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Abstract: Dairy proteins (whey protein isolate, hydrolysed whey protein, calcium-

caseinate, and hydrolysed caseinate) and plant proteins (soy protein isolate, pea 

protein isolate, and rice protein concentrate) were used to spray dry sucrose which is 

difficult to spray dry due to its stickiness property. Generally, dairy proteins were 

more effective than plant proteins as they resulted in higher powder recoveries. Rice 

protein concentrate was demonstrated to be the least effective candidate for spray 

drying of sucrose. The higher powder recoveries of some sucrose/protein systems 

were attributed to the higher surface active properties of the proteins, because they 

preferentially migrate to the surface of the droplets/particle and cover the powder 

particle surface with a thin-film of non-sticky protein.  

Key words: proteins; sucrose; surface activity; spray drying; stickiness.
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INTRODUCTION 

  Spray drying is a mature and practical commercial process for converting a liquid 

solution to a solid powder form, with the advantages of economical, flexible and 

continuous operation producing dried particles of good flowability [1]. This 

technology has been widely used for decades for encapsulation and drying of food 

ingredients such as milk, fruit juice, flavors, lipids, and carotenoids [2]. Because the 

heat stress to the material is relatively low, this technique can be applied to heat-

sensitive foods and pharmaceuticals [3]. However, one limitation of spray drying for 

encapsulation is the limited availability of wall materials, because they must be 

soluble in water at an acceptable level [1]. The most commonly used wall materials 

include carbohydrates (e.g. starches, maltodextrins), gums (e.g. gum Arabic, mesquite 

gum), proteins (e.g. milk proteins, gelatine) and mixtures thereof Gharsallaoui et al. 

[4]. The use of proteins as wall materials in spray drying is considered to be very 

tedious and expensive because of their low water solubilities [1, 5]. For example, the 

solubility of a rice protein is less than 60% even in a 1 g/100g protein concentration 

solution in the pH range of 2-10 [6].  This limitation can be minimized if only small 

amount of proteins (for example, <1% wet basis) can effectively encapsulate target 

materials.  

  Another limitation of spray drying is that it is unsuitable for producing powders of 

sugar rich foods because they are sticky [4, 7]. The stickiness problem of sugars is 

mainly caused by their low glass transition temperatures (Tg) [8]. For example, the Tg 

of lactose, maltose, sucrose, glucose and fructose is 101 °C, 87 °C, 62 °C, 31 °C and 

16 °C respectively, and the relative degree of stickiness increase accordingly [9, 10]. In 

practice, quantifiable sticky behaviour of a compound is observed at temperatures 

about 20 °C above its Tg. The spray drying outlet temperature for many food products 
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is generally between 60-100 °C [7], therefore, stickiness readily occurs if the material 

contains a high proportion of low molecular sugars. The hygroscopic nature of low 

molecular weight sugars also contributes to this problem [11]. The stickiness of the 

particles can cause inter-particle cohesion or material adhesion on the dryer surfaces, 

and result in particles sticking to the wall of the dryer. In addition, the product 

particles may clump together, adversely affecting the free-flowing property of the 

powder, thus decreasing the powder recovery and product yield [10].  

Some available approaches to reducing stickiness have limitations in practice, such 

as high cost and low product quality [9]. For example, large amounts (often > 35%) of 

drying aids such as maltodextrins are required to convert sugar rich fruit juices into a 

powder form [12]. Addition of such large amounts of drying aids increases the cost and 

may alter the original flavour and taste of the product, risking consumer disapproval. 

An alternative and novel way to minimize the problem of stickiness is to modify the 

surface adhesive properties of the atomized droplets/particles with small amounts of 

proteins [13, 14]. The preferential migration of protein molecules at the water/air 

interface combined with their film forming property upon drying has been found 

useful for overcoming the surface stickiness of sugar/protein solutions [13]. Recently, 

the effects of using protein and maltodextrin in spray drying of sugar rich bayberry 

juice were compared, and the results indicated that a small amount of protein (1%) 

was sufficient (powder recovery > 50%) to spray dry the bayberry juice, while a large 

amount of maltodextrin (>30%) was needed for the same result [15]. It is suggested 

that the mechanism of improved spray drying of bayberry juice with added protein is 

mainly because the protein migrates preferentially to the surface of droplets/particles, 

reducing adhesive behaviour between particles and dryer wall [15]. 

