francis, 2013.

Bibliography

163

Gottwald, Siegfried. "Many-Valued Logics." In Philosophy of Logic, edited by Dov M.

Gabbay, Paul Thagard, John Woods and Dale Jacquette, 675-722. Oxford: North-

Holland, 2007.

Higuchi, T., and M. Kameyama. "Ternary Logic System based on T-gate." Proceedings

of the 5th International Symposium on Multi-Valued Logic. IEEE Conference

Publications, 1975. 290-304.

Hsu, Loke-Soo, H.-H. Teh, S.-C. Chan, and Kia-Fock Loe. "Multi-Valued Neural Logic

Networks." Proceedings of the 12th International Symposium on Multiple-Valued

Logic. IEEE Conference Publications , 1990. 426-432. doi:

10.1109/ISMVL.1990.122658

Hu, Ye-Fa, Shao-Ping Ku, Zu-De Zhao, and Yi-Xin Su. "Multi-Valued Logic and its

Application in the Fault Diagnosis of the Sensors of Magnetic Bearings." Proceedings

of 2004 International Conference on Machine Learning and Cybernetics. IEEE

Conference Publications, 2004. 2458-2462. doi: 10.1109/ICMLC.2004.1382216

Jain, A. K., R. J. Bolton, and M. Abd-El-Barr. "CMOS Multiple-Valued Logic Design.

I. Circuit Implementation." IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications (IEEE Journals and Magazines) 40, no. 8 (1993): 503-514.

doi: 10.1109/81.242320

Jain, A. K., R. J. Bolton, and M. Abd-El-Barr. "CMOS Multiple-Valued Logic Design.

II. Function realization." IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications (IEEE Journals and Magazines) 40, no. 8 (1993): 515-522.

doi: 10.1109/81.242321

Jiang, Yunjian, S. Matic, and R.K. Brayton. "Generalized Cofactoring for Logic

Function Evaluation." Proceedings of Design Automation Conference. IEEE

Conference and Publications, 2003. 155-158. doi: 10.1109/DAC.2003.1218924

Kalganova, T., T.J Miller, and N. Lipinitskaya. "Multiple-Valued Combinational

Circuits Synthesized using Evolvable Hardware Approach." Proceedings of the 7th

Bibliography

164

Workshop on Post-Binary Ultra Large Scale Integration Systems in Association with

ISMVL'98. Fukuoka: IEEE Conference Publications, 1998.

Kalganova, T., T.J Miller, and T. Fogarty. "Some Aspects of an Evolvable Hardware

Approach for Multiple-Valued Combinational Circuit Design." Proceedings of Second

International Conference on Evolvable System: From Biology to Hardware. Springer

Berlin Hidelberg, 1998. 78-89.

Kohavi, R., G. John, R. Long, D. Manley, and K. Pfleger. "MLC++: A Machine

Learning Library in C++." Proceedings of the 6th International Conference on Tools

with Artificial Intelligence. IEEE Conference Publications, 1994. 740-743. doi:

10.1109/TAI.1994.346412

Kostolny, J., Kvassay, M., & Zaitseva, E. (2014). Analysis of Algorithms for

Computation of Direct Partial Logic Derivatives in Multiple-Valued Decision

Diagrams. 9th International Conference on Availability, Reliability and Security

(ARES), (pp. 356-361). Fribourg. doi:10.1109/ARES.2014.54

Lablan, P. Multi-Valued Logic. 2005-2011. http://archive.is/rIyG (accessed July 26,

2013).

Marinescu, Dan C., and Gabriela M. Marinescu. Approaching Quantum Computing.

Prentice Hall, 2005.

Mathew, J., H. Rahaman, A.K. Singh, A.M. Jabir, and D.K. Pradhan. "A Galois Field

Based Logic Synthesis Approach with Testability." 21st International Conference on

VLSI Design. Hyderabad: IEEE Conference Publications, 2008. 629-634.

doi: 10.1109/VLSI.2008.88

Matsumoto, M., Y. Ueda, and I. Nomoto. "The synthesis of multiple-valued logic

circuits using local-excitation-type." Proceedings of the 30th IEEE International

Symposium on ISMVL. Oregon: IEEE, 2000. 21-26. doi: 10.1109/ISMVL.2000.848595

Bibliography

165

"Max, Min, Average Circuits." Bison Academy. December 2010.

http://www.bisonacademy.com/ECE321/Lectures/10%20Max%20Min%20Average.pdf

(accessed August 1, 2013).

Miller, D.M., and R. Drechsler. "On the Construction of Multiple-Valued Decision

Diagrams." Proceedings 32nd IEEE International Symposium on Multiple-Valued

Logic. IEEE Conference Publications, 2002. 245-253. doi:

10.1109/ISMVL.2002.1011095

Miller, Michael D., and Mitchell A. Thorntorn. Multiple Valued Logic: Concepts and

Representations. Morgan and Claypool Publishers, 2008.

Mo, Y., Hing, L., & Amari, S. (2014). A Multiple-Valued Decision Diagram Based

Method for Efficient Reliability Analysis of Non-Repairable Phased-Mission Systems.

IEEE Transcation on Reliability, 63(1), 320-330. doi:10.1109/TR.2014.2299497

Nakahara, H., T. Sasao, and M. Matsuura. "A Comparison of Heterogeneous Multi-

valued Decision Diagram Machines for Multiple-Output Logic Functions." The 41st

IEEE International Symposium on Multiple-Valued Logic. IEEE Conference

Publications, 2011. 125-130. doi: 10.1109/ISMVL.2011.15

Ngom, A., and D.A. Simovici. "Evolutionary strategy for learning multiple-valued logic

functions." Proceedings of the 34th International Symposium on Multiple-Valued Logic.

IEEE Conference Publications, 2004. 154-160. doi: 10.1109/ISMVL.2004.1319935

Parkes, Alan. Introduction to Languages, Machines and Logic: Computable Languages,

Abstract Machines and Formal Logic. London: Springer-Verlag, 2002.

PHILIPS. "HEF4007UB Gates: Dual Complementary Pair and Inverter." NXP

Semiconductors. January 1995.

http://www.nxp.com/documents/data_sheet/HEF4007UB_CNV.pdf (accessed

November 1, 2013).

Bibliography

166

Pomper, G., and J.A. Armstrong. "Representation of Multiple Valued Functions using

the Direct Cover Method." IEEE Transcations on Computers (IEEE Journals and

Magazines), 1981: 674-679.

Posa, J.G. "Four State Cell Doubles ROM Bit Capacity." Electron, 1980: 39.

Post, Emel L. "Introduction to a General Theory of Elementary Propositions." American

Journal of Mathematics 43, no. 3 (1921): 163-185.

Rafiev, A., Murphy, J., & Yakovlev, A. (2010). Secure Design Flow for Asynchronous

Multi-Valued Logic Circuits. 40th IEEE International Symposium on Multi-Valued

Logic, (pp. 264-269). Barcelona. doi:10.1109/ISMVL.2010.56

Romero, M. E. R., E. M. Martins, and R. R. Santos. "Multiple Valued Logic Algebra for

the Synthesis of Digital Circuits." The 39th International Symposium on Multiple-

Valued Logic. IEEE Conference Publications, 2009. 262-267. doi:

10.1109/ISMVL.2009.45

Romero, M.E, E. Mazina Martins, R. Ribiera dos Santos, and M.E.D. Gonzales.

