
©2005 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

MB3-Miner: mining eMBedded subTREEs using Tree Model Guided candidate
generation

Henry Tan1, Tharam S. Dillon1, Fedja Hadzic1, Ling Feng2 and Elizabeth Chang3
1Faculty of Information Technology, University of Technology Sydney, Australia

e-mail: (henryws, tharam, fhadzic)@it.uts.edu.au
2University of Twente, Netherlands

e-mail: ling@cs.utwente.nl
3School of Information Systems, Curtin University of Technology Perth, Australia

e-mail: Elizabeth.Chang@cbs.curtin.edu.au

Abstract

Tree mining has many useful applications in areas such
as Bioinformatics, XML mining, Web mining, etc. In
general, most of the formally represented information in
these domains is a tree structured form. In this paper we
focus on mining frequent embedded subtrees from
databases of rooted labeled ordered subtrees. We propose
a novel and unique embedding list representation that is
suitable for describing embedded subtrees. This
representation is completely different from the string-like or
conventional adjacency list representation previously
utilized for trees. We present the mathematical model of a
breadth-first-search Tree Model Guided (TMG) candidate
generation approach previously introduced in [8]. The key
characteristic of the TMG approach is that it enumerates
fewer candidates by ensuring that only valid candidates
that conform to the structural aspects of the data are
generated as opposed to the join approach. Our
experiments with both synthetic and real-life datasets
provide comparisons against one of the state-of-the-art
algorithms, TreeMiner [15], and they demonstrate the
effectiveness and the efficiency of the technique.

Keywords: treeminer, tree mining, frequent tree mining,
embedded subtree,.

1. Introduction

Research in both theory and applications of data mining
is expanding driven by a need to consider more complex
structures, relationships and semantics expressed in the data
[3,4,7,8,12,13,15]. As the complexity of the structures to be
discovered increases, more informative patterns could be
extracted [13]. Tree as a special type of graph has attracted
considerable amount of interest [2,3,4,8,9,10,11,12,13,15].
Recently, XML has become very popular. There is a
growing number of XML-enabled multimedia data
encoding. VoiceXML [5] is developed to enable the rapid
deployment of voice applications. X3D [6] is used to enable
real-time communication of 3D data. Ling et. al. [4] has

initiated an XML-enabled association rule framework. It
extends the notion of associated items to XML fragments to
present associations among trees. Tan et. al. [8] suggested
that one of the important XML mining tasks is to mine
frequent tree patterns in a collection of XML documents.
Wang and Liu [11] developed an algorithm to mine
frequently occurring induced subtrees in XML documents.
In general, most of the formally represented information in
these domains is a tree structured form. Frequent structure
mining (FSM) refers to an important aspect of mining that
deals with pattern extraction in massive databases and
involves discovering frequent complex structures [15].

Frequent subtree mining as one instance of FSM has
many useful applications in areas such as Bioinformatics,
XML mining, Web mining, etc. One practical application of
frequent subtree mining in the above areas is to discover
associations between data entities in tree structured form.
This is known as association mining which consists of two
important problems, i.e. frequent itemset discovery and rule
construction. The former task is considered to be a more
difficult problem to solve than the latter. Our study is
mainly focused on developing an efficient approach for
frequent embedded subtrees discovery from a database of
rooted ordered labeled subtrees.

We propose a novel and unique embedding list
representation that is suitable for describing embedded
subtrees. This representation is adapted from the
conventional adjacency list format, by relaxing the
adjacency notion into an embedding notion in order to
capture the embedding relationships between nodes in trees.
The list not only contains adjacent nodes (children), but
also takes all its descendants into an embedded list in pre-
order ordering. For speed considerations, each embedded
list is represented in a string-like format so that each item in
the list can be accessed in O(1) time. This representation is
completely different from the string-like [2,3,8,10,12,15] or
adjacency list [7] representation utilized previously for
trees. There are different strategies for efficient candidate
generation such as join and enumeration by extension [3].
An idea of utilizing XML schema to guide the candidate
generation appeared in [12]. The approach generates

candidates that conform to the schema. Recently, Tree
Model Guided (TMG) candidate generation for mining
embedded rooted ordered subtrees is proposed in [8]. TMG
generalizes the concept of schema guided into tree model
guided, so that the enumeration model can be applied to any
data in tree structure form, especially for enumeration of
embedded subtrees. This non-redundant systematic
enumeration model ensures only valid candidates are
generated which conform to the actual tree structure of the
data. An example of a tree model would be the structural
aspects of a document in an XML schema, and a valid
candidate would conform to this. In general, the TMG
would be applicable to any area with structural models with
clearly defined semantics that have tree like structures.
Contrary to the extension method used for relational data,
TMG generates fewer candidates as opposed to the join
approach [1,3,8,15]. Even though fewer candidates are
generated, the TMG enumeration ensures the generation of
a complete candidate set. Thus, TMG approach is an
optimal enumeration model for mining embedded, rooted
and ordered subtrees. This is in contrast to an incomplete
method TreeFinder [9] that can miss many frequent
subtrees, especially when the support is lowered or when
different trees in the database have common node labels.
Independently, XSpanner [10] extends the Pattern-Growth
concept into tree structured data and its enumeration model
also generates only valid candidates.