To our knowledge, to date, only two types of proteins (whey protein isolate and 
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sodium caseinate) have been tested in spray drying of sucrose [13] and sugar rich 

bayberry juice [15]. Both showed amazing positive effects. It is reasonable to assume 

that other types of proteins may also be effective in spray drying of sugar rich foods, 

provided that they have good functional properties (e.g. surface activities). The 

objective of the project was to spray dry sucrose using 7 types of commercial 

available proteins, including dairy proteins and plant proteins, and evaluate their 

effectiveness in reducing stickiness. The surface activity, product recovery and 

powder characteristics were used to compare and evaluate the relationship between 

spray drying efficiency and the functionalities of these proteins. 

MATERIALS AND METHODS 

Materials 

Seven types of protein (whey protein isolate, WPI; hydrolysed whey protein, HWP; 

calcium-caseinate, CCP; hydrolysed caseinate, HCP; soy protein isolate, SPI; pea 

protein isolate, PPI; rice protein concentrate, RPC) were purchased from Muscle 

Brand Pty Ltd (Petersham, NSW, Australia) and used as received. The measured 

moisture contents of the proteins ranged from 3.30 - 5.72%, and percent protein 

ranged from 84.55 - 90.05. The solutions were prepared with ultra-pure water 

produced by a Milli–Q Plus system (Millipore Corporate, MA, USA).  

Spray Drying of Sucrose  

Sucrose/protein solutions were prepared with the ratio of 99.75:0.25, 99.5:0.5, 

99.0:1.0, 97.5:2.5, 95.0:5.0 and 90.0:10.0 respectively on a dry solid mass basis. The 

inherent protein and moisture contents (as indicated above) in protein samples were 

compensated for. Sucrose solutions were prepared first, and then proteins were 

dissolved by addition of pre-weighed samples in the sucrose solutions with the aid of 

magnetic stirring at 200rpm for about 30 minutes, until completely dissolved. If 
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necessary, solution temperature was increased (60~80 °C) to facilitate dissolution. 

The total solids content of all prepared solutions was fixed at 10g/100g and 100 g of 

feed solution was spray dried for each run. The nominal concentrations of the protein 

in the feed solutions varied between 0.025 –1.0% (w/w).  

The solutions were fed into a Büchi B-290 mini spray dryer (Büchi Labortechnik 

AG, Switzerland) with the aspirator rate of 100% (35 m3/h), atomisation air rotameter 

of 30 mm (439L/h) in co-current flow, and drying air inlet temperature of 150 °C. The 

pump rate was adjusted to maintain an outlet temperature of 80 °C. After the 

completion of the experiment, the samples were collected from the product collection 

vessel. The powders were immediately sealed to prevent subsequent moisture uptake 

and stored in desiccators in the presence of excess silica gel at room temperature. 

Each treatment run was conducted in triplicate. 

Surface Tension of the Feed Solutions 

The surface tension value can be used as an indicator of how strongly the surface 

molecules of a liquid/solution are attracted by the adjacent molecules. Generally, a 

lower surface tension value of the solution indicates a weaker attraction of surface 

molecules by the adjacent molecules, which is caused by a higher tendency of the 

solute migrating to the air/water interface [13]. A Nima ST9000 surface tension meter 

(Nima Technology Ltd, Coventry, UK) was used to determine the surface tension 

values of the prepared solutions before spray drying. The tension meter was calibrated 

with a standard weight of 100 mg and the surface tension of water was determined as 

73.27 ± 1.42 mN/m. Sample solutions were filled in a test vessel and a platinum 

Wilhelmy plate was immersed into and raised out of the solutions slowly. The surface 

tension value was recorded on a computer running the measuring software. The 

analysis was repeated 5 times for each sample. 
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Product Recovery 

The product recovery was defined as the ratio of the mass of powders obtained at 

the end of the spray drying period, to the mass of initial substances, including the 

sucrose and proteins, based on dry mass content. 

