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Abstract 
 

Tree mining has many useful applications in areas such 
as Bioinformatics, XML mining, Web mining, etc. In 
general, most of the formally represented information in 
these domains is a tree structured form. In this paper we 
focus on mining frequent embedded subtrees from 
databases of rooted labeled ordered subtrees. We propose 
a novel and unique embedding list representation that is 
suitable for describing embedded subtrees. This 
representation is completely different from the string-like or 
conventional adjacency list representation previously 
utilized for trees. We present the mathematical model of a 
breadth-first-search Tree Model Guided (TMG) candidate 
generation approach previously introduced in [8]. The key 
characteristic of the TMG approach is that it enumerates 
fewer candidates by ensuring that only valid candidates 
that conform to the structural aspects of the data are 
generated as opposed to the join approach. Our 
experiments with both synthetic and real-life datasets 
provide comparisons against one of the state-of-the-art 
algorithms, TreeMiner [15], and they demonstrate the 
effectiveness and the efficiency of the technique. 
 
Keywords: treeminer, tree mining, frequent tree mining, 
embedded subtree,. 
 
1. Introduction 
 

Research in both theory and applications of data mining 
is expanding driven by a need to consider more complex 
structures, relationships and semantics expressed in the data 
[3,4,7,8,12,13,15]. As the complexity of the structures to be 
discovered increases, more informative patterns could be 
extracted [13]. Tree as a special type of graph has attracted 
considerable amount of interest [2,3,4,8,9,10,11,12,13,15]. 
Recently, XML has become very popular. There is a 
growing number of XML-enabled multimedia data 
encoding. VoiceXML [5] is developed to enable the rapid 
deployment of voice applications. X3D [6] is used to enable 
real-time communication of 3D data. Ling et. al. [4] has 

initiated an XML-enabled association rule framework. It 
extends the notion of associated items to XML fragments to 
present associations among trees. Tan et. al. [8] suggested 
that one of the important XML mining tasks is to mine 
frequent tree patterns in a collection of XML documents. 
Wang and Liu [11] developed an algorithm to mine 
frequently occurring induced subtrees in XML documents. 
In general, most of the formally represented information in 
these domains is a tree structured form. Frequent structure 
mining (FSM) refers to an important aspect of mining that 
deals with pattern extraction in massive databases and 
involves discovering frequent complex structures [15]. 

Frequent subtree mining as one instance of FSM has 
many useful applications in areas such as Bioinformatics, 
XML mining, Web mining, etc. One practical application of 
frequent subtree mining in the above areas is to discover 
associations between data entities in tree structured form. 
This is known as association mining which consists of two 
important problems, i.e. frequent itemset discovery and rule 
construction. The former task is considered to be a more 
difficult problem to solve than the latter. Our study is 
mainly focused on developing an efficient approach for 
frequent embedded subtrees discovery from a database of 
rooted ordered labeled subtrees.  

We propose a novel and unique embedding list 
representation that is suitable for describing embedded 
subtrees. This representation is adapted from the 
conventional adjacency list format, by relaxing the 
adjacency notion into an embedding notion in order to 
capture the embedding relationships between nodes in trees. 
The list not only contains adjacent nodes (children), but 
also takes all its descendants into an embedded list in pre-
order ordering. For speed considerations, each embedded 
list is represented in a string-like format so that each item in 
the list can be accessed in O(1) time. This representation is 
completely different from the string-like [2,3,8,10,12,15] or 
adjacency list [7] representation utilized previously for 
trees. There are different strategies for efficient candidate 
generation such as join and enumeration by extension [3]. 
An idea of utilizing XML schema to guide the candidate 
generation appeared in [12]. The approach generates 



candidates that conform to the schema. Recently, Tree 
Model Guided (TMG) candidate generation for mining 
embedded rooted ordered subtrees is proposed in [8]. TMG 
generalizes the concept of schema guided into tree model 
guided, so that the enumeration model can be applied to any 
data in tree structure form, especially for enumeration of 
embedded subtrees. This non-redundant systematic 
enumeration model ensures only valid candidates are 
generated which conform to the actual tree structure of the 
data. An example of a tree model would be the structural 
aspects of a document in an XML schema, and a valid 
candidate would conform to this. In general, the TMG 
would be applicable to any area with structural models with 
clearly defined semantics that have tree like structures. 
Contrary to the extension method used for relational data, 
TMG generates fewer candidates as opposed to the join 
approach [1,3,8,15]. Even though fewer candidates are 
generated, the TMG enumeration ensures the generation of 
a complete candidate set. Thus, TMG approach is an 
optimal enumeration model for mining embedded, rooted 
and ordered subtrees. This is in contrast to an incomplete 
method TreeFinder [9] that can miss many frequent 
subtrees, especially when the support is lowered or when 
different trees in the database have common node labels. 
Independently, XSpanner [10] extends the Pattern-Growth 
concept into tree structured data and its enumeration model 
also generates only valid candidates.  