"Universal Set of CMOS Gates for the Synthesis of Multiple Valued Logic Digital

Circuits." IEEE Transactiosn on Circuits and Systems I: Regular Papers (IEEE Journals

and Magazines) 61, no. 3 (2014): 736-749. doi: 10.1109/TCSI.2013.2284187

Ross, C.W. "Reducing System Interconnections with Multivalued Logic." Electron,

1977: 122-124.

Sagar, P., Shiny, G., & Baiju, M. (2013). Space Vector based Pulse Width Modulation

Scheme for Multilevel Inverters Using the Concept of Multi-Valued Logic. 10th IEEE

International Conference on Power Electronics and Drive Systems (PEDS), (pp. 1360-

1365). Kitakyushu. doi:10.1109/PEDS.2013.6527231

Sarif, B.A.B, and M. Abd-El-Barr. "Functional Synthesis using Discrete Particle Swarm

Optimization." Swarm Intelligence Symposium. IEEE Conference Publications, 2008. 1-

8. doi: 10.1109/SIS.2008.4668306

Bibliography

167

—. "Minterm Injection Technique for Synthesis of Multiple- Valued Logic Functions."

Proceedings of IASTED International Conference on Circuits and Systems. ACTA

Press, 2008. 61-65.

—. "Synthesis of MVL Functions - Part I: The Genetic Algorithm Approach."

International Conference on Microelectronics. IEEE Conference Publications, 2006.

154-157. doi: 10.1109/ICM.2006.373290

—. "The Use of Multiple Connected Pseudo Minterms in the Synthesis of MVL

Functions." 39th International Symposium on Multi-Valued Logic. IEEE Conference

Publications, 2009. 145-150. doi: 10.1109/ISMVL.2009.56

Sasao, T. "Multiple-Valued Input Index Generation Functions: Optimization by Linear

Transformation." 42nd IEEE International Symposium on Multiple-Valued Logic

(ISMVL). Victoria: IEEE, 2012. 185-190. doi: 10.1109/ISMVL.2009.35

Sasao, T. "Multiple-Valued Logic and Optimization of Programmable Logic Arrays."

Computer 21, no. 4 (1988): 71-80. doi: 10.1109/ISMVL.2012.21

—. "On the Numbers of Variables to Represent Multi-Valued Incompletely Specified

Functions." 13th Euromicro Conference on Digital System Design: Architectures,

Methods and Tools (DSD). IEEE Conference Publications, 2010. 420-423.

doi: 10.1109/2.52

Sasao, T., H. Nakahara, M. Matsuura, Y. Kawamura, and J.T Butler. "A Quaternary

Decision Diagram Machine and the Optimization of its Code." 39th International

Symposium on Multiple-Valued Logic. IEEE Conference Publications, 2009. 362-369.

doi: 10.1109/DSD.2010.9

Smith, K.C. "A Multiple Valued Logic: A Tutorial and Appreciation." IEEE

Transactions on Computer (IEEE Journals and Magazines) 21, no. 4 (1988): 17-27.

doi: 10.1109/2.48

Bibliography

168

Smith, K.C. "The Prospects for Multivalued Logic: A Technology and Applications

View." IEEE Transactions on Computer (IEEE Journals and Magazines) C-30, no. 9

(1981): 619-634. doi: 10.1109/TC.1981.1675860

Song, S.-G., Park, S.-M., & Oh, M.-H. (2014). A New Data Encoding Scheme using

Multi-Valued Logic for an Asynchronous Handshake Protocol. 18th IEEE International

Symposium on Consumer Electronics (ISCE 2014), (pp. 1-2). Jeju Island.

doi:10.1109/ISCE.2014.6884392

Stamate, D. "Assumption based multi-valued semantics for extended logic programs."

36th International Symposium on Multiple-Valued Logic. IEEE Conference

Publications, 2006. 10. doi: 10.1109/ISMVL.2006.13

Stark, M. "Two bits per cell ROM." Proceedings of COMPCON. 1981. 209-216.

Temel, T, and A. Morgul. "Implementation of Multi-Valued Logic Gates using Full

Current Mode CMOS Circuit." Analog Integrated Circuit and Signal Processing, 2004:

191-204.

Temel, T., A. Morgul, and N. Aydin. "Signed Higher-Radix Full-Adder Algorithm and

Implementation with Current-Mode Multi-Valued Logic Circuits." IEE Proceedings

Circuits, Devices and Systems. 153, no. 5 (2006): 489-496. doi: 10.1049/ip-

cds:20045096

Temel, T., and A. Morgul. "Implementation of Multi-Valued Logic Gates using Full

Current-Mode CMOS Circuits." International Symposium on Circuits and Systems.

IEEE Conference Publications, 2002. I-881- I-884. doi: 10.1109/ISCAS.2002.1009982

Terman, L.M, Y.S Yee, Merril R.B, L.G Heller, and M.B. Pettigrew. "CCD Memory

using Multilevel Storage." IEEE Journal of Solid-State Circuits (IEEE Journals and

Magazines) 16, no. 5 (1981): 472-478. doi: 10.1109/JSSC.1981.1051625

Thoidis, I., D. Soudris, I. Karafyllidis, S. Christoforidis, and A. Thanailakis.

"Quaternary voltage-mode CMOS circuits for multiple-valued logic." IEE Proceedings

Bibliography

169

of Circuits, Devices and Systems. IET Journals & Magazines, 1998. 71-77.

doi: 10.1049/ip-cds:19981763

Tirumalai, P., and J.T. Butler. "Analysis of Minimization Algorithms for Multiple-

Valued Programmable Logic Arrays." Proceedings of the Eighteenth International

Symposium on Multiple-Valued Logic. IEEE Conference Publications, 1988. 226-236.

doi: 10.1109/ISMVL.1988.5178

Wang, Min Hui, Chung Len Lee, and Chen Jwu E. "Algebraic Division for Multilevel

Logic Synthesis of Multi-Valued Logic Circuits." Proceedings of the 24th International

Symposium on Multiple-Valued Logic. IEEE Conference Publications, 1994. 44-51.

doi:10.1109/ISMVL.1994.302221

X. Xiang. "PSpice Student 9.1 Tutorial." Digital-Analog Hybrid Circuit Coursework.

May 2010. http://wenku.baidu.com/view/bf6b4637ee06eff9aef807a8 (accessed July 3,

2013).

Yamada, M., K. Fujishima, and Gamou, Y. Nagasawa.Koichi. "A New Multilevel

Storage Structure for High Density CCD Memory." IEEE Journal of Solid-State

Circuits (IEEE Journals and Magazines) 13, no. 5 (1978): 688-693. doi:

10.1109/JSSC.1978.1051120

Yang, C., and Y.M. Wang. "A Neighborhood Decoupling Algorithm for Truncated Sum

Minimization." Proceedings of the 12th International Symposium on Multiple-Valued

Logic. IEEE Conference Publications, 1990. 153-160. doi:

10.1109/ISMVL.1990.122611

Yildirim, C., J.T Butler, and C. Yang. "Multiple-valued PLA Minimization by

Concurrent Multiple and Mixed Simulated Annealing." Proceedings of The 23rd

International Symposium on Multi-Valued Logic. IEEE Conference Publications, 1993.