The occurrences of candidate subtrees need to be
counted in order to determine if they are frequent whilst the
infrequent ones would be pruned. As the number of
candidates to be counted can be enormous, an efficient and
fast counting approach is extremely important. Efficiency
of candidate counting is highly determined by the data
structure used. More conventional approaches use a direct
checking approach. For each candidate generated its
frequency is increased by one if it exists in the transaction.
A Hash-tree [1,3] data structure can be used to accelerate
direct checking. Another approach projects each candidate
generated into a vertical representation [8,14,15], which
associates an occurrence list with each candidate subtree. If
transaction based support [3,15] is used, the vertical format
will consist of transaction IDs of the transactions that
support it. In contrast, if occurrence match [3,8] or
weighted support definition [15] is used each list will
correspond to each candidate occurrence in the whole
database of trees [8]. Occurrence match support takes
repetition of items in a transaction into account whilst
transaction based support only checks for existence of items
in a transaction. With the vertical representation approach
the frequency of a candidate subtree corresponds to the size
of the occurrence list. With the advantage of being able to
determine the support count of each candidate directly the
vertical format has been reported to be faster than the direct
checking approach [14,15]. In this paper, we improved
over the vertical list format as previously utilized in our
earlier approach [8] in two ways. First, the performance is

expedited by storing only the hyperlinks [10] of subtrees in
the tree database instead of creating a local copy for each
generated subtree. The format is different than the scope-
list [15] representation as our vertical list does not store any
scope information. Secondly, we transform and map the
tree structure data into integer indexes as opposed to
processing time consuming string labels directly.
Representing labels as integer opposed to string labels has
performance and space advantages. For instance a node
with label ‘123’ would require 3 bytes of characters if its
label is represented as a string, whereas only 1 byte is
required if it is represented as an integer. Therefore, when a
hashtable is used for candidate frequency counting, hashing
integer labels over string labels can have significant impact
on the overall candidates counting performance.

Our experiments with both synthetic and real-life data
sets provide comparisons against one of the state of the art
algorithms, TreeMiner [15], and they demonstrate the
effectiveness and efficiency of the technique. The paper is
organized as follows. In section 2 the problem
decomposition is given. Section 3 describes the details of
the algorithm. The mathematical model of TMG approach
is provided in section 4. We empirically evaluate the
performance of the algorithms and study their scale-up
properties in section 5, and the paper is concluded in
section 6.

2. Problem Definitions

General tree concepts and definitions. A tree is an
acyclic connected graph with one node defined as the root.
A tree can be denoted as T(v0,V,L,E), where (1) v0 ∈ V is
the root vertex; (2) V is the set of vertices or nodes; (3) L is
the set of labels of vertices, for any vertex v∈V, L(v) is the
label of v; and (4) E is the set of edges in the tree. A root is
the topmost node in the tree. In labeled tree, there is a
labeling function mapping vertices to a set of labels so that
a label can be shared among many vertices. Parent of node
v is defined as the predecessor of node v. There is only one
parent for each v in the tree. A node v can have one or more
children which are defined as its successors. A node
without any child is a leaf node; otherwise, it is an internal
node. If for each internal node, all the children are ordered,
then the tree is an ordered tree. In an ordered tree, the
rightmost child is referred to as the last child. The number
of children of a node is commonly termed as fan-out/degree
of the node. A path from vertex vi to vj, is defined as a finite
sequence of edges that connects vi to vj. The length of a
path p is the number of edges in p. If a path exists from
node p to node q, then p is an ancestor of q and q is a
descendant of p. Height of a node is length of path from
that node to its furthest leaf. The rightmost path of T is
defined as the path connecting the rightmost leaf with the
root node. Height of a tree is defined as height of its root
node. Depth/level of a node is the length of the path from

root to that node. The size of a tree is determined by the
number of nodes in the tree. Uniform tree T(n,r) is a tree
with height equal to n and all of its internal nodes have
degree r. Closed form of an arbitrary tree is defined as a
uniform tree with degree equal to the maximum degree of
internal nodes in the arbitrary tree. In this paper, all trees
we consider are ordered, labeled, and rooted trees. We are
concerned with mining embedded subtree. An embedded
subtree [3,8,10,15] is a generalization of induced subtree
[2,3], where parent-child as well as ancestor-descendant
relationships are preserved. By extracting embedded
subtrees, patterns hidden deeply within large tree structures
can be found. Mining embedded subtrees is more complex
than mining induced subtrees, as induced subtree
⊆ embedded subtree [3]. In figure 1, T2 and T4 are
examples of induced subtrees of T while T1-4 are examples
of embedded subtrees of T. In case of induced subtrees T2
and T4, only the parent-child relationship of each node is
preserved while for embedded subtrees T1-4 the ancestor-
descendant relationship is also preserved. For each node in
T (figure 1), its label is shown as a single-quoted symbol
inside the circle whereas its position is shown as indexes at
the left/right side of the circle.