The occurrences of candidate subtrees need to be 
counted in order to determine if they are frequent whilst the 
infrequent ones would be pruned. As the number of 
candidates to be counted can be enormous, an efficient and 
fast counting approach is extremely important. Efficiency 
of candidate counting is highly determined by the data 
structure used. More conventional approaches use a direct 
checking approach. For each candidate generated its 
frequency is increased by one if it exists in the transaction. 
A Hash-tree [1,3] data structure can be used to accelerate 
direct checking. Another approach projects each candidate 
generated into a vertical representation [8,14,15], which 
associates an occurrence list with each candidate subtree. If 
transaction based support [3,15] is used, the vertical format 
will consist of transaction IDs of the transactions that 
support it. In contrast, if occurrence match [3,8] or 
weighted support definition [15] is used each list will 
correspond to each candidate occurrence in the whole 
database of trees [8]. Occurrence match support takes 
repetition of items in a transaction into account whilst 
transaction based support only checks for existence of items 
in a transaction. With the vertical representation approach 
the frequency of a candidate subtree corresponds to the size 
of the occurrence list. With the advantage of being able to 
determine the support count of each candidate directly the 
vertical format has been reported to be faster than the direct 
checking approach [14,15].  In this paper, we improved 
over the vertical list format as previously utilized in our 
earlier approach [8] in two ways. First, the performance is 

expedited by storing only the hyperlinks [10] of subtrees in 
the tree database instead of creating a local copy for each 
generated subtree. The format is different than the scope-
list [15] representation as our vertical list does not store any 
scope information. Secondly, we transform and map the 
tree structure data into integer indexes as opposed to 
processing time consuming string labels directly. 
Representing labels as integer opposed to string labels has 
performance and space advantages. For instance a node 
with label ‘123’ would require 3 bytes of characters if its 
label is represented as a string, whereas only 1 byte is 
required if it is represented as an integer. Therefore, when a 
hashtable is used for candidate frequency counting, hashing 
integer labels over string labels can have significant impact 
on the overall candidates counting performance.  

Our experiments with both synthetic and real-life data 
sets provide comparisons against one of the state of the art 
algorithms, TreeMiner [15], and they demonstrate the 
effectiveness and efficiency of the technique. The paper is 
organized as follows. In section 2 the problem 
decomposition is given. Section 3 describes the details of 
the algorithm. The mathematical model of TMG approach 
is provided in section 4. We empirically evaluate the 
performance of the algorithms and study their scale-up 
properties in section 5, and the paper is concluded in 
section 6. 
 
2. Problem Definitions 
 

General tree concepts and definitions. A tree is an 
acyclic connected graph with one node defined as the root. 
A tree can be denoted as T(v0,V,L,E), where (1) v0 ∈  V is 
the root vertex; (2) V is the set of vertices or nodes; (3) L is 
the set of labels of vertices, for any vertex v∈V, L(v) is the 
label of v; and (4) E is the set of edges in the tree. A root is 
the topmost node in the tree. In labeled tree, there is a 
labeling function mapping vertices to a set of labels so that 
a label can be shared among many vertices. Parent of node 
v is defined as the predecessor of node v. There is only one 
parent for each v in the tree. A node v can have one or more 
children which are defined as its successors. A node 
without any child is a leaf node; otherwise, it is an internal 
node. If for each internal node, all the children are ordered, 
then the tree is an ordered tree. In an ordered tree, the 
rightmost child is referred to as the last child. The number 
of children of a node is commonly termed as fan-out/degree 
of the node. A path from vertex vi to vj, is defined as a finite 
sequence of edges that connects vi to vj. The length of a 
path p is the number of edges in p. If a path exists from 
node p to node q, then p is an ancestor of q and q is a 
descendant of p. Height of a node is length of path from 
that node to its furthest leaf. The rightmost path of T is 
defined as the path connecting the rightmost leaf with the 
root node. Height of a tree is defined as height of its root 
node. Depth/level of a node is the length of the path from 