17-23. doi: 10.1109/ISMVL.1993.289587

Yuan, K.-L., Kuo, C.-Y., Jiang, J.-H. R., & Li, M.-Y. (2013). Encoding Multi-Valued

Functions for Symmetry. IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), (pp. 771-778). San Jose. doi:10.1109/ICCAD.2013.6691201

Bibliography

170

Zheng, T., O. Ishizuka, and K. Tanno. "A Learning Multiple-Valued Logic Networks

based on Backpropagation." Proceedings of the 25th International Symposium on Multi-

Valued Logic. IEEE Conferenec Publications, 1995. 270-275. doi:

10.1109/ISMVL.1995.513542

Zheng, T., Qi-Ping Cao, and O. Ishizuka. "A Learning Multiple-Valued Logic Network:

Algebra, Algorithm, and Applications." IEEE Transactions on Computers (IEEE

Journals and Magazines) 47, no. 2 (1998): 247-251.

Every reasonable effort has been made to acknowledge the owners of copy right

material. I would be pleased to hear from any copyright owner who has been omitted or

incorrectly acknowledged.

Appendices

171

Appendices

APPENDIX A – SCHEMATIC AND PIN CONNECTION OF IC HEF4007UB

The HEF4007UB is a dual complementary pair and an inverter with access to each

device. It has three N-Channel and three P-Channel enhancement mode MOS

transistors. In the diagram below it can be observed that SP2 and SP3source

connections to 2ndand 3rd P-Channel transistors. DP1 and DP2drain connections from

the 1stand 2nd P-Channel transistors.DN1 and DN2drains connections from the 1stand 2nd

N-Channel transistors. On the other hand, SN2 and SN3source connections to the

2ndand 3rd N-Channel transistors. DN/P3 common connection to the 3rd P-Channel and

N-Channel transistor drains. G1to G3 gate connections to N-Channel and P-Channel of

the three transistor pairs. The schematic diagram of the IC is presented as below.

Appendices

172

The pin diagram of the IC is shown as below.

All data taken from (PHILIPS 1995)

Appendices

173

APPENDIX B – CHAPTER 6 TRAINING AND TEST RESULTS

A. The table below generates the output of the neural EXTENDED AND operator.

Total 5000 sample benchmarks were fed to the system for training. Only 178

outputs are shown in the table below.