100
(g) proteins(g) Sucrose

(g)powder  driedSpray (%)recovery  Product ×
+

=  

Moisture, Water activity (aw) and Protein Determination 

The moisture content of the powder was determined by vacuum drying 

(Thermoline Scientific, Australia) at 70 °C and 500 mbar for 24 h [16].  

Water activity of the powders was determined using an AquaLab 3TE Series water 

activity meter (Decagon Devices, Pullman, WA, USA). The temperature was 

maintained at 24.5 ± 0.1 °C during the tests. All determinations were done in triplicate 

immediately after spray drying.  

Precise protein content of the protein samples was determined by the AOAC [16] 

method using a LECO TruSpec CHN analyser (St. Joseph, MI, USA) with triplicate 

analysis.  

Electron Spectroscopy for Chemical Analysis (ESCA)  

ESCA measurements were carried out in order to determine the surface 

composition of each spray dried sucrose/protein powder sample. This technique 

measure the relative atomic concentration of carbon, nitrogen, and oxygen in the 

surface layer of the sample (depth of less than 100 Å). The analysis was performed on 

a Kratos AXIS Ultra photoelectron spectrometer (Kratos Analytical Ltd, Manchester, 

UK) with a 150W monochromatic A1 X-ray source, using a procedure reported 

elsewhere [13, 17]. Briefly, the samples were degassed for 24 h prior to ESCA 

measurements. Each analysis started with a one sweep survey scan from 0 to 1200 eV 

with a residence time of 100 ms, pass energy of 160 eV at steps of 1 eV. Data were 
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acquired through the spectrometer incorporating a 165 mm hemispherical electron 

energy analyzer. The incident radiation was Monochromatic A1 X-rays (1486.6 eV) 

at 225W (15 kV, 15 mA). The base pressure in the analyser chamber was maintained 

at 10-8 Torr during sample analyses [13]. Because there is no nitrogen in a sucrose 

molecule, the percentage of protein coverage on the surface layer of the spray dried 

sucrose/protein particles can be calculated by a matrix inversion method based on the 

ESCA data [13, 17-18].  

Glass Transition Temperature (Tg) 

The Tg of the powders was determined using a Mettler–Toledo differential scanning 

calorimeter (mode DSC1). The transfer of samples from the desiccators to the DSC 

pan was done in a sealed ‘Dry Box’ containing excess silica gel, to avoid unwanted 

moisture absorption by the sample. The purge gas was dry nitrogen. Indium (Mettler–

Toledo standard) was used for temperature and heat flow calibrations.  Samples of 

about 10 mg were scanned in hermetically sealed 40 μl DSC aluminium pans. An 

empty aluminium pan was used as a reference. The heating ramp rate was set to 

10 °C/min and heat scanned from an equilibrium starting temperature of 0°C to 80 °C 

for spray dried sucrose/protein powders and from 0°C to 200°C for pure sucrose and 

proteins. The midpoint values for glass transition temperature of the samples were 

calculated using DSC STARe evaluation software. All analyses were done in 

triplicate. 

Statistical Analysis 

One-way analysis of variance (ANOVA) and Tukey’s test (SPSS 20.0 statistics 

software, IBM, Somers, NY, USA) was used for the determination of differences 

between different protein concentrations within the same protein type.  The results 

were expressed as mean ± standard error (SE) and considered significantly different 
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when P < 0.05. 

RESULTS AND DISCUSSION 

Surface Tension 

It has been suggested that a lower surface tension value of a solution indicates a 

higher surface activity of the solute in water [13]. The surface tension values of pure 

water and sucrose solution were 73.27± 1.42 mN/m and 72.77± 1.35 mN/m 

respectively, which suggested that sucrose is not a surface active component and can 

not affect the surface tension of water in a statistical manner (Figure 1), thus the effect 

of sucrose on surface tension is ignored in the following discussion. However, an 

addition of WPI at a concentration of 0.025% can significantly lower the values both 

in water and sucrose solutions (Figure 1). The surface tension values decreased 

accordingly with the increase of protein concentrations, but not as significantly when 

the protein concentration was increased above 0.5% (Figure 1). While the surface 

tension values decreased sharply at low protein concentrations, they reached a 

limiting value at higher concentrations. This suggested that there might be a saturated 

state (about 0.5% protein in the present study) of the protein molecules on the surface 