root to that node. The size of a tree is determined by the 
number of nodes in the tree. Uniform tree T(n,r) is a tree 
with height equal to n and all of its internal nodes have 
degree r. Closed form of an arbitrary tree is defined as a 
uniform tree with degree equal to the maximum degree of 
internal nodes in the arbitrary tree. In this paper, all trees 
we consider are ordered, labeled, and rooted trees. We are 
concerned with mining embedded subtree. An embedded 
subtree [3,8,10,15] is a generalization of induced subtree 
[2,3], where parent-child as well as ancestor-descendant 
relationships are preserved. By extracting embedded 
subtrees, patterns hidden deeply within large tree structures 
can be found. Mining embedded subtrees is more complex 
than mining induced subtrees, as induced subtree 
⊆ embedded subtree [3]. In figure 1, T2 and T4 are 
examples of induced subtrees of T while T1-4 are examples 
of embedded subtrees of T. In case of induced subtrees T2 
and T4, only the parent-child relationship of each node is 
preserved while for embedded subtrees T1-4 the ancestor-
descendant relationship is also preserved. For each node in 
T (figure 1), its label is shown as a single-quoted symbol 
inside the circle whereas its position is shown as indexes at 
the left/right side of the circle.  

 
Figure 1. Example of induced (T2, T4) and embedded (T1, T3) 

subtrees 
 

String encoding (φ). In a database of labeled subtrees, 
many subtrees can have the same string encoding (φ) 
[2,8,10,15]. We denote encoding of subtree T as φ(T). From 
figure 1, φ(T1):‘2 6 / 7 /’; φ(T3):‘2 5 6 / 7 /’, etc. We could 
omit backtrack symbols after the last node, i.e.  φ(T1):‘2 6 / 
7’. We refer to a group of subtrees with the same encoding 
L as candidate subtree CL. A subtree with k number of 
nodes is denoted as k-subtree. Throughout the paper, the 
‘+’ operator is used to conceptualize an operation of 
appending two or more tree encodings. However, this 
operator should be contrasted with the conventional string 
append operator, as in the encoding used the backtrack 
symbols need to be computed accordingly. 

Mining frequent subtrees. Given that Tdb is a tree 
database consisting of N transactions of trees, KN. The task 
of frequent subtree mining from Tdb with given minimum 
support (σ), is to find all the candidate subtrees that occur at 
least σ times in Tdb. Unless otherwise stated, occurrence 
match/weighted support definition is used [3,8,15]. Based 
on the downward-closure lemma [1], every sub-pattern of a 
frequent pattern is also frequent. In relational data, given a 
frequent itemset all its subsets are also frequent. A question 

however arises if whether the same principle applies to tree 
structure data when the occurrence match support definition 
is used? To show that the same principle doesn’t apply, we 
need to find a counter-example where the relation doesn’t 
hold for tree structure data.  

Lemma 1. Given a tree database Tdb. If there exists 
candidate subtree CL and CL’, where CL⊆CL’, such that CL’ 
is frequent and CL is infrequent, we say that CL’ is a pseudo-
frequent candidate subtree.  

Lemma 2. Given an infrequent candidate subtree CL and 
a subtree T where φ(T):L. Vrm(T) is a set of nodes in 
rightmost path of T. A pseudo-frequent candidate subtree 
CL’ with support m where L’:L+l can be generated from T 
by attaching m number of children with the same encoding l 
to any node∈Vrm(T) and m ≥ minimum support σ such that 
there are m number of subtrees T1,…,Tm with encoding L’ 
and T⊆ T1,…,Tm. 

Lemma 3. Given an infrequent embedded candidate 
subtree CL and a subtree T with root node vr where φ(T):L. 
v1,…,vm is a set of nodes with the same encoding l where v1 
is a parent of v2, vm-1 is a parent of vm and m ≥ minimum 
support σ. A pseudo-frequent candidate subtree CL’ with 
support m where L’:l+L can be obtained by connecting 
v1,…,vm to T such that there is a path with length ≥ 1 from 
vm to vr and m numbers of embedded subtrees T1,…,Tm with 
encoding L’ can be generated where T⊆ T1,…,Tm.  

Theorem 1. Antimonotone property of frequent patterns 
suggests that the frequency of a superpattern is less than or 
equal to the frequency of a subpattern. Lemma 2 and 3 say 
that there can be pseudo-frequent candidate subtrees 
generated from an infrequent subtree. Thus, antimonotone 
property does not always hold in frequent subtrees mining 
when occurrence match support is considered. 

In the light of downward closure lemma, the pseudo-
frequent candidate subtrees are equivalent to infrequent 
candidate subtrees. From figure 1, if σ is set to 2, subtrees 
with encoding ‘2 5 6 / 7’ are examples of pseudo-frequent 
candidate subtrees. Although support of ‘2 5 6 / 7’ is 2, it is 
a pseudo-frequent candidate subtree since ‘5 6 / 7’ is 
infrequent. Thus, ‘2 5 6 / 7’ should be pruned.  
 