Index Input A Input B Input C Input D Input E Output

1. 2 1 1 1 1 0

2. 3 1 3 2.94 2 0

3. 1 2 2 1 2 1

4. 3 1 1 3 2 3

5. 2 3 3 3 3 0

6. 3 2 1.32 1 1 0

7. 2 2.85 2 3 3 0

8. 1 1 1 1 3 1

9. 2 3 3.59 3 3 0

10. 3 1 1 3 2 3

11. 2 2 2 2 1 2

12. 2 3 3 2 3.41 2

13. 2 1 1 2 1.32 2

14. 3 1 1 3 1 3

15. 1 3 3 1 0 1

16. 0 1.33 2 0 0 0

17. 3 3 3 3 1 3

18. 0 2 0 3 3 0

19. 2 3 0 1 3.41 0

20. 2 1 1 2 1 2

21. 1.33 2 1 1 2 0

22. 2.6 2 3 3 3 0

23. 3 1 2 1 3.41 0

24. 3.52 2.97 2 3 1 0

25. 3 1 1 3 3 3

26. 1 3 3 1 1 1

27. 1.35 2 1 1 1 0

28. 2 2 2.99 1 2.75 0

29. 1 3 0 0 3.51 0

30. 0 3 2 3 0 0

Appendices

174

31. 2 2 2 2 2 2

32. 1 1 1.32 2 0 0

33. 2 1 1 2 2 2

34. 3 1 1 3 2 3

35. 2.52 3.44 3 1 2 0

36. 2 3 3 2 0 2

37. 3 1 1 3 3.42 3

38. 3.58 0 1 3 0 0

39. 1 1 1 1 2 1

40. 3 1 1 3 2 3

41. 2 3 1 2 1 0

42. 2 1 1 2 3 2

43. 1 1 1 1 3 1

44. 1 2 3.53 2 3 0

45. 3.49 3 2 1 2 0

46. 2 3 3 2 1 2

47. 3 1 1 3 2 3

48. 3 3 3 3 1 3

49. 3.37 3 3 1 0 0

50. 3 0 2.86 2 3 0

51. 1 1 1 1 0 1

52. 3 3 3 3 3 3

53. 3 2 2 3 3.56 3

54. 1 1 1 1 3 1

55. 2 2 2 2 3 2

56. 3 2 2 3 1 3

57. 2 3 3.45 0 3.6 0

58. 3 1 2 2 2.92 0

59. 1 2 2 1 3 1

60. 1 1 1 2 0 0

61. 3 3 3 3 3 3

62. 2 2 2 2 3 2

63. 2 2 2 3 2 0

64. 1 2.68 3.42 0 3 0

65. 3 3.55 0 1 2 0

66. 2 2 2 2 3 2

67. 0 2 1.32 3 1 0

68. 1 2 2 1 1 1

69. 1 1 1 1 1.34 1

70. 1 2 2 1 1.31 1

71. 1 3 3 1 0 1

Appendices

175

72. 1.32 0 0 3 1.3 0

73. 2 3 3 2 1 2

74. 2 3 3 2 1 2

75. 3 3 3 3 0 3

76. 3 2 2 3 1 3

77. 2 1 1 2 2.55 2

78. 1 2 2 1 0 1

79. 1 1 1 1 0 1

80. 1 1 1 1 1.34 1

81. 2 1.3 1.3 2 2 2

82. 1 1 1 1 1 1

83. 3 3 1 1 1.35 0

84. 1 3 3 1 2 1

85. 3 3 3 3 2 3

86. 3 3 3 3 3 3

87. 2 1 1 2 1 2

88. 2 1 1 2 1 2

89. 2.7 0 2 2 2 0

90. 2 2 2 2 3 2

91. 2 2 2 2 0 2

92. 0 1 3 1 0 0

93. 3 1 1 3 3 3

94. 2 0 0 2 1 2

95. 1 3 3 1 1 1

96. 1 2 2 1 1 1

97. 1 1 1 1 1 1

98. 3 1 1 3 1.33 3

99. 1 1 1 1.32 1 0

100. 1 2 2 1 2 1

101. 2 3 3 2 1 2

102. 3 3 3 3 3 3

103. 1 1 1 1 0 1

104. 1 3 1 1 1 0

105. 2 0 0 2 1 2

106. 1 3 3 1 3 1

107. 1 2 2 1 2 1

108. 2 0 0 2 2 2

109. 2 3 3 2 2 2

110. 2 2 2 2 2 2

111. 2 3 3 2 2 2

112. 1 2 2 1 3 1

Appendices

176

113. 3 1 1 3 0 3

114. 3 3 3 3 1 3

115. 3 3 3 3 2 3

116. 1 2 2 1 3 1

117. 3 3 3 3 2.81 3

118. 2 3 3 2 2.92 2

119. 3 3 3 3 2 3

120. 2 3 3 2 1 2

121. 1 0 0 1 2 1

122. 1 2 2 1 2 1

123. 2.76 2.77 1 1 2 0

124. 2 1 1 2 2 2

125. 2 1 1 2 2 2

126. 1 1 1 1 2 1

127. 3 3 3 3 2 3

128. 1 2 2 1 0 1

129. 1 3 3 1 3 1

130. 3 3 3 3 2 3

131. 1 1 1 1 2.55 1

132. 2 2 2 2 1 2

133. 1 3 3 1 3 1

134. 2 2 2 2 1 2

135. 1 2 2 1 2 1

136. 1 0 0 1 3 1

137. 2 2 2 2 3 2

138. 1 2 2 1 3 1

139. 1 2 2 1 1 1

140. 3 3 3 3 3 3

141. 3 3 3 3 3.54 3

142. 1 2 2 1 3 1

143. 1 2 2 1 3 1

144. 3 3 3 3 2 3

145. 2 1 1 2 1 2

146. 2 3 3 2 2 2

147. 3 2 2 3 1.29 3

148. 3 3 3 3 0 3

149. 2 2 2 2 0 2

150. 3 2 2 3 2 3

151. 1 1 1 1 1 1

152. 1 1 1 1 3 1

153. 1 1 1 1 2 1

Appendices

177

154. 3 3 3 3 0 3

155. 1 3 3 1 3 1

156. 1 3 3 1 1 1

157. 3 3 3 3 1 3

158. 2 1 1 2 3 2

159. 3 3 3 3 1 3

160. 1 1 1 1 1 1

161. 3 3 3 3 3 3

162. 1 1 1 1 1 1

163. 1 2 2 1 1.29 1

164. 3 3 3 0 0 0

165. 3 3 3 3 3 3

166. 2 3 3 2 3.53 2

167. 1 1 1 1 3 1

168. 1 1 1 1 2.58 1

169. 3 3 3 3 3.36 3

170. 1 1 1 1 3 1

171. 2 1 1 2 1.35 2

172. 2 1 1 2 2 2

173. 1 3 3 1 0 1

174. 2 3 3 2 2 2

175. 3 3 3 3 3 3

176. 1 3 3 1 1 1

177. 2 3 3 2 1 2

178. 1 1 1 1 2.9 1

B. The table below represents partial training set of 5K sample set. Trend of

training data set for neural operator EXTENDED AND is shown in the table

below. The table has five inputs and one target output.