of solutions, so that further increasing the protein concentration had no effect on the 

surface tension [19]. The ability of added proteins to lower the surface tension of 

solutions is attributed to their amphophilic properties, which cause them to diffuse to 

and adsorb onto the newly created water/air or water/oil interfaces as rapidly as they 

formed [20]. The adsorbed protein molecules partially unfold to expose a high 

proportion of their hydrophobic amino acid residues to the non-aqueous medium. The 

tendency of the protein molecules to partition between the aqueous and non-aqueous 

phases permits them to remain adsorbed on the interface, thus lowering interfacial 

tension [20]. In the present study, the property of proteins to preferentially migrate to 
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the air/water interface was referred to as surface activity, as has been proposed by 

previous researchers [13].  

Although all the proteins tested can lower the surface tension values of sucrose 

solutions, and increasing the protein concentrations further decreased the surface 

tension values, indicating that they are surface active compounds, it is obvious that 

different proteins had different effects on surface tension (Figure 2). For example, at 

the same concentration level, WPI and RPC solutions had relatively higher surface 

tension values (implying lower surface activity) while CCP showed the lowest 

(implying higher surface activity). Another characteristic is that, except for WPI, the 

surface tension values of the plant protein solutions (SPI, PPI, RPC) were relatively 

higher than those of the dairy protein solutions (HWP, CCP, HCP), indicating that 

dairy proteins possessed higher surface activities. Among the dairy proteins, the 

surface tension value of the WPI solution was higher than those of caseinates (CCP 

and HCP), suggesting lower surface activity. Furthermore, the hydrolysed whey 

protein (HWP) solution showed a higher surface activity than the un-hydrolysed 

proteins (Figure 2), which might be caused by more lipophilic amino acids being 

released in the hydrolysed solutions [21]. However, the surface tension of hydrolysed 

caseinate (HCP) solutions was still higher than the un-hydrolysed counterpart (CCP), 

indicating that hydrolyzation has not increased the surface tension of CCP. This 

phenomenon may imply that increasing the degree of hydrolysis (DH) for this 

commercial HCP did not affect its surface activity, as only mild hydrolysis of whey 

protein (DH between 10 and 27%) can improve surface activity (emulsifying ability) 

[21]. Martínez, Sánche, Rodríguez Patino, & Pilosof also observed that low levels of 

hydrolysis (2-5%) can improve the surface activity of soy protein whereas a higher 

degree of hydrolysis has a negative effect [22]. In addition, the difference in surface 
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activity between whey protein and caseinate may result from their different protein 

constituency, as whey protein is mainly composed of β-lactoglobulin, α-lactalbumin, 

bovine serum albumin, and immunoglobulins, while caseinate is composed of κ-

casein, α -casein, and β-casein [23]. The caseinates are prone to be adsorbed at 

water/air interfaces, whereas whey proteins are relatively less surface-active as a 

consequence of their close-packed globular structure [24].  

With regard to the plant proteins, the principal proteins in soybeans are soluble 

glycinin and conglycinins [25], and pea proteins are composed of both soluble (50-60% 

globulin and 15-25% albumin) and insoluble proteins (15-30%) [26], whereas rice 

proteins contain mostly glutelin fraction (about 80%), which is a high molecular 

weight protein composed of subunits bound by disulfide linkages with limited 

solubility in water [27]. It has been suggested that the surface and emulsification 

properties of proteins are strongly correlated with their structure, and proteins with 

higher surface hydrophobicity always have higher emulsifying activity [28]. Although 

there is limited data about the surface activity (surface tension, surface hydrophobicity) 

of plant proteins, soy protein generally exhibits high emulsifying properties compared 

with other plant proteins [29], implying that it may have a high surface activity. This 

was confirmed in the present study by its lower surface tension values. It has also 

been reported that protein properties including interfacial and foaming properties are 

considerably influenced by the extraction source and method [30]. As information 

regarding the extraction methods for these commercial proteins is unavailable, we can 

only presume that the different surface activities of these proteins are related to their 

source and chemical nature. 