3. MB3-Miner Algorithm 
 
3.1. Generating Candidate Subtrees 
 

We are concerned with a systematic way of generating 
candidate subtrees. An optimal enumeration method should 
generate each subtree at most once and only generate valid 
candidates according to the tree model. It should also be 
complete, i.e. it generates all possible candidate subtrees 
from a given database of trees. Our candidate generation 
approach utilizes embedded list representation to guide the 
enumeration of embedded subtrees.  

Database scanning. The process of frequent subtree 
mining is initiated by scanning a tree database, Tdb, and 
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generating a global sequence D in memory. We refer to this 
sequence as a dictionary. The dictionary consists of each 
node in Tdb following the pre-order traversal indexing. For 
each node its position, label, right-most descendant position 
(scope) [8,10,15], and parent position is stored. Thus each 
dictionary item is defined as a tuple of position (pos), label 
(l), scope (s), parent (p), {pos, l, s, p}. We refer to an item 
in the dictionary at position i as dictionary[i]. Unless 
otherwise mentioned, the notion of position of an item 
refers to its index position in the dictionary. At the same 
time, when generating the dictionary, we compute all the 
frequent 1-subtrees, F1. After the in-memory database 
(dictionary) is constructed our approach does not require 
further database scanning. 

Constructing Embedding List (EL). For each frequent 
internal node in F1, a list is generated which stores its 
descendant nodes’ hyperlinks [10] in pre-order traversal 
ordering such that the embedding relationships between 
nodes are preserved. The notion of hyperlinks of nodes 
refers here to the positions of node in the dictionary. For a 
given internal node at position i, such ordering reflects the 
enumeration sequence of generating 2-subtree candidates 
rooted at i (see figure 2). Thus, the EL construction is 
equivalent to the process of enumerating all 2-subtree 
candidates from a database of trees. Hereafter, we call this 
list as embedded list (EL). As there can be more than one 
ELs, we use notation i-EL to refer to an embedded list of 
node at position i. Position of an item in EL is referred to as 
slot as opposed to position when referring item in the 
dictionary. Thus, i-EL[n] refers to the item in the list at slot 
n. Whereas |i-EL| refers to the size of the embedded list of 
node at position i. In figure 2, 0-EL for example refers to 
the list: 0:[1,2,3,4,5,6,7], 0-EL[0]=1 and 0-EL[6]=7. 
Figure 2 illustrates an example of the EL representation of 
subtree T (figure 1) with encoding: ‘2 2 5 6 7 / / / 5 6 / 7’.  

 
0: 1 2 3 4 5 6 7 
1: 2 3 4 5 6 7  
2: 3 4      
3: 4       
5: 6 7      

Figure 2. The EL representation of tree T in figure 1 
 

Occurrence Coordinate (OC). We have adopted an 
extension by a single item at a time. When generating k-
subtree candidates from (k-1)-subtree, we consider only 
frequent (k-1)-subtrees for extension. Each occurrence of k-
subtree in Tdb is encoded as occurrence coordinate 
r:[e1,…ek-1]; r refers to k-subtree root position and e1,…,ek-1 
refer to slots in r-EL. Each ei corresponds to node (i+1) in 
k-subtree and e1 < ek-1. We refer to ek-1 as tail slot. From 
figure 1 and 2, the OC of 3-subtree (T2) with encoding ‘5 6 
7’ is encoded as 2:[0,1]; two 4-subtrees (T3 & T4) with 
encoding ‘2 5 6 / 7’ are encoded as 0:[4,5,6] and 1:[3,4,5] 
respectively, and so on. Each OC of a subtree describes an 

instance of each occurrence of the subtree in Tdb. Hence, 
each candidate instance should have an OC associated with 
it. 

The scope of node. EL representation preserves the 
ordering as well as the embedding relationships of nodes in 
a tree. i-EL defines the scope of node i such that the scope 
of i spans from i-EL[0] to i-EL[j] where j = |i-EL|-1. We 
refer to the first scope position as the leftmost scope and the 
last scope position as the rightmost scope. Consequently, 
given a 4-subtree T with occurrence coordinate 1:[3,4,5], 
the leftmost scope of T is defined by 1-EL[3] and the 
rightmost scope of T is defined by 1-EL[5]. An occurrence 
coordinate of a valid candidate is defined by r:[m,…n] 
where m < n. Thus, a valid candidate has an increasing 
scope ordering such that r-EL[m] < r-EL[n].  