Figure 1. Example of induced (T2, T4) and embedded (T1, T3)

subtrees

String encoding (φ). In a database of labeled subtrees,
many subtrees can have the same string encoding (φ)
[2,8,10,15]. We denote encoding of subtree T as φ(T). From
figure 1, φ(T1):‘2 6 / 7 /’; φ(T3):‘2 5 6 / 7 /’, etc. We could
omit backtrack symbols after the last node, i.e. φ(T1):‘2 6 /
7’. We refer to a group of subtrees with the same encoding
L as candidate subtree CL. A subtree with k number of
nodes is denoted as k-subtree. Throughout the paper, the
‘+’ operator is used to conceptualize an operation of
appending two or more tree encodings. However, this
operator should be contrasted with the conventional string
append operator, as in the encoding used the backtrack
symbols need to be computed accordingly.

Mining frequent subtrees. Given that Tdb is a tree
database consisting of N transactions of trees, KN. The task
of frequent subtree mining from Tdb with given minimum
support (σ), is to find all the candidate subtrees that occur at
least σ times in Tdb. Unless otherwise stated, occurrence
match/weighted support definition is used [3,8,15]. Based
on the downward-closure lemma [1], every sub-pattern of a
frequent pattern is also frequent. In relational data, given a
frequent itemset all its subsets are also frequent. A question

however arises if whether the same principle applies to tree
structure data when the occurrence match support definition
is used? To show that the same principle doesn’t apply, we
need to find a counter-example where the relation doesn’t
hold for tree structure data.

Lemma 1. Given a tree database Tdb. If there exists
candidate subtree CL and CL’, where CL⊆CL’, such that CL’
is frequent and CL is infrequent, we say that CL’ is a pseudo-
frequent candidate subtree.

Lemma 2. Given an infrequent candidate subtree CL and
a subtree T where φ(T):L. Vrm(T) is a set of nodes in
rightmost path of T. A pseudo-frequent candidate subtree
CL’ with support m where L’:L+l can be generated from T
by attaching m number of children with the same encoding l
to any node∈Vrm(T) and m ≥ minimum support σ such that
there are m number of subtrees T1,…,Tm with encoding L’
and T⊆ T1,…,Tm.

Lemma 3. Given an infrequent embedded candidate
subtree CL and a subtree T with root node vr where φ(T):L.
v1,…,vm is a set of nodes with the same encoding l where v1
is a parent of v2, vm-1 is a parent of vm and m ≥ minimum
support σ. A pseudo-frequent candidate subtree CL’ with
support m where L’:l+L can be obtained by connecting
v1,…,vm to T such that there is a path with length ≥ 1 from
vm to vr and m numbers of embedded subtrees T1,…,Tm with
encoding L’ can be generated where T⊆ T1,…,Tm.

Theorem 1. Antimonotone property of frequent patterns
suggests that the frequency of a superpattern is less than or
equal to the frequency of a subpattern. Lemma 2 and 3 say
that there can be pseudo-frequent candidate subtrees
generated from an infrequent subtree. Thus, antimonotone
property does not always hold in frequent subtrees mining
when occurrence match support is considered.

In the light of downward closure lemma, the pseudo-
frequent candidate subtrees are equivalent to infrequent
candidate subtrees. From figure 1, if σ is set to 2, subtrees
with encoding ‘2 5 6 / 7’ are examples of pseudo-frequent
candidate subtrees. Although support of ‘2 5 6 / 7’ is 2, it is
a pseudo-frequent candidate subtree since ‘5 6 / 7’ is
infrequent. Thus, ‘2 5 6 / 7’ should be pruned.

3. MB3-Miner Algorithm

3.1. Generating Candidate Subtrees

We are concerned with a systematic way of generating
candidate subtrees. An optimal enumeration method should
generate each subtree at most once and only generate valid
candidates according to the tree model. It should also be
complete, i.e. it generates all possible candidate subtrees
from a given database of trees. Our candidate generation
approach utilizes embedded list representation to guide the
enumeration of embedded subtrees.

Database scanning. The process of frequent subtree
mining is initiated by scanning a tree database, Tdb, and

‘2’ 0

‘2’ 1

‘5’ 2

‘6’ 3

‘7’4

‘5’ 5

‘6’ 6 ‘7’7

‘2’ 0

‘6’ 6 ‘7’7

T1:

‘5’ 5

‘6’ 6 ‘7’7

T2:

‘2’ 0

‘5’ 5

‘6’ 6 ‘7’7

‘2’0

‘5’5

‘6’6 ‘7’7

T3: T4:T:

generating a global sequence D in memory. We refer to this
sequence as a dictionary. The dictionary consists of each
node in Tdb following the pre-order traversal indexing. For
each node its position, label, right-most descendant position
(scope) [8,10,15], and parent position is stored. Thus each
dictionary item is defined as a tuple of position (pos), label
(l), scope (s), parent (p), {pos, l, s, p}. We refer to an item
in the dictionary at position i as dictionary[i]. Unless
otherwise mentioned, the notion of position of an item
refers to its index position in the dictionary. At the same
time, when generating the dictionary, we compute all the
frequent 1-subtrees, F1. After the in-memory database
(dictionary) is constructed our approach does not require
further database scanning.