Index Input A Input B Input C Input D Input E Target

1. 0 0 1 0 1 1

2. 0 0 2 0 2 2

3. 0 1 0 0 1 1

4. 0 1 1 0 1 1

5. 0 1 2 0 1 1

6. 0 1 2 0 2 2

7. 0 2 0 0 2 2

Appendices

178

8. 0 2 1 0 1 1

9. 0 2 1 0 2 2

10. 0 2 2 0 2 2

11. 1 0 1 1 1 1

12. 1 0 2 1 2 2

13. 1 1 0 1 1 1

14. 1 1 1 1 1 1

15. 1 1 2 1 1 1

16. 1 1 2 1 2 2

17. 1 2 0 1 2 2

18. 1 2 1 1 1 1

19. 1 2 1 1 2 2

20. 1 2 2 1 2 2

21. 2 0 1 2 1 1

22. 2 0 2 2 2 2

23. 2 1 0 2 1 1

24. 2 1 1 2 1 1

25. 2 1 2 2 1 1

26. 2 1 2 2 2 2

27. 2 2 0 2 2 2

28. 2 2 1 2 1 1

29. 2 2 1 2 2 2

30. 2 2 2 2 2 2

C. Training and testing data set for approximately 240 samples are presented in the

table below. This partial set of data was part of the experimental analysis in

chapter 6

 ODD Operator Test ODD Operator Train Even Operator

Index Input

A

Input B Output Input A Input B Target Input A Input B Output

1. 3 2 3 1 1.32 1 1 1.33 0

2. 2 1 1 2 2.06 0 1.32 0 0

3. 2 2 0 1.23 1.34 0 0 0 0

4. 1 1 1 0 1 1 1 2 2

5. 2 3 3 1 2 1 3 3 0

6. 2 3 3 2.87 1 1 3 0 0

7. 2.87 3 3 1 2.59 1 1 0 0

Appendices

179

8. 0 1 1 2.76 3 3 0 1.32 0

9. 1 0 1 1.54 1 1 1 3 0

10. 2 2 0 1 1.24 1 3 3 0

11. 3 1 3 1 3.44 0 3 3 0

12. 1 0 1 0.47 0 0 0 3 0

13. 1 3.46 0 1.13 1.15 0 2 1 2

14. 3 1 3 1.15 1 1 2 2 2

15. 2 0 0 1 0 1 3 3 0

16. 1 2 1 1 1.9 1 2 3 2

17. 3 3 3 1 2 1 1 3 0

18. 3 3 3 3.33 3.27 0 2 2 2

19. 1 0 1 2 1.27 0 2 2 2

20. 2 0 0 3 3.02 0 3 3 0

21. 0 2 0 2.49 1.22 0 1 3.59 0

22. 1 0 1 3.18 1 0 1.35 2 2

23. 3 2 3 2.39 1.27 0 1 1 0

24. 2 3 3 3.35 2.64 0 0 2 2

25. 3 3 3 3 2 3 1 3.51 0

26. 3.3 3 0 1 0.48 1 2 1 2

27. 3 0 3 0 2.91 0 0 2 2

28. 3 2.96 3 3.36 1.18 0 1 1 0

29. 2.67 3 3 3 0.47 3 0 3 0

30. 2 1 1 2.81 2 0 3 3 0

31. 2 2 0 1 3.18 0 1 0 0

32. 1 3 3 2.94 1.23 0 3 3 0

33. 1 2 1 2.83 2 0 3 2 2

34. 2 0 0 1 0 1 1.29 2 2

35. 1 1 1 1 1.63 1 1 1 0

36. 3 0 3 2.82 1 1 3 3 0

37. 3 3 3 1 1 1 1 1 0

38. 2 3 3 0 1.24 0 1 3 0

39. 2 2.72 0 3 3 3 1 3 0

40. 2 3 3 3 2.84 3 1 3 0

41. 1 0 1 3 2.93 3 3 3 0

42. 3.35 2 0 1.16 1.26 0 1 2 2

43. 3 2 3 1 3.44 0 2 1 2

44. 3 3 3 3.03 1.23 0 1 2 2

45. 3.42 1 0 2 3 3 1 3 0

46. 1 3 3 2.32 2.86 0 1 1 0

47. 1 1 1 1 1 1 2 0 2

48. 1 3 3 2 0.47 0 3 2 2

Appendices

180

49. 1 2 1 3.02 1.25 0 3 0 0

50. 3 3 3 1.28 2 0 2.83 2.57 0

51. 3 2 3 1 2.83 1 0 1.33 0

52. 1 1 1 2.28 3 3 1 3 0

53. 1.3 1 1 3 1 3 1 2 2

54. 1 2 1 2 1.28 0 1 3 0

55. 3.54 2.56 0 3 2.62 3 3 3 0

56. 1 2 1 1.66 1.26 0 1 2.61 0

57. 1.33 2 0 1.16 2.84 0 3 2 2

58. 1 3 3 1.6 0 0 1 3 0

59. 1.32 0 0 3 1.13 3 2 3 2

60. 0 2 0 2 0.48 0 1.29 1 0

61. 1 1 1 0.47 2 0 2 3 2

62. 3 3 3 1 2.72 1 1 0 0

63. 1 3 3 3.58 3.55 0 0 3 0

64. 3 2 3 1 2 1 1 3 0

65. 0 3 3 2.58 3 3 3 1 0

66. 3 2 3 2.76 1.13 0 1 1 0

67. 2 1.3 0 3 1 3 3 1 0

68. 1 3 3 1 1 1 3 1.32 0

69. 1 2 1 1 1 1 3 3 0

70. 3 0 3 1.17 2.87 0 0 3 0

71. 1 2 1 2.91 1.89 0 0 1 0

72. 2 0 0 2 1 1 2 3 2

73. 0 0 0 3 1 3 1 3 0

74. 3 2 3 0 3.43 0 2 0 2

75. 0 2 0 1.82 0.48 0 3.49 3 0

76. 3 2 3 1.6 2 0 1 3.58 0

77. 1 2 1 1.26 1.16 0 1 2 2

78. 1 3 3 1.33 2 0 3 3 0

79. 1.28 2.64 0 2.12 3.03 0 1 3 0

80. 1 3 3 2 3 3 2.91 2 2

81. 1.33 3 3 2.85 3 3 2 1 2

82. 2 3 3 2.85 2 0 1 2 2

83. 1 1.35 1 1 2.21 1 0 2 2

84. 0 1 1 3 0 3 1 2.69 0

85. 3 1 3 3.26 2 0 2 1 2

86. 0 2 0 2 2 0 2 3 2

87. 3 1 3 1.25 3 3 3.52 1.35 0

88. 1 2 1 2.54 1 1 1 2 2

89. 1 1 1 2.52 3 3 3 3.36 0

Appendices

181

90. 0 3.57 0 2 1 1 1 1 0

91. 3.35 3 0 3 2.79 3 2 0 2

92. 1 1.28 1 2 3 3 2.98 3 0

93. 1 1 1 2.49 1.28 0 3 2 2

94. 3 0 3 3 1.19 3 2 2 2

95. 1 2 1 2.48 3 3 3 2 2

96. 1 0 1 2 3.03 0 2 0 2

97. 2 2 0 1 1.18 1 2 2.99 2

98. 2 3.4 0 1.3 0.46 0 2 1 2

99. 3 1 3 3.16 3.02 0 2 2 2

100. 1 2 1 2.16 2.79 0 0 2 2

101. 3 1 3 1.13 1.27 0 1 1 0

102. 1.31 2.61 0 2.39 2.88 0 1 3 0

103. 1 3 3 0 1.24 0 2 0 2

104. 3 1 3 0.47 2 0 3 1 0

105. 3.53 2.84 0 1.13 1.34 0 2 3 2

106. 1 1 1 3 2.85 3 3 3 0

107. 0 1 1 2.24 0.46 0 2 1.32 2

108. 1 3 3 2 1 1 3 2 2

109. 1 1 1 3 0 3 1 2 2

110. 1 3 3 1.17 2 0 2.62 1 0

111. 0 1 1 2.91 2 0 3 3 0

112. 2 3 3 0 1 1 1 3 0

113. 2 2 0 3.49 3.38 0 1 2 2

114. 2 1 1 1.17 2.77 0 3 2 2

115. 2 2 0 1 1 1 2 1 2

116. 1 2 1 1.21 1.15 0 0 1 0

117. 2 0 0 0.47 1 1 2 3.39 0

118. 2 3.48 0 3.18 3 0 2 3 2

119. 1 0 1 3 1 3 2 3.36 0

120. 1 2.96 1 2.42 2 0 3 2 2

121. 2.98 0 0 1.27 1 1 3 2 2