TMG enumeration formulation. An enumeration 
approach guided by tree model (TMG) was introduced in 
our previous work [8]. TMG enumeration approach extends 
a candidate (k-1)-subtree by one node at the time starting 
from the last node of its right most path up to its root. We 
have constructed EL in such a way that the pre-order 
ordering of the embedding relationship of nodes is 
preserved. As a corollary, given the tail position of a (k-1)-
subtree the enumeration sequence provided by EL starts 
from the next slot after the tail to the end of the EL follows 
the correct right most extension ordering. Thus the TMG 
enumeration is formulated as follows. l(i) denotes a labeling 
function of node at position i. Given frequent (k-1)-subtree 
tk-1 with φ(tk-1):L, the root position r, tail position t, left-
most scope m, right-most scope n, and occurrence 
coordinate r:[m,…,n], k-subtrees are generated by 
extending tk-1 with j∈r-EL such that t<j≤|r-EL|-1. Thus its 
occurrence coordinate becomes r:[m,…,n,j] and its 
encoding becomes L’:L+l(i) where i=r-EL[j] and m<n<j. 

Pruning. Apriori theory says that a pattern is frequent if 
and only if all of its sub-patterns are frequent. Theorem 1 
suggests that this property doesn’t always hold for tree 
structure, and as such a more specialized approach is 
needed when mining frequent subtrees. In mining frequent 
subtrees, this problem may occur because the semantics of a 
tree structure is determined by its values and hierarchical 
structure. Hence, each individual node may be frequent, but 
the structural relationships between the nodes are 
infrequent. The approach taken was to prune those 
candidates that have one or more infrequent subtrees. Thus, 
(k-1) full pruning [15] must be performed when generating 
k-subtrees. This implies that at most (k-1) numbers of (k-
1)-subtrees need to be generated from the currently 
expanding k-subtrees. The expanding k-subtree is pruned 
when at least one (k-1)-subtree is infrequent, otherwise it is 
added to the frequent k-subtree set. This ensures that the 
method generates no pseudo-frequent subtrees and is 
correct as opposed to the opportunistic pruning utilized in 
DFS method such as VTreeMiner [15].  As for each k-
subtree candidate there can be (k-1) checks involved for 
determining whether all its (k-1)-subtrees are frequent, the 
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process can be quite time consuming and expensive. 
Fortunately, some time is saved by checking whether a 
candidate is already a part of the frequent k-subtree set. 
This way if a (k-1)-subtree candidate is already in the 
frequent k-subtree set, it is known that all its subtrees are 
frequent, and hence the (k-1) full pruning can be 
accelerated as only 1 comparison is required. 
 
3.2. Candidate Subtree counting 
 

In the candidate enumeration step, the process utilized 
the notion of coordinates. To determine if a subtree is 
frequent, we count the occurrences of that subtree and 
check if it is greater or equal to the specified minimum 
support σ. In a database of labeled trees many instances of 
subtrees can occur with the same encoding. Hence, the 
notion of encoding is utilized in the candidate counting 
process. We say that a subtree has a frequency n if there are 
n instances of subtrees with same encoding, i.e. we group 
subtree occurrences by its encoding.  

Vertical Occurrence List (VOL). Each occurrence of a 
subtree is stored as an occurrence coordinate as previously 
described. The vertical occurrence list of a subtree groups 
the occurrence coordinates of that subtree by its encoding. 
Hence, computing the frequency of a subtree can be easily 
determined from the size of the VOL. We use the notation 
VOL(L) to refer to the vertical occurrence list of a subtree 
with encoding L. Consequently, the frequency of a subtree 
with encoding L is denoted as |VOL(L)|. As an example, the 
frequency of a subtree of tree T with encoding ‘2 5 6’, 
|VOL(‘2 5 6’)| is equal to 4. 
 