Constructing Embedding List (EL). For each frequent
internal node in F1, a list is generated which stores its
descendant nodes’ hyperlinks [10] in pre-order traversal
ordering such that the embedding relationships between
nodes are preserved. The notion of hyperlinks of nodes
refers here to the positions of node in the dictionary. For a
given internal node at position i, such ordering reflects the
enumeration sequence of generating 2-subtree candidates
rooted at i (see figure 2). Thus, the EL construction is
equivalent to the process of enumerating all 2-subtree
candidates from a database of trees. Hereafter, we call this
list as embedded list (EL). As there can be more than one
ELs, we use notation i-EL to refer to an embedded list of
node at position i. Position of an item in EL is referred to as
slot as opposed to position when referring item in the
dictionary. Thus, i-EL[n] refers to the item in the list at slot
n. Whereas |i-EL| refers to the size of the embedded list of
node at position i. In figure 2, 0-EL for example refers to
the list: 0:[1,2,3,4,5,6,7], 0-EL[0]=1 and 0-EL[6]=7.
Figure 2 illustrates an example of the EL representation of
subtree T (figure 1) with encoding: ‘2 2 5 6 7 / / / 5 6 / 7’.

0: 1 2 3 4 5 6 7
1: 2 3 4 5 6 7
2: 3 4
3: 4
5: 6 7

Figure 2. The EL representation of tree T in figure 1

Occurrence Coordinate (OC). We have adopted an
extension by a single item at a time. When generating k-
subtree candidates from (k-1)-subtree, we consider only
frequent (k-1)-subtrees for extension. Each occurrence of k-
subtree in Tdb is encoded as occurrence coordinate
r:[e1,…ek-1]; r refers to k-subtree root position and e1,…,ek-1
refer to slots in r-EL. Each ei corresponds to node (i+1) in
k-subtree and e1 < ek-1. We refer to ek-1 as tail slot. From
figure 1 and 2, the OC of 3-subtree (T2) with encoding ‘5 6
7’ is encoded as 2:[0,1]; two 4-subtrees (T3 & T4) with
encoding ‘2 5 6 / 7’ are encoded as 0:[4,5,6] and 1:[3,4,5]
respectively, and so on. Each OC of a subtree describes an

instance of each occurrence of the subtree in Tdb. Hence,
each candidate instance should have an OC associated with
it.

The scope of node. EL representation preserves the
ordering as well as the embedding relationships of nodes in
a tree. i-EL defines the scope of node i such that the scope
of i spans from i-EL[0] to i-EL[j] where j = |i-EL|-1. We
refer to the first scope position as the leftmost scope and the
last scope position as the rightmost scope. Consequently,
given a 4-subtree T with occurrence coordinate 1:[3,4,5],
the leftmost scope of T is defined by 1-EL[3] and the
rightmost scope of T is defined by 1-EL[5]. An occurrence
coordinate of a valid candidate is defined by r:[m,…n]
where m < n. Thus, a valid candidate has an increasing
scope ordering such that r-EL[m] < r-EL[n].

TMG enumeration formulation. An enumeration
approach guided by tree model (TMG) was introduced in
our previous work [8]. TMG enumeration approach extends
a candidate (k-1)-subtree by one node at the time starting
from the last node of its right most path up to its root. We
have constructed EL in such a way that the pre-order
ordering of the embedding relationship of nodes is
preserved. As a corollary, given the tail position of a (k-1)-
subtree the enumeration sequence provided by EL starts
from the next slot after the tail to the end of the EL follows
the correct right most extension ordering. Thus the TMG
enumeration is formulated as follows. l(i) denotes a labeling
function of node at position i. Given frequent (k-1)-subtree
tk-1 with φ(tk-1):L, the root position r, tail position t, left-
most scope m, right-most scope n, and occurrence
coordinate r:[m,…,n], k-subtrees are generated by
extending tk-1 with j∈r-EL such that t<j≤|r-EL|-1. Thus its
occurrence coordinate becomes r:[m,…,n,j] and its
encoding becomes L’:L+l(i) where i=r-EL[j] and m<n<j.

Pruning. Apriori theory says that a pattern is frequent if
and only if all of its sub-patterns are frequent. Theorem 1
suggests that this property doesn’t always hold for tree
structure, and as such a more specialized approach is
needed when mining frequent subtrees. In mining frequent
subtrees, this problem may occur because the semantics of a
tree structure is determined by its values and hierarchical
structure. Hence, each individual node may be frequent, but
the structural relationships between the nodes are
infrequent. The approach taken was to prune those
candidates that have one or more infrequent subtrees. Thus,
(k-1) full pruning [15] must be performed when generating
k-subtrees. This implies that at most (k-1) numbers of (k-
1)-subtrees need to be generated from the currently
expanding k-subtrees. The expanding k-subtree is pruned
when at least one (k-1)-subtree is infrequent, otherwise it is
added to the frequent k-subtree set. This ensures that the
method generates no pseudo-frequent subtrees and is
correct as opposed to the opportunistic pruning utilized in
DFS method such as VTreeMiner [15]. As for each k-
subtree candidate there can be (k-1) checks involved for
determining whether all its (k-1)-subtrees are frequent, the

‘2’ 0

‘2’ 1

‘2’ 0

‘5’ 2

‘2’ 0

‘6’ 3

‘2’ 0

‘7’ 4

‘2’ 0

‘5’ 5

‘2’ 0

‘6’ 6

‘2’0

‘7’ 7

process can be quite time consuming and expensive.
Fortunately, some time is saved by checking whether a
candidate is already a part of the frequent k-subtree set.
This way if a (k-1)-subtree candidate is already in the
frequent k-subtree set, it is known that all its subtrees are
frequent, and hence the (k-1) full pruning can be
accelerated as only 1 comparison is required.