122. 3 0 3 1 3.56 0 1 2.58 0

123. 3 2 3 2.49 2.04 0 2 1 2

124. 3 2 3 2.21 0.47 0 2 1 2

125. 3 1 3 2.31 1 1 2 3.33 0

126. 1 3.54 0 0 1 1 1 3 0

127. 2 3 3 1 2 1 0 2 2

128. 1 3 3 0.48 2.94 0 2 2 2

129. 2 1 1 3.14 1.15 0 2 1 2

130. 1.35 3 3 0.46 0 0 3 1 0

Appendices

182

131. 2 2 0 2.72 1 1 0 1 0

132. 1 1.34 1 1 3 3 3 1 0

133. 1 1 1 1.74 0.48 0 3 1 0

134. 2.76 1.33 0 2.24 1 1 0 0 0

135. 3.31 1 0 0.48 1.24 0 3 2 2

136. 1.35 1 1 2 2.74 0 3 2 2

137. 3 3 3 1.72 1 1 2 3 2

138. 1 0 1 1.28 3.1 0 1.33 1 0

139. 1 1 1 2 2 0 1 2 2

140. 2 0 0 0 1.26 0 3 2 2

141. 1 2 1 1.17 2 0 1.34 3 0

142. 3 2 3 2.7 1.19 0 3 3 0

143. 2 1 1 3.04 3.6 0 0 1 0

144. 2 3.37 0 1 1 1 1 0 0

145. 3 1 3 2 1 1 3.4 3 0

146. 0 2 0 1 3 3 3.5 1 0

147. 2 2 0 3.07 1.75 0 2.96 0 0

148. 0 3.51 0 2 1.95 0 1.34 3 0

149. 1.3 1.29 0 0.46 2.73 0 2 0 2

150. 1.32 3 3 1.34 3 3 2 1 2

151. 1 1 1 2.5 2.97 0 3 0 0

152. 1 3 3 2 0 0 2 3.53 0

153. 1.29 0 0 2.78 1 1 1 2 2

154. 2 3 3 3.52 0.46 0 1 2 2

155. 0 3.43 0 1 2 1 3 1 0

156. 2 3 3 1.24 1 1 3 3 0

157. 2 1 1 0.47 3 3 3 2 2

158. 1 3 3 3 1 3 3 1 0

159. 3 2 3 1.95 2 0 3 0 0

160. 3 2.68 3 2 1.22 0 2 3 2

161. 1 2 1 0.48 3 3 1 2 2

162. 3 3 3 1.23 3 3 2 3 2

163. 3.57 1 0 1.35 0.48 0 0 2.52 0

164. 0 1 1 1.55 2.27 0 2 1 2

165. 1.28 2 0 2 3 3 3 3 0

166. 3 1 3 1 1.16 1 2 1 2

167. 3 1 3 2 3 3 0 3 0

168. 1 2.98 1 2 3.13 0 1 1 0

169. 3 2 3 2.63 0.45 0 1.33 2 2

170. 2 2 0 1.31 3.48 0 3 1 0

171. 2 1 1 3.46 2.93 0 2 2 2

Appendices

183

172. 3 1.33 3 1.27 1.17 0 3 0 0

173. 1 1 1 1 1 1 1.3 3 0

174. 1 1 1 2 2 0 1 2 2

175. 1 3 3 0.46 1 1 0 3 0

176. 2.7 3 3 0.47 3.54 0 2 1 2

177. 3.43 1 0 0.46 1 1 2 1 2

178. 3 3 3 1 3.45 0 2.5 0 0

179. 3 1 3 1.21 1.16 0 1 2.83 0

180. 1.32 3 3 1 1.21 1 0 3 0

181. 1 1 1 2.57 2 0 3.5 1 0

182. 2 3 3 0.46 3 3 2.84 0 0

183. 3 3 3 0.47 0 0 1 1 0

184. 0 2 0 1 0 1 2 1 2

185. 1 3 3 1.52 2 0 1.34 3 0

186. 1 2 1 2.38 1.63 0 3.37 0 0

187. 0 1 1 1.24 0.45 0 3 3 0

188. 3.42 1.33 0 2.76 0 0 3 2 2

189. 3.37 2 0 2 1 1 3.31 0 0

190. 2 3 3 1.29 2.46 0 3 3 0

191. 1 0 1 1.29 3 3 3 2 2

192. 0 1 1 2.97 1 1 3.51 1 0

193. 3 3 3 1 3 3 3 2 2

194. 2 1 1 1.57 3 3 3 3 0

195. 3.42 1.29 0 3 1.2 3 2 0 2

196. 3 3 3 3 1 3 2 1 2

197. 2.82 0 0 2.83 3 3 1 3 0

198. 1 1 1 1.33 2.92 0 1 2 2

199. 3 1 3 0 1.34 0 0 1 0

200. 3 2 3 1.34 3 3 3 2 2

201. 2 2 0 3.04 1 0 3 0 0

202. 3 1.3 3 1.14 1.3 0 3 2 2

203. 1 3.4 0 2 0.47 0 1 3 0

204. 3.59 3 0 2 2 0 0 2 2

205. 3 0 3 1.13 2 0 2 3 2

206. 3 2.95 3 3.44 1 0 1 1 0

207. 2 1 1 0.47 0.45 0 0 2 2

208. 3 0 3 1 2 1 2 2 2

209. 3 3 3 1 3 3 3 3 0

210. 1 1 1 3.17 3 0 3 3 0

211. 3.46 2 0 1.57 0.46 0 2.77 1 0

212. 1 1 1 3.14 3 0 1 3.34 0

Appendices

184

213. 3 1 3 3 2.5 3 0 1 0

214. 3 3 3 3.27 1 0 1 2 2

215. 3 2 3 1.79 1.29 0 1 0 0

216. 3 2 3 1.23 2 0 3 2 2

217. 1 1.28 1 2.16 3.38 0 1 3.58 0

218. 0 1 1 3.55 1 0 0 2 2

219. 2 3 3 2 2 0 3 3 0

220. 2 3 3 2 1.2 0 2 2.55 2

221. 1 2.94 1 1.98 2.01 0 3 1 0

222. 0 1 1 2.3 2.7 0 1 3 0

223. 0 0 0 0.46 3.2 0 3 2 2

224. 3 3 3 0 2.46 0 2 0 2

225. 1 3 3 2 3 3 1 2 2

226. 3 2 3 1.24 1.26 0 2 1 2

227. 1.33 1 1 3.17 0.46 0 2 0 2

228. 3 1 3 1 2 1 2 2 2

229. 2 3 3 1.25 3.12 0 2 2 2

230. 1 1 1 0.45 2 0 2 1 2

231. 0 2 0 2.8 3 3 2 3 2

232. 2 3.41 0 2 0.47 0 2 1 2

233. 0 2.67 0 3.59 0.46 0 0 1 0

234. 1 1 1 1.18 2 0 1 3.55 0

235. 1 0 1 2 0.48 0 1 3 0

236. 1 3 3 1.14 2.36 0 1 1 0

237. 2.63 2 0 1.18 2.05 0 2 2 2

238. 3.54 1.3 0 2 2.73 0 1 3 0

239. 2 1 1 2 1.19 0 2 2 2

240. 3 1 3 2.78 3.42 0 3.42 1 0

241. 1 1 1 3 1.17 3 2 1 2

242. 2 2.59 0 1.79 2 0 2.96 1.3 0

243. 1 3 3 0.48 2 0 1 1 0

Appendices

185

APPENDIX C – NZMDD BENCHMARK CIRCUITS (3-VALUED & 4-VALUED

2-VARIABLE FUNCTIONS)

The Table display 216 sample benchmark circuits. Both 3-valued and 4-valued

benchmarks are presented side by side. In chapter 8, a total of 69,598 benchmark

circuits were generated for investigation. The table provides a glimpse of what was

analyzed.

Index Benchmar

ks

(3-Valued

2-

Variable)

NonZe

ro

Minte

rm

Tradit

ional

Synthe

sis (PT

Reduc

tion)

Prop

osed

Synt

hesis

(PT

Redu

ction)

Benchmarks

(4-Valued 2-

Variable)

Traditio

nal

Synthesis

(PT

Reductio

n)

Traditio

nal

Synthesis

(PT

Reductio

n)

Propose

d

Synthesi

s (PT

Reductio

n)