1 5 6 
0 5 6 
1 2 3 
0 2 3 
‘ 2  5  6 ’ 

Figure 3. VOL representation of subtree with encoding ‘2 5 6’ of 
tree T in figure 1 

 
The cost of the frequency counting process comes from 

at least two main areas. First, it comes from the VOL 
construction itself. With numerous numbers of occurrences 
of subtrees the list can grow very large. Secondly, for each 
candidate generated its encoding needs to be computed. 
Constructing an encoding from a long tree pattern can be 
very expensive. An efficient and fast encoding construction 
can be employed by a step-wise encoding construction so 
that at each step the computed value is remembered and 
used in the next step. This way a constant processing cost 
that is independent of the length of the encoding is 
achieved. Thus, fast candidate counting can be achieved. 
Overall, our algorithm can be described by the following 
pseudo-code: 
 
 
 
 

Inputs : Tdb (Tree database), σ (min. support)  
Outputs : Frequent subtrees (Fk), D (dictionary) 
{D, F1}  = DatabaseScanning (Tdb) 
{EL, F2}  = ConstructEmbeddedList (F1, D) 
k=3 
while( |Fk| ≥ 0 )  
 Fk = GenerateCandidateSubtrees(Fk-1) 
 k = k+1 
 
GenerateCandidateSubtrees(Fk-1): 
for each frequent k-subtree tk-1∈Fk-1 
 Lk-1 = GetEncoding (tk-1) 
 VOL-tk-1 = GetVOL(tk-1) 
  for each occurrence coordinate ock-1 (r:[m,…n]) ∈VOL-tk-1 

       for (j = n+1 to |r-EL|-1 ) 
          {ock, Lk} = TMG-extend(ock-1, Lk-1, j)  
 If( Contains(Lk, Fk) )  
 Insert(h(Lk), ock, Fk) 
 else 
  If( k-1Pruning (Lk) == false)  
           Insert(h(Lk), ock, Fk) 
return Fk 
 

Figure 4. MB3-Miner algorithm pseudo-code 
 
4. TMG Mathematical Model 
 

In this section we will develop the mathematical model 
of TMG approach for mining embedded subtree. Such a 
model would allow us to calculate the worst case 
complexity of enumerating all possible candidates from 
data in a tree structure form. There is no simple way to 
parameterize a tree structure unless it is specified as a 
uniform tree. The size of a uniform tree follows a 
geometrical series. Thus, a size of uniform tree T(n,r) can 
be computed using geometrical series formula (1-rn+1)/(1-r). 
Alternatively, when the root is omitted the following 
formula is used, r(rn-1)/(r-1). When r = 1, the size of the 
uniform tree is equal to its height n.  

The complexity of enumeration using TMG approach is 
bounded by the actual tree structure. By definition of closed 
form of an arbitrary tree, the worst case scenario of 
enumerating candidates from an arbitrary tree is bounded 
by its closed form enumeration complexity. We have 
developed a knowledge representation called embedded list 
(EL) to represent any arbitrary tree and enumerate 
candidates using TMG approach in a systematic way. The 
TMG enumeration mathematical model is formulated as 
follows. Given a uniform tree T with height n and degree r 
the worst case complexity of candidate generation of T is 
expressed mathematically in term of its height n and degree 
r. We define that the cost of enumeration is expressed as 
the number of candidate instances enumerated throughout 
the candidate generation process as opposed to the number 
of candidate subtrees generated (section 2). 

Complexity of 1-subtree & 2-subtree enumeration 

1
T &

2
T . The complexity of 1-subtree enumeration is 

equal to the size of the tree |T|. Previously we have 
developed a corollary that the construction of EL 

size : 4 



representation from a database of trees reflects the 
enumeration sequence of generating 2-subtree candidates. 
From figure 2, the visualization of EL representation of tree 
T suggests that the number of generated candidate instances 
is equal to the sum of the size of the lists in EL. Let s be a 
set with n objects. Combinations of k objects from this set s 
(sCk) are subsets of s having k elements each (where the 
order of listing the elements does not distinguish two 
subsets). sCk formula is given by s!/(s-k)!k!. Thus, for 2-
subtrees enumeration the following relation exists. Let r-EL 
consist of l number of slots where each slot is denoted by j. 
The number of all generated valid 2-subtree candidates 
(r:[j]) rooted at r is equal to the number of combinations of 
l nodes from r-EL having 1 element each. As the corollary, 
complexity of 2-subtrees enumeration of tree T with size |T| 
is equal to the sum of all generated 2-subtree candidates 
from each node in T is given by eq 1 below. 

 ∑
=

−

T

r
ELr C

1
1  eq. 1 

Complexity of k-subtree enumeration
k

T . The 

generalization of 2-subtrees enumeration complexity can be 
formulated as follows. Let r-EL consist of l number of 
items; each item is denoted by j. The number of all 
generated valid k-subtree candidates (r:[e1,…,ek-1]) rooted 
at r is equal to the number of combinations of l nodes from 
i-EL having (k-1) element each. In section 3, valid 
occurrence coordinate of valid candidates has the property 
that e1<ek-1. Thus all valid combinations have the (k-1) 
element in increasing order. As a corollary, the complexity 
of k-subtrees enumeration of tree T with size |T| is equal to 
the sum of all generated k-subtree candidates: 

 1
1

|| −
=

−∑ k

T

r
ELr C  eq. 2 

In eq.1 and 2, the size of each EL (r-EL) is unknown. If 
we consider T as a uniform tree T(n,r), a relationship 
between height n and degree r of a uniform tree T with the 
size of each EL for each node can be derived.  