Powder Recovery 

Before spray drying of sucrose/protein solutions, individual sucrose and protein 
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solutions with the same feed concentration (10g/100g) were spray dried respectively 

as references. However, because the particles were deposited on the dryer chamber 

wall and formed a glass like film, no powder was recovered from the collection vessel 

after spray drying of sucrose alone. This result agrees with the previous observations 

that no powder was recovered from spray drying of sucrose in similar drying 

conditions [13]. For the protein only samples, the highest quantity of powder (around 

85%) was recovered from hydrolysed proteins (HWP and HCP) Medium powder 

recovery (around 65%) was shown with WPI, CCP and SPI and with PPI (about 

53%). RPC had the lowest recovery of about 44% (Table 1). The low recovery of 

RPC was because a large proportion of the aggregated dried particles had fallen to the 

bottom of the drying chamber and could not be transported to the collection vessel by 

the vacuum cyclone. The loss of powder during spray drying should have been a 

combination of some particles of the powder being deposited on the dryer chamber 

wall, some fine particles being pumped out through the dryer filter, and the losses of 

uncollected residues associated with manual operations [31]. 

Although no powder was recovered by spray drying of the sucrose solution, the 

powder recovery increased to about 50% when 0.25% of the sucrose was replaced by 

protein, with the exception of RPC (Table1). This indicated that the addition of small 

amounts of protein can enable successful spray drying of sucrose, with a greater than 

50% powder recovery in the cyclone, which has been considered to be a criterion for 

successful drying of sticky material in laboratory driers [7]. Furthermore, increasing 

protein concentration increased powder recovery, although the response varied among 

proteins (Table1). Beyond 2.5% protein, further increasing the protein concentration 

did not improve the powder recovery significantly for most of the proteins. The 

exceptions were SPI, which showed improved powder recovery at 5% of added 
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protein, and CCP (10%). The powder recovery of sucrose/WPI in the present study 

was lower than that reported in the literature (around 80%) [13], probably because 

those authors collected particles both in the cyclone and by sweeping the dryer wall. 

In this experiment, only the particles in the collection vessel were recovered, and the 

particles deposited on the dyer wall were considered ‘sticky’ particles. Another reason 

might be that their protein sources were different to the present study and different 

proteins have different surface activities, which may result in different powder 

recovery [9, 32]. Furthermore, a laboratory Büchi B-290 mini spray dryer was used in 

the present study while Dr. Adhikari et al. [13] used a pilot scale spray dryer, which 

may also have contributed to the different powder recovery. 

Another interesting finding was that the plant proteins (SPI, PPI, and RPC) 

generally resulted in lower powder recoveries than the dairy proteins (WPI, HWP, 

CCP, and HCP). Of the plant proteins, soy protein (SPI) had a relatively high powder 

recovery, comparable to that of HCP. For pea protein (PPI) powder recovery was 

around 50% independent of protein concentration. Rice protein (RPC) showed the 

lowest recovery (less than 40%), even at the highest additive level of 10% (Table1).  

The results suggested that different proteins have different functional properties and 

these affect the spray drying powder recoveries. The lower spray drying sucrose 

powder recoveries shown by plant proteins might be a consequence of their different 

protein constituencies and therefore higher surface tension values (lower surface 

activities) as described above (Surface Tension). A correlation analysis was 

performed to evaluate the relationship between surface tension and powder recovery, 

which showed that  except for PPI, the correlation coefficients (R) for all other 

proteins are above 0.8 (Table 2), indicating a strong relationship and implying that a 

protein with higher surface activity can provide a higher powder recovery. However, 



 

14 
 

the WPI dairy protein also had a relatively higher surface tension value compared 

with other proteins (Figure 2), but the powder recovery with this protein was 

relatively high (Table 1), suggesting the index of surface tension value may only be 

partly associated with the surface activity of proteins. 

It is proposed that the proteins with high surface activity preferentially migrate to 

the water/air interface of atomised droplets during spray drying, and quickly form a 

film around the particle surface which avoids the stickiness/adhesive interaction 

between particles and dryer wall, consequently the dried particles are carried away by 

the drying air and collected as powder product [33]. A higher surface activity implies 

that more protein molecules might adsorb on the surface of the particles, favouring 

higher recoveries, because more particles can be collected. However, there may be a 

dynamically saturated state for protein molecules on the particle surface [19], whereby 

increasing the protein concentration above a certain level cannot further improve the 

powder recovery. In the present study, the sucrose powder recovery didn’t increase 

significantly after the protein replacement exceeded 2.5% (Table 1). This trend 

correlated very well with the surface tension results as discussed above, although the 

critical concentration (0.5%) to influence the surface tension was lower. 