1. 212221020 7 6 5 1233323033232323 15 13 9

2. 222112221 9 5 5 3130213023010232 12 16 10

3. 200201010 4 7 4 3120212302311310 13 16 11

4. 111102021 7 7 5 2131031313323033 14 13 9

5. 212122102 8 7 6 3011331021103303 12 11 7

6. 000201012 4 7 4 0030231132321232 13 13 9

7. 220100210 5 7 4 0300233320322131 12 11 8

8. 210021102 6 9 6 3322311122332113 16 9 9

9. 112101211 8 6 5 3200112323003333 12 10 8

10. 101102000 4 6 3 3332020023313202 12 11 8

11. 202122022 7 6 4 1032101013203122 12 15 9

12. 010101002 4 6 3 3313033002112032 12 10 7

13. 221022221 8 6 5 1202333331333123 15 10 8

14. 202111000 5 4 2 2310231222012013 13 14 11

15. 110200212 6 6 4 3313330303111313 14 11 7

16. 210121101 7 7 5 3321111313301011 14 10 8

17. 000202210 4 6 3 3112313201313130 14 15 10

18. 222020201 6 6 4 2012323332321110 14 11 7

19. 121012102 7 8 6 1003310022330221 11 11 8

20. 222202010 6 5 3 1333331230023331 14 10 9

21. 102122211 8 7 6 2123303231202103 13 16 11

22. 202222022 7 5 3 1210333003021220 11 13 7

23. 220210001 5 7 4 3112033333303233 14 9 7

24. 022202112 7 6 4 3203131220302100 11 14 9

25. 101120101 6 7 4 0321321330023003 11 12 9

26. 001110002 4 6 3 2133210332133002 13 13 11

27. 101012021 6 8 5 2123131203330203 13 14 9

28. 012202012 6 8 5 0123102333001133 12 12 9

29. 210212222 8 6 5 3010321133112223 14 11 9

30. 201220212 7 7 5 3233300312101031 12 11 7

Appendices

186

31. 100101020 4 6 3 0100100230233330 9 10 6

32. 220120020 5 7 4 0223032002320011 10 12 7

33. 120120110 6 8 5 3002303233133332 13 11 8

34. 021221221 8 7 6 0331222211311333 15 8 7

35. 002122202 6 6 4 3302333313312010 13 10 7

36. 220110020 5 6 3 1201313031212311 14 14 10

37. 222101020 6 5 3 1130200302111333 12 11 8

38. 122001220 6 6 4 3333311020120331 13 10 7

39. 012020200 4 7 4 1110012031132333 13 9 7

40. 221012221 8 7 6 1230332313312323 15 12 9

41. 111102020 6 6 4 0213010023320130 10 11 8

42. 202011212 7 6 4 1313213210133213 15 14 10

43. 210222210 7 7 5 1323312302000023 11 12 9

44. 201102120 6 9 6 2233232003011033 12 13 8

45. 011021120 6 8 5 0203131033202313 12 15 9

46. 212222102 8 6 5 2323333232232303 15 12 8

47. 222212010 7 5 4 3033133310001133 12 8 6

48. 121211102 8 7 6 0301302113320030 10 13 9

49. 122200201 6 7 5 1323232031302233 14 14 9

50. 012200221 6 7 5 3200011333321133 13 10 8

51. 202002002 4 6 3 1212102031311313 14 16 8

52. 122222201 8 6 5 3013231132312313 15 14 11

53. 102222212 8 6 5 3223003123030231 12 13 9

54. 210101120 6 8 5 3133203010333133 13 11 8

55. 200101202 5 6 3 1120311301323131 14 13 9

56. 201122011 7 7 5 2133333321031330 14 11 9

57. 202221121 8 6 5 0113333330231132 14 10 8

58. 010220011 5 6 3 0111021101203332 12 10 7

59. 222202112 8 5 4 2013033332303010 11 14 8

60. 122012111 8 6 5 0221033211331232 14 12 9

61. 122101212 8 6 5 3312032301132011 13 13 9

62. 202100110 5 6 3 2033331303301320 12 11 8

63. 002002110 4 6 3 0203213211221031 13 12 9

64. 002000111 4 4 2 1132331303311031 14 11 9

65. 022122121 8 6 5 0232222203212223 14 11 8

66. 101102212 7 7 5 3303333333033120 13 9 6

67. 211110012 7 7 5 2332331333133313 16 8 8

68. 111202010 6 5 3 0130313330033203 11 10 7

69. 221200010 5 6 4 2313331023113330 14 12 9

70. 221221010 7 6 5 3333333330233132 15 9 7

71. 220000112 5 5 3 3113231133301113 15 9 8

72. 011202221 7 6 4 3203101132313333 14 10 7

73. 102101110 6 7 4 2201031123032010 11 14 8

74. 212222011 8 5 4 2133322131302322 15 12 10

75. 112212200 7 6 5 3211303312201213 14 12 9

76. 112112102 8 7 6 0333033103031312 12 13 6

77. 212200112 7 6 5 0213330232101320 12 15 11

78. 110020210 5 7 4 3033003203333200 10 10 6

79. 100100112 5 6 4 3313132123231002 14 12 9

80. 222121102 8 6 5 3231322310311033 14 12 9

81. 112212021 8 7 6 0301303301331313 12 13 7

82. 202012111 7 6 4 0103302313311133 13 11 8

83. 210100201 5 8 5 3033300313333333 13 7 5

Appendices

187

84. 022022022 6 6 3 0320031203232001 10 14 9

85. 220212122 8 6 5 1223133000130332 12 12 9

86. 211110021 7 7 5 3232003333301013 12 12 6

87. 200110020 4 6 3 1133030333133031 13 12 6

88. 020002110 4 6 3 3311032322303033 13 11 7

89. 220010022 5 6 3 3303333320213123 14 10 7

90. 101002022 5 6 3 3203301000203123 10 12 8

91. 122112021 8 7 6 3133311021333023 14 11 9

92. 220200000 3 5 2 1332133320103102 13 13 10

93. 202111112 8 5 4 2330131032330231 13 13 9

94. 101201201 6 8 5 0232103021303323 12 14 9

95. 011021212 7 7 5 3231222303313133 15 11 9

96. 021101222 7 6 4 0321300113222303 12 14 10

97. 201111120 7 7 5 2321110031311303 13 14 8

98. 222212112 9 5 5 0212003333101203 11 13 8

99. 121212122 9 6 6 2023300330031332 11 11 7

100. 220220101 6 6 3 0123103321223033 13 11 8

101. 202022211 7 6 4 3111301133130310 13 10 8

102. 100212101 6 6 4 1120131130311113 14 11 8

103. 010101010 4 6 3 3313233310331010 13 11 6

104. 210000220 4 6 3 0213010332330333 12 12 8

105. 210100202 5 7 4 0111010310300010 8 12 6

106. 011122122 8 6 5 0333313013313033 13 10 6

107. 122000201 5 6 4 2230321031323313 14 13 10

108. 222012111 8 5 4 1033233032130001 11 11 8

109. 122022020 6 6 4 0001203302011031 9 12 7

110. 212211000 6 5 4 3203221220033333 13 9 7

111. 200220011 5 6 3 0303001212133312 12 14 10

112. 010122101 6 6 4 0332311003333033 12 10 6

113. 112001202 6 6 4 2311033331320323 14 13 9

114. 210120002 5 8 5 1232001301010332 11 14 7

115. 101001121 6 6 4 0303033323200203 10 14 7

116. 220101022 6 6 3 3312333231222311 16 11 11

117. 112111212 9 5 5 2312133333011202 14 12 9

118. 221220110 7 6 4 3333101133331003 13 7 5

119. 200012021 5 8 5 0003313310133220 11 11 7

120. 122022221 8 6 5 3333330021300233 12 10 7

121. 211212010 7 6 5 1321220323333002 13 11 9