Determining rδn-d of uniform tree T(n, r). rδn-d is 
denoted as the size of the embedded list, |EL| of a node in 
T(n,r) with depth d. A close look at EL definition in section 
2 and |T(n,r)|, suggests that rδn-d is described by a 
geometrical series formula r(r(n-d)-1)/(r-1). In a uniform tree 
T(n, r), there are rd number of nodes at each level d. Thus, 
for each level in T(n,r) there are rd number of lists that have 
the same size rδn-d.  
 dn

r
dr −δ   eq. 3 

Using the fact that for each level in T(n,r) there are rd 
number of lists that have the same size rδn-d, eq 2 can be 
expressed as shown below. 
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r
n

r
n

r δδδ
 eq. 4 

Further, eq. 4 can be written as follows: 

 1

1

0
−

−

=
−∑ k

n

i

i Cr in
r δ

, for )1( −≥− kin
rδ  eq. 5 

Please note that whenever the |EL| < (k-1) no candidate 
subtrees would be generated, thus the constraint rδn-I ≥ (k-1) 
takes care of this condition. Hence, using the developed 
equations, calculating the complexity of total k-subtree 
candidates from a uniform tree T(n,r) for k=1,…,|T(n,r)| is 
given by the following equations: 

 ∑∑
==

+=
),(

2

),(

1
1

),(),(),(
rnT

k
k

rnT

k
k

rnTrnTrnT  eq. 6

Thus, given an arbitrary tree T and its closed form 
T’(n,r), the worst case complexity of enumerating 
embedded subtrees using TMG approach from T can be 
computed using eq. 6 where n is the height of T’ and r is 
the degree of T’. Due to space limitation we would reserve 
a more details discussion about complexity issue in our 
future work. 
 
5. Results and Discussions 
 

This section provides some comparisons between the 
MB3-Miner (MB3), X3-Miner (X3), VTreeMiner (VTM) 
and PatternMatcher (PM) algorithms. We have synthetic 
database of trees with varying: size (s), max. height (hmax), 
max. fan-out (fmax), and number of transactions (|Tr|) We 
use a short hand notation XXX–T, XXX-C, and XXX–F to 
denote total execution time (including the data 
preprocessing, variables declaration, etc); number of 
subtree candidates generated, and the number of frequent 
subtrees generated with XXX approach respectively. The 
minimum support σ is denoted as (sxx), where xx is the 
minimum frequency. Experiments were run on a machine 
using 3Ghz (Intel-CPU), 2Gb RAM, Mandrake 10.2 Linux 
where each algorithm was run exclusively. The source code 
for each algorithm is compiled using GNU g++ version 
3.4.3 with –g and –O3 parameters. We run TreeMiner with 
–u parameter (weighted support). 
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Figure 5. Scalability test: (a) time performance (b) number of 

subtrees generated 
 
Scalability (s:10,hmax:3,fmax:3). In this experiment, |Tr| 

were varied to 100K, 500K and 1000K, with σ of 25, 125 
and 250, respectively. From the figure 5a we can see that all 
three algorithms are well scalable, and that MB3 



outperforms others with respect to time. Figure 5b 
compares MB3 with VTM in the number of candidates 
generated versus the determined number of frequent 
candidates. Using the join approach, it can be seen that 
VTM generates more candidates (VTM-C). These 
candidates are in fact invalid candidates, in the sense that 
they do not conform to the tree model.  

Deep (s:28,hmax:17,fmax:3) vs wide (s:428,hmax:3, 
fmax:50) trees. This experiment was conducted to verify the 
worse performance of a DFS approach VTM on deep trees, 
and BSF approach (MB3 & PM) on wide trees. The deep 
tree data has |Tr|:10,000 with a total of 273,090 nodes. In 
figure 6a we can see the performance of VTM degrades 
significantly after support is lowered. VTM struggles to 
finish within a reasonable time and jumps significantly to 
7,177.85 seconds at σ ≤ 150. Overall, the PM algorithm 
performs better than the VTM while the MB3 algorithm 
enjoys the best performance and stability even at very low 
support. 
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Figure 6. (a) Deep tree (b) Wide tree 
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Figure 7. Mix dataset 