3.2. Candidate Subtree counting

In the candidate enumeration step, the process utilized
the notion of coordinates. To determine if a subtree is
frequent, we count the occurrences of that subtree and
check if it is greater or equal to the specified minimum
support σ. In a database of labeled trees many instances of
subtrees can occur with the same encoding. Hence, the
notion of encoding is utilized in the candidate counting
process. We say that a subtree has a frequency n if there are
n instances of subtrees with same encoding, i.e. we group
subtree occurrences by its encoding.

Vertical Occurrence List (VOL). Each occurrence of a
subtree is stored as an occurrence coordinate as previously
described. The vertical occurrence list of a subtree groups
the occurrence coordinates of that subtree by its encoding.
Hence, computing the frequency of a subtree can be easily
determined from the size of the VOL. We use the notation
VOL(L) to refer to the vertical occurrence list of a subtree
with encoding L. Consequently, the frequency of a subtree
with encoding L is denoted as |VOL(L)|. As an example, the
frequency of a subtree of tree T with encoding ‘2 5 6’,
|VOL(‘2 5 6’)| is equal to 4.

1 5 6
0 5 6
1 2 3
0 2 3
‘ 2 5 6 ’

Figure 3. VOL representation of subtree with encoding ‘2 5 6’ of
tree T in figure 1

The cost of the frequency counting process comes from

at least two main areas. First, it comes from the VOL
construction itself. With numerous numbers of occurrences
of subtrees the list can grow very large. Secondly, for each
candidate generated its encoding needs to be computed.
Constructing an encoding from a long tree pattern can be
very expensive. An efficient and fast encoding construction
can be employed by a step-wise encoding construction so
that at each step the computed value is remembered and
used in the next step. This way a constant processing cost
that is independent of the length of the encoding is
achieved. Thus, fast candidate counting can be achieved.
Overall, our algorithm can be described by the following
pseudo-code:

Inputs : Tdb (Tree database), σ (min. support)
Outputs : Frequent subtrees (Fk), D (dictionary)
{D, F1} = DatabaseScanning (Tdb)
{EL, F2} = ConstructEmbeddedList (F1, D)
k=3
while(|Fk| ≥ 0)
 Fk = GenerateCandidateSubtrees(Fk-1)
 k = k+1

GenerateCandidateSubtrees(Fk-1):
for each frequent k-subtree tk-1∈Fk-1
 Lk-1 = GetEncoding (tk-1)
 VOL-tk-1 = GetVOL(tk-1)
 for each occurrence coordinate ock-1 (r:[m,…n]) ∈VOL-tk-1

 for (j = n+1 to |r-EL|-1)
 {ock, Lk} = TMG-extend(ock-1, Lk-1, j)
 If(Contains(Lk, Fk))
 Insert(h(Lk), ock, Fk)
 else
 If(k-1Pruning (Lk) == false)
 Insert(h(Lk), ock, Fk)
return Fk

Figure 4. MB3-Miner algorithm pseudo-code

4. TMG Mathematical Model

In this section we will develop the mathematical model
of TMG approach for mining embedded subtree. Such a
model would allow us to calculate the worst case
complexity of enumerating all possible candidates from
data in a tree structure form. There is no simple way to
parameterize a tree structure unless it is specified as a
uniform tree. The size of a uniform tree follows a
geometrical series. Thus, a size of uniform tree T(n,r) can
be computed using geometrical series formula (1-rn+1)/(1-r).
Alternatively, when the root is omitted the following
formula is used, r(rn-1)/(r-1). When r = 1, the size of the
uniform tree is equal to its height n.

The complexity of enumeration using TMG approach is
bounded by the actual tree structure. By definition of closed
form of an arbitrary tree, the worst case scenario of
enumerating candidates from an arbitrary tree is bounded
by its closed form enumeration complexity. We have
developed a knowledge representation called embedded list
(EL) to represent any arbitrary tree and enumerate
candidates using TMG approach in a systematic way. The
TMG enumeration mathematical model is formulated as
follows. Given a uniform tree T with height n and degree r
the worst case complexity of candidate generation of T is
expressed mathematically in term of its height n and degree
r. We define that the cost of enumeration is expressed as
the number of candidate instances enumerated throughout
the candidate generation process as opposed to the number
of candidate subtrees generated (section 2).