122. 200102122 6 7 5 1333111302213210 14 11 9

123. 020000120 3 6 3 3332032032002011 11 11 8

124. 000122102 5 6 4 3310013131322203 13 14 9

125. 100220100 4 6 3 3113333330320311 14 10 7

126. 010202020 4 6 3 2311111130323113 15 10 8

127. 111010110 6 5 3 3333033233312323 15 10 7

128. 010210120 5 8 5 3110020213130132 12 15 7

129. 220110021 6 7 4 2313320111033311 14 13 10

130. 111212101 8 5 4 1333333133123312 16 10 10

131. 002200021 4 7 4 3312110001333203 12 11 8

132. 112112222 9 5 5 1300311032333113 13 10 8

133. 220222101 7 5 3 2223010232033303 12 11 7

134. 000211220 5 5 3 1333203303233223 14 11 8

135. 121120011 7 7 5 0301132223133033 13 13 9

136. 110022201 6 7 4 0032131233310223 13 12 9

Appendices

188

137. 221220112 8 6 5 2321010033230332 12 11 8

138. 100110002 4 6 3 3321021113330233 14 11 9

139. 201020222 6 6 4 3312001311301111 13 10 8

140. 101011110 6 6 3 3313030011300332 11 10 7

141. 211020021 6 7 5 0230333112303101 12 13 9

142. 211021222 8 6 5 3232311223232213 16 14 10

143. 022000200 3 5 2 1330223233330233 14 9 7

144. 100202222 6 5 3 3310302100330233 11 12 8

145. 020012022 5 7 4 2031232323121320 14 15 11

146. 122021022 7 7 5 3313133333312131 16 10 9

147. 222122101 8 5 4 3310033313002101 11 12 7

148. 210220211 7 7 5 3100121333323020 12 13 9

149. 112201021 7 8 6 0320222120313012 12 13 10

150. 120211112 8 7 6 3303333133201330 13 10 7

151. 021212212 8 7 6 3132333121331330 15 12 10

152. 122022102 7 7 5 3133103230311221 14 12 9

153. 212110211 8 6 5 2032333033323232 14 11 7

154. 222002221 7 5 4 1131230333301200 12 11 7

155. 221212120 8 7 6 0031323200320110 10 12 7

156. 220012221 7 7 5 3303031301032023 11 14 7

157. 121002012 6 7 5 3033312300233232 13 12 8

158. 221210212 8 7 6 1103333120233303 13 11 7

159. 021111202 7 6 4 3013332233000320 11 10 7

160. 100210222 6 6 4 0313322213301232 14 13 9

161. 102112222 8 6 5 2313133020310022 12 13 9

162. 000020121 4 5 3 3233330120331101 13 10 7

163. 201120020 5 8 5 2011023200322033 11 13 8

164. 211212000 6 5 4 1323321202221010 13 14 7

165. 201112011 7 7 5 1133221123002132 14 10 9

166. 202020112 6 6 4 3033003313003333 11 8 5

167. 222102122 8 6 5 0112302001030333 10 13 7

168. 101200202 5 6 3 0313312110002113 12 13 9

169. 220000220 4 5 2 3301223232222300 13 10 8

170. 201020001 4 7 4 2023331323010323 13 14 9

171. 120002020 4 7 4 2101030321233010 11 16 7

172. 221022222 8 5 4 2002200332333011 11 10 7

173. 122002000 4 5 3 1131333233333333 16 6 6

174. 020110211 6 6 4 2333111013321013 14 11 8

175. 111111020 7 4 3 2013333322321213 15 11 9

176. 222212110 8 5 4 3110102230002210 10 11 7

177. 111210000 5 5 3 3232313202010331 13 15 9

178. 112011112 8 6 5 3333301133120113 14 10 8

179. 222121022 8 5 4 3321333131333330 15 9 8

180. 111222201 8 5 4 2230033323233220 13 12 7

181. 021100012 5 8 5 3302021031300000 8 11 6

182. 120102111 7 7 5 1120201013331320 12 13 9

183. 222221222 9 4 4 0301120312330313 12 15 10

184. 022001100 4 6 3 1012303330030122 11 11 6

185. 220222201 7 6 4 0002233312121233 13 11 8

186. 211102022 7 7 5 3220233323202233 14 11 8

187. 122202021 7 7 5 3001332223322323 14 11 8

188. 010200220 4 6 3 1331033330033133 13 8 6

189. 122100020 5 6 4 3333021100200311 11 9 6

Appendices

189

190. 001210021 5 8 5 3310123033131031 13 12 9

191. 222210221 8 6 5 1203133333322330 14 11 9

192. 022201221 7 7 5 2010302023103333 11 13 8

193. 220202200 5 6 3 2233210223130133 14 12 9

194. 120212122 8 7 6 3322333121221103 15 9 8

195. 012010101 5 7 4 2132023230322312 14 14 10

196. 120120001 5 8 5 3323001113310132 13 10 8

197. 201211220 7 7 5 0313313333131123 15 11 9

198. 111002010 5 5 3 3310333131131320 14 11 9

199. 202022120 6 7 4 3323212333233233 16 10 9

200. 111121221 9 5 5 2332033333013312 14 10 8

201. 221100101 6 6 4 0001333013222133 12 10 8

202. 200000112 4 5 3 3232333322200001 12 9 5

203. 201022010 5 7 4 1133312133000011 12 10 7

204. 121220221 8 6 5 3022333311323032 14 11 8

205. 202012212 7 7 5 3123313033331012 14 12 8

206. 202011012 6 7 4 0122331002113302 12 12 8

207. 202102021 6 8 5 2110133132331233 15 10 9

208. 200220220 5 6 3 1120011133103331 13 10 7

209. 022011122 7 6 4 3233123213200200 12 12 9

210. 200021112 6 7 5 2333202132130223 14 12 9

211. 212101121 8 6 5 3123010332010110 11 13 9

212. 110202221 7 6 4 3311322330133331 15 9 8

213. 011122100 6 6 4 1232213121320321 15 15 12

214. 112211222 9 5 5 3213002032130022 11 10 8

215. 110222201 7 6 4 0021132333103103 12 13 9

216. 211200112 7 6 5 3322331213311031 15 10 9

Appendices

190

APPENDIX D – SPICE NMOS AND PMOS LEVEL 3 MODEL PARAMETER

A. N-channel MOS - 1um CMOS TECHNOLOGY FILE

* 1 um Level 3 models

*

* Don't forget the .options scale=1u if using an Lmin of 1

* 1<Ldrawn<200 10<Wdrawn<10000 Vdd=5V

.MODEL Mbreakn NMOS LEVEL = 3

+ TOX = 200E-10 NSUB = 1E17 GAMMA = 0.5

+ PHI = 0.7 VTO = 0.8 DELTA = 3.0

+ UO = 650 ETA = 3.0E-6 THETA = 0.1

+ KP = 120E-6 VMAX = 1E5 KAPPA = 0.3

+ RSH = 0 NFS = 1E12 TPG = 1

+ XJ = 500E-9 LD = 100E-9

+ CGDO = 200E-12 CGSO = 200E-12 CGBO = 1E-10

+ CJ = 400E-6 PB = 1 MJ = 0.5

+ CJSW = 300E-12 MJSW = 0.5

B. P-channel MOS - 1um CMOS TECHNOLOGY FILE

* 1 um Level 3 models

*

* Don't forget the .options scale=1u if using an Lmin of 1

* 1<Ldrawn<200 10<Wdrawn<10000 Vdd=5V

.MODEL Mbreakp PMOS LEVEL = 3

Appendices

191

+ TOX = 200E-10 NSUB = 1E17 GAMMA = 0.6

+ PHI = 0.7 VTO = -0.9 DELTA = 0.1

+ UO = 250 ETA = 0 THETA = 0.1

+ KP = 40E-6 VMAX = 5E4 KAPPA = 1

+ RSH = 0 NFS = 1E12 TPG = -1

+ XJ = 500E-9 LD = 100E-9

+ CGDO = 200E-12 CGSO = 200E-12 CGBO = 1E-10

+ CJ = 400E-6 PB = 1 MJ = 0.5

+ CJSW = 300E-12 MJSW = 0.5

 Model Parameters taken from (Xioing 2010)