 
For the wide tree data, |Tr| = 6,000 with a total of 1,303,424 
nodes. As expected the DFS based approach like VTM 
outperforms MB3 on this dataset. However when the 
support threshold was decreased below 7, VTM failed to 
finish the task. As the DFS based approach and BFS based 
approach suffer from, deep and wide trees respectively, we 
tested the performance on a mixed dataset 
(s:428,hmax:17,fmax:50,|Tr|=76,000). MB3 performs the best 
in this case as is shown in figure 7.  
Uniform trees (s:20,hmax:3,fmax:4). As most real world tree 
structured datasets are usually not in the form of a complete 
tree we have created an artificial dataset that represents a 

uniform tree. In this dataset, |Tr|:20,000 with a total of 
246,110 nodes. 
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Figure 8. Uniform Trees: (a) time performance graph (b) 

number of frequent subtrees graph 
 

Figure 8a shows that MB3 has the best time 
performance. As illustrated in figure 8b, the number of 
frequent candidates generated by VTM (VTM-F) is 
substantially larger (~12x) than MB3-F, X3-F, PM-F as the 
support decreases. Performing full (k-1) pruning is a 
challenge in a DFS based approach [15]. A DFS based 
approach such as VTM has to rely on the opportunistic 
pruning. This results in many pseudo-frequent candidate 
subtrees that should be pruned. 
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Figure 9. 54% transactions of original CSLogs data 

 
CSLogs (s:214,hmax:28,fmax:21). This real-world data 

set was previously used by Zaki in [15] to test the VTM 
using transactional support definition. When we tried to use 
it for occurrence match support, all the tested algorithms 
had problems in returning frequent subtrees. We start to see 
interesting result when we cut |Tr| from 56,291 to 32,241 
randomly. With this partial data set there were problems 
with VTM returning the result with σ ≤ 500. From figure 9 
it can be seen that MB3 again has the best performance. 

Enumeration complexity. We created 4 datasets of 
uniform tree T(2,2), T(3,2), T(2,3), T(2,4) where all nodes 
have distinct labels. We specify σ:1. Figure 10 shows that 
the enumeration cost using the join approach (VTM) is 
higher than the TMG approach (MB3, X3M). For data with 
higher complexity such as T(3,3) and T(4,3) all algorithms 
used get aborted. We verify with eq 6 that the enumeration 
cost turns out to be very large 549,755,826,275 and 
1.33x1036 respectively. Furthermore, the cost of 
enumeration as shown in figure 10 can be verified using eq 
6. A program to calculate enumeration complexity of 

aborted 

VTM-F

PM-F, X3-F, MB3-F 

aborted

aborted 

aborted 



complete tree T(n,r) can be requested from the authors. 
Thus, the TMG approach is a predictable enumeration 
model where its enumeration cost can be measured and 
verified mathematically, allowing one to isolate difficult 
situations. 
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Figure 10. VTM, MB3, & X3 enumeration complexity 

 
Overall Discussion. MB3 demonstrates high 

performance and scalability. In general, the performance 
increase comes from the efficient use of the EL 
representation and the optimal TMG candidate generation 
approach that ensures only valid candidate subtrees are 
enumerated. In figure 5b it is shown that the number of 
invalid subtrees generated by the join approach can be 
enormous. This can degrade the performance. Furthermore, 
MB3 performs expensive full (k-1) pruning and produces 
no pseudo-frequent candidate subtrees. VTM utilizes less 
expensive opportunistic pruning which as a trade-off 
generates many pseudo-frequent candidate subtrees. This 
can be seen from figure 8b, at σ:20 VTM generates ~12x 
more than MB3,PM, & X3. One of the consequences is that 
this greatly degrades VTM performance. In figure 6,7, & 9 
VTM even failed to provide results within a reasonable 
time at a very low minimum support σ. In the context of 
association mining, regardless of which approach is used, 
for a given dataset with minimum support σ specified, the 
discovered frequent patterns should be identical and 
consistent. Considering that pseudo-frequent subtrees are 
infrequent subtrees, techniques that don’t perform full 
pruning would generate pseudo-frequent subtrees and 
therefore would have limited applicability to association 
rule mining.  
 
6. Conclusions 
 

In this study we have provided some detailed 
discussions about various theoretical and performance 
issues of the different approaches. We proposed a novel and 
unique embedding list representation and showed the 
strength of the TMG enumeration approach which was 
formulized mathematically. High performance and 
scalability of the MB3 algorithm was demonstrated in our 
experiments by contrasting it with the state of the art 
algorithm TreeMiner.  
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