Complexity of 1-subtree & 2-subtree enumeration

1
T &

2
T . The complexity of 1-subtree enumeration is

equal to the size of the tree |T|. Previously we have
developed a corollary that the construction of EL

size : 4

representation from a database of trees reflects the
enumeration sequence of generating 2-subtree candidates.
From figure 2, the visualization of EL representation of tree
T suggests that the number of generated candidate instances
is equal to the sum of the size of the lists in EL. Let s be a
set with n objects. Combinations of k objects from this set s
(sCk) are subsets of s having k elements each (where the
order of listing the elements does not distinguish two
subsets). sCk formula is given by s!/(s-k)!k!. Thus, for 2-
subtrees enumeration the following relation exists. Let r-EL
consist of l number of slots where each slot is denoted by j.
The number of all generated valid 2-subtree candidates
(r:[j]) rooted at r is equal to the number of combinations of
l nodes from r-EL having 1 element each. As the corollary,
complexity of 2-subtrees enumeration of tree T with size |T|
is equal to the sum of all generated 2-subtree candidates
from each node in T is given by eq 1 below.

 ∑
=

−

T

r
ELr C

1
1 eq. 1

Complexity of k-subtree enumeration
k

T . The

generalization of 2-subtrees enumeration complexity can be
formulated as follows. Let r-EL consist of l number of
items; each item is denoted by j. The number of all
generated valid k-subtree candidates (r:[e1,…,ek-1]) rooted
at r is equal to the number of combinations of l nodes from
i-EL having (k-1) element each. In section 3, valid
occurrence coordinate of valid candidates has the property
that e1<ek-1. Thus all valid combinations have the (k-1)
element in increasing order. As a corollary, the complexity
of k-subtrees enumeration of tree T with size |T| is equal to
the sum of all generated k-subtree candidates:

 1
1

|| −
=

−∑ k

T

r
ELr C eq. 2

In eq.1 and 2, the size of each EL (r-EL) is unknown. If
we consider T as a uniform tree T(n,r), a relationship
between height n and degree r of a uniform tree T with the
size of each EL for each node can be derived.

Determining rδn-d of uniform tree T(n, r). rδn-d is
denoted as the size of the embedded list, |EL| of a node in
T(n,r) with depth d. A close look at EL definition in section
2 and |T(n,r)|, suggests that rδn-d is described by a
geometrical series formula r(r(n-d)-1)/(r-1). In a uniform tree
T(n, r), there are rd number of nodes at each level d. Thus,
for each level in T(n,r) there are rd number of lists that have
the same size rδn-d.
 dn

r
dr −δ eq. 3

Using the fact that for each level in T(n,r) there are rd
number of lists that have the same size rδn-d, eq 2 can be
expressed as shown below.
 11

1
1

0
01 ... −−− +++ − k

n
kk CrCrCr

r
n

r
n

r δδδ
 eq. 4

Further, eq. 4 can be written as follows:

 1

1

0
−

−

=
−∑ k

n

i

i Cr in
r δ

, for)1(−≥− kin
rδ eq. 5

Please note that whenever the |EL| < (k-1) no candidate
subtrees would be generated, thus the constraint rδn-I ≥ (k-1)
takes care of this condition. Hence, using the developed
equations, calculating the complexity of total k-subtree
candidates from a uniform tree T(n,r) for k=1,…,|T(n,r)| is
given by the following equations:

 ∑∑
==

+=
),(

2

),(

1
1

),(),(),(
rnT

k
k

rnT

k
k

rnTrnTrnT eq. 6

Thus, given an arbitrary tree T and its closed form
T’(n,r), the worst case complexity of enumerating
embedded subtrees using TMG approach from T can be
computed using eq. 6 where n is the height of T’ and r is
the degree of T’. Due to space limitation we would reserve
a more details discussion about complexity issue in our
future work.

5. Results and Discussions

This section provides some comparisons between the
MB3-Miner (MB3), X3-Miner (X3), VTreeMiner (VTM)
and PatternMatcher (PM) algorithms. We have synthetic
database of trees with varying: size (s), max. height (hmax),
max. fan-out (fmax), and number of transactions (|Tr|) We
use a short hand notation XXX–T, XXX-C, and XXX–F to
denote total execution time (including the data
preprocessing, variables declaration, etc); number of
subtree candidates generated, and the number of frequent
subtrees generated with XXX approach respectively. The
minimum support σ is denoted as (sxx), where xx is the
minimum frequency. Experiments were run on a machine
using 3Ghz (Intel-CPU), 2Gb RAM, Mandrake 10.2 Linux
where each algorithm was run exclusively. The source code
for each algorithm is compiled using GNU g++ version
3.4.3 with –g and –O3 parameters. We run TreeMiner with
–u parameter (weighted support).