Surface Protein Coverage of the Spray Dried Powders  

The ESCA measurement was used to determine the relative atomic concentrations 

of carbon, nitrogen and oxygen on the surface layer of the sucrose/protein powders, 

and the percentage of surface protein coverage was calculated by a matrix inversion 

method based on the obtained data as described elsewhere [13, 17-18]. It can be seen 

from Table 3 that most of the spray dried powders have a surface protein coverage of 

higher than 45%, even when as low as  0.25% of sucrose was replaced by proteins 

(equivalent to 0.025% protein in the feed solution). The HCP showed the highest 
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surface protein coverage of 57% in the sucrose/protein systems, followed by WPI, 

SPI, CCP and HWP, all with a surface protein content of around 50%. A lower 

surface protein content of 45% was shown for PPI whereas the RPC had the lowest of 

16% (Table 3). This agrees with the above results of the surface tension analysis, 

where plant proteins (especially rice protein) had relatively higher surface tension 

values, suggesting less preference for migrating to the particle surface than dairy 

proteins. Increasing the protein concentration also increased the surface protein 

coverage of the samples, and mostly achieved a likely saturated state at 2.5% of added 

protein, because further increasing the protein concentration had no significant effect. 

This confirms the finding of Adhikari et al. [13] and Shrestha et al. [17] that protein 

dominates the surface of the spray dried sugar/protein powder, even at low 

concentrations. It should be pointed out that, although WPI had a relatively higher 

surface tension value (Figure 2), implying less surface activity, the surface protein 

coverage was comparable with those of other dairy proteins (Table 3), indicating that 

it is still an effective surface active protein, enabling good powder recovery (Table1). 

The actual reason for this exception will need further investigation. 

The correlation coefficients between powder recoveries and protein coverage are 

also given in Table 2, which shows that the R values for all proteins except 

PPI/sucrose powders are higher than 0.8, suggesting that the higher the surface protein 

coverage, the higher the powder recovery. Combining all the results and correlating 

surface tension, surface protein coverage and powder recovery, it is reasonable to 

propose that surface active proteins preferentially migrate to the surface of the 

solution and the composition of the powder surface reflects the composition of the 

air/water interface of the spray droplets prior to drying. Protein is accumulated at the 

air/water interface during, or prior to droplet formation at the immediate exit of the 
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atomizer and thus appears on the powder surface [34], which overcomes the 

stickiness/adhesive nature of sucrose and increases the powder recovery. 

The results also revealed that, except for soy protein (SPI), plant proteins are not as 

effective in spray drying of sucrose. It seems that the surface tension and powder 

surface coverage of pea protein (PPI) did not influence the powder recovery, thus 

their correlation coefficients of R were unexpectedly low (Table 1, Table 2). One 

possible reason might be that the tested lowest concentration of 0.25% is already the 

saturated state for this protein/sucrose system, thus increasing the concentration did 

not reduce the surface tension and increase the powder recovery. Further studies are 

needed to identify the mechanism. The powder recoveries (<45%, Table 1) and 

surface protein coverage (<30%, Table 3) of spray dried sucrose powders with rice 

protein (RPC) are very low, even with the highest protein concentration (10%) added 

to the system, implying that it is not a good candidate for spray drying of sticky 

materials. This may also be a consequence of its protein (glutelin) nature, which has 

low water solubility and low surface activity, as discussed in the above sections. 

Moisture Content, Water Activity (aw), and Glass Transition Temperature (Tg) 

The moisture content and aw of powders were measured as soon as possible after 

collection, provided the powder temperature was equilibrated to room temperature. It 

can be seen from Table 4 that the highest moisture content and aw of spray dried 

powder are 4.31% and 0.269, respectively. Although the values varied among 

different sucrose/protein ratios, all the aw values are within the range of industrially 

spray dried powders (≈0.2) [14]. It has been proposed that one of the characteristics of 

spray-dried products is the low moisture content (less than 5%) [35]. The moisture 

content of all the powder samples are also well within this range (Table 4).  