1.00

10.00

100.00

1,000.00

T100K-S25 T500K-
S125

T1000K-
S250

Minimum Support

Ti
m

e
(s

ec
on

ds
)

MB3-T VTM-T PM-T

MB3-C,
115,257

VTM-C,
818,559

MB3-F,
33,307

VTM-F,
38,865

10,000

100,000

1,000,000

T100K-S25
Minimum Support

N
um

be
r o

f C
an

di
da

te
 S

ub
tre

es

Figure 5. Scalability test: (a) time performance (b) number of

subtrees generated

Scalability (s:10,hmax:3,fmax:3). In this experiment, |Tr|

were varied to 100K, 500K and 1000K, with σ of 25, 125
and 250, respectively. From the figure 5a we can see that all
three algorithms are well scalable, and that MB3

outperforms others with respect to time. Figure 5b
compares MB3 with VTM in the number of candidates
generated versus the determined number of frequent
candidates. Using the join approach, it can be seen that
VTM generates more candidates (VTM-C). These
candidates are in fact invalid candidates, in the sense that
they do not conform to the tree model.

Deep (s:28,hmax:17,fmax:3) vs wide (s:428,hmax:3,
fmax:50) trees. This experiment was conducted to verify the
worse performance of a DFS approach VTM on deep trees,
and BSF approach (MB3 & PM) on wide trees. The deep
tree data has |Tr|:10,000 with a total of 273,090 nodes. In
figure 6a we can see the performance of VTM degrades
significantly after support is lowered. VTM struggles to
finish within a reasonable time and jumps significantly to
7,177.85 seconds at σ ≤ 150. Overall, the PM algorithm
performs better than the VTM while the MB3 algorithm
enjoys the best performance and stability even at very low
support.

217.071

7177.85

1574.52

1

10

100

1000

10000

s300 s200 s150 s80

Minimum Support

Ti
m

e
(s

ec
on

ds
)

MB3-T VTM-T PM-T

0
10
20
30
40
50
60
70
80
90

s10 s8 s7 s6 s5
Minimum Support

Ti
m

e
(s

ec
on

ds
)

MB3-T VTM-T PM-T

Figure 6. (a) Deep tree (b) Wide tree

265.041

7304.18

885.033

1

10

100

1000

10000

s300 s150 s100
Minimum Support

Ti
m

e
(s

ec
on

ds
)

MB3-T VTM-T PM-T

Figure 7. Mix dataset

For the wide tree data, |Tr| = 6,000 with a total of 1,303,424
nodes. As expected the DFS based approach like VTM
outperforms MB3 on this dataset. However when the
support threshold was decreased below 7, VTM failed to
finish the task. As the DFS based approach and BFS based
approach suffer from, deep and wide trees respectively, we
tested the performance on a mixed dataset
(s:428,hmax:17,fmax:50,|Tr|=76,000). MB3 performs the best
in this case as is shown in figure 7.
Uniform trees (s:20,hmax:3,fmax:4). As most real world tree
structured datasets are usually not in the form of a complete
tree we have created an artificial dataset that represents a

uniform tree. In this dataset, |Tr|:20,000 with a total of
246,110 nodes.

1

10

100

1000

s50 s30 s20 s12
Minimum Support

Ti
m

e
(s

ec
on

ds
)

MB3-T VTM-T PM-T

4,716,636

388,860

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

s50 s30 s20 s12
Minimum Support

Ti
m

e
(s

ec
on

ds
)

Figure 8. Uniform Trees: (a) time performance graph (b)

number of frequent subtrees graph

Figure 8a shows that MB3 has the best time
performance. As illustrated in figure 8b, the number of
frequent candidates generated by VTM (VTM-F) is
substantially larger (~12x) than MB3-F, X3-F, PM-F as the
support decreases. Performing full (k-1) pruning is a
challenge in a DFS based approach [15]. A DFS based
approach such as VTM has to rely on the opportunistic
pruning. This results in many pseudo-frequent candidate
subtrees that should be pruned.

0.1

1

10

100

1000

10000

100000

S3000 S1500 S1000 S500 S200

Minimum Support

Ti
m

e
(s

ec
on

ds
)

MB3-T VTM-T HTM-T

Figure 9. 54% transactions of original CSLogs data

CSLogs (s:214,hmax:28,fmax:21). This real-world data

set was previously used by Zaki in [15] to test the VTM
using transactional support definition. When we tried to use
it for occurrence match support, all the tested algorithms
had problems in returning frequent subtrees. We start to see
interesting result when we cut |Tr| from 56,291 to 32,241
randomly. With this partial data set there were problems
with VTM returning the result with σ ≤ 500. From figure 9
it can be seen that MB3 again has the best performance.

Enumeration complexity. We created 4 datasets of
uniform tree T(2,2), T(3,2), T(2,3), T(2,4) where all nodes
have distinct labels. We specify σ:1. Figure 10 shows that
the enumeration cost using the join approach (VTM) is
higher than the TMG approach (MB3, X3M). For data with
higher complexity such as T(3,3) and T(4,3) all algorithms
used get aborted. We verify with eq 6 that the enumeration
cost turns out to be very large 549,755,826,275 and
1.33x1036 respectively. Furthermore, the cost of
enumeration as shown in figure 10 can be verified using eq
6. A program to calculate enumeration complexity of

aborted

VTM-F

PM-F, X3-F, MB3-F

aborted

aborted

aborted

complete tree T(n,r) can be requested from the authors.
Thus, the TMG approach is a predictable enumeration
model where its enumeration cost can be measured and
verified mathematically, allowing one to isolate difficult
situations.