The glass transition temperature (Tg) of spray dried powders is a very important 
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indicator to assess stickiness because if the droplet/particle temperature is 20 °C 

above its Tg, it will generally be sticky [7]. The measured Tg and melting point of 

sucrose was 73.44 °C and 183.77°C, which is close to those in the literature of 65-

70°C and 185°C, respectively [36]. The small difference is understandable because Tg 

varies with the amount of water in a compound [37]. The Tg of the spray dried pure 

proteins were within the range of 100°C-150°C (data not shown), whereas the Tg of 

spray dried sucrose/protein powders were in the range of 60-70°C (Table 4). It is clear 

that the Tg of the spray dried sucrose/protein powders are close to the measured Tg of 

sucrose 73.44°C and reported values of 65-70°C [36]. The relatively lower Tg could be 

the result of moisture absorption by the powders during handling [17]. This result 

agrees with previous studies that the sugar/protein systems are not compatible and the 

measured Tg mainly reflects the Tg of the sugar in the system [17]. In the case of the 

present study of sucrose/protein powders, the measured Tg might be the Tg of the 

sucrose, so varying the protein concentration didn’t affect its value. 

 Because the main solid content in spray dried powders is sucrose, and the overall 

Tg values are 60-70°C, they will stick on the dryer wall if the drying temperature is 

around 80-90°C (20°C higher than Tg).  The inlet and outlet temperatures of the spray 

dryer were set at 150 °C and 80°C respectively, and the contact temperature in the 

dryer may be higher than 80-90°C. Therefore, stickiness is likely to occur explaining 

why no powder was collected when spray drying of the sucrose only solution. 

As has been discussed above, surface active proteins preferentially migrate to the 

air/water interface of atomised droplets/particles and their Tg are within the range of 

100-150°C. The addition of proteins increases the particle surface coverage with high 

Tg proteins. Therefore, the sucrose/protein solution can have an efficient spray drying 

performance with more than 50% of powder recovery, even when a  small amount of 
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protein was added (such as >0.25%). However, if the surface activity is relatively low 

(e.g. rice protein), protein coverage on the powder surface would be insufficient to 

overcome the stickiness of sucrose, and the powder recovery will be consequently 

reduced.  

CONCLUSION 

Four types of dairy proteins (WPI, HWP, CCP, HCP) and 3 types of plant proteins 

(SPI, PPI, RPC) were used for spray drying of the sticky material sucrose. Generally, 

dairy proteins were more effective than plant proteins in spray drying of sucrose as 

they can lower the surface tension values of the solutions before drying, resulting in 

higher powder recoveries with more protein coverage on the particle surface. The 

higher powder recovery was attributed to the surface active properties of the proteins 

because they are preferentially migrating to the surface of the droplets/particle, and 

form a glass state film upon drying, which can resist heat stress during the drying 

process. There seemed to be a saturated state of protein concentration (nominal 

concentration about 0.25%) in sucrose/protein solutions to improve their surface 

activity for spray drying, as higher protein concentrations did not increase the powder 

recovery significantly. The surface tension value can partly evaluate the surface 

activity of proteins while the surface protein coverage is a more accurate index. The 

results indicated that because of its protein structure and functionality, rice protein 

concentrate may not be a good candidate for spray drying of sugar rich sticky foods. It 

is suggested that other factors such as temperature and pH values of the solution on 

the surface activity of the proteins should be considered in future investigations. 

Furthermore, for deep understanding of the mechanism, more physical-chemical 

properties, including the protein solubility kinetics, particle morphology, and particle 
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size distribution would be helpful to explain the effect of protein surface activity on 

the spray drying efficiency of sticky foods. 
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Figure captions: 

Figure 1 Surface tension values of whey protein isolate (WPI) in pure water and in 

sucrose solutions (10g sucrose /100 g).  

Figure 2 Effect of protein types and concentrations on the surface tension values of 

sucrose solutions (10g /100g). WPI, whey protein isolate; HWP, hydrolysed whey 

protein; CCP, calcium-caseinate; HCP, hydrolysed caseinate; SPI, soy protein isolate; 

PPI, pea protein isolate; RPC