1,048,656

16,536
4,129

76

403

23,282

90,320

6,046,653

1

10

100

1000

10000

100000

1000000

10000000

T(2,2) T(2,3) T(3,2) T(2,4)

E
nu

m
er

at
io

n
C

os
t

MB3 X3 VTM

Figure 10. VTM, MB3, & X3 enumeration complexity

Overall Discussion. MB3 demonstrates high

performance and scalability. In general, the performance
increase comes from the efficient use of the EL
representation and the optimal TMG candidate generation
approach that ensures only valid candidate subtrees are
enumerated. In figure 5b it is shown that the number of
invalid subtrees generated by the join approach can be
enormous. This can degrade the performance. Furthermore,
MB3 performs expensive full (k-1) pruning and produces
no pseudo-frequent candidate subtrees. VTM utilizes less
expensive opportunistic pruning which as a trade-off
generates many pseudo-frequent candidate subtrees. This
can be seen from figure 8b, at σ:20 VTM generates ~12x
more than MB3,PM, & X3. One of the consequences is that
this greatly degrades VTM performance. In figure 6,7, & 9
VTM even failed to provide results within a reasonable
time at a very low minimum support σ. In the context of
association mining, regardless of which approach is used,
for a given dataset with minimum support σ specified, the
discovered frequent patterns should be identical and
consistent. Considering that pseudo-frequent subtrees are
infrequent subtrees, techniques that don’t perform full
pruning would generate pseudo-frequent subtrees and
therefore would have limited applicability to association
rule mining.

6. Conclusions

In this study we have provided some detailed
discussions about various theoretical and performance
issues of the different approaches. We proposed a novel and
unique embedding list representation and showed the
strength of the TMG enumeration approach which was
formulized mathematically. High performance and
scalability of the MB3 algorithm was demonstrated in our
experiments by contrasting it with the state of the art
algorithm TreeMiner.

Acknowledgement

A special thanks to Prof. M. J. Zaki [15] for providing us
the TreeMiner source code and discussing the results
obtained from it with us.

References

[1]. R. Agrawal, R. Srikant, “Fast Algo. for Mining Assoiciation
Rules,” In Proc. the 20th VLDB, 487–499, 1994.
[2]. K. Abe, S. Kawasoe, T. Asai, H. Arimura, and S. Arikawa,
“Optimized Substructure Discovery for Semistructured Data,” In
Proc. PKDD’02, 1–14, LNAI 2431, 2002.
[3]. Y. Chi, S. Nijssen, R.R. Muntz, J. N. Kok, “Frequent
Subtree Mining An Overview,” Fundamenta Informaticae, Special
Issue on Graph and Tree Mining, 2005.
[4]. L. Feng, T. S. Dillon, H. Weigand, E. Chang, “An XML-
Enabled Association Rule Framework,” In Proc. of DEXA’03, pp
88-97, 2003.
[5]. J. Ferrans, B. Lucas, K. Rehor, B. Porter, A. Hunt, S.
McGlashan, et. al., “Voice Extensible Markup Language
(VoiceXML) Version 2.0,” W3C Technical Report, March, 2004
[6]. V. Geroimenko, C. Chen, Visualizing Information Using
SVG and X3D, Springer, 2004
[7]. M. Kuramochi, and G. Karypis, “An Efficient Algorithm for
Discovering Freq. Subgraphs,” IEEE Transactions Knowledge and
Data Engineering, vol. 16, no. 9, pp. 1038-1051, 2004.
[8]. H. Tan, T.S. Dillon, L. Feng, E. Chang, F. Hadzic, “X3-
Miner: Mining Patterns from XML Database,” In Proc. Data
Mining '05. Skiathos, Greece, 2005.
[9]. Termier, M-C. Rousset, and M. Sebag, “Treefinder: A First
Step Towards XML Data Mining,” In Proc. ICDM’02, 2002.
[10]. Wang, M. Hong, J. Pei, H. Zhou, W. Wang and B. Shi,
“Efficient Pattern-Growth Methods for Frequent Tree Pattern
Mining,” in Proc. of PAKDD’04, 2004.
[11]. K. Wang and H. Liu, “Discovering Typical Structures of
Documents: A Road Map Approach,” In Proc. ACM SIGIR Conf.
Information Retrieval, 1998.
[12]. L. H. Yang, M. L. Lee, & W. Hsu, “Efficient Mining of
XML Query Patterns for Caching,” In Proc. the 29th VLDB Conf.,
2003.
[13]. Zhang, J., Ling, T. W., Bruckner, R. M., Tjoa, A. M., Liu,
H., “On Efficient and Effective Association Rule Mining from
XML Data,” In Proc. of DEXA’04, pp. 497 - 507, 2004.
[14]. M.J. Zaki, “Fast Vertical Mining Using Diffsets,” In. Proc.
of SIGKDD’03, 2003.
[15]. M.J. Zaki, “Efficiently Mining Frequent Trees in a Forest:
Algorithms and Applications,” in IEEE Transaction on
Knowledge and Data Engineering, vol. 17, no. 8, pp. 1021-1035,
2005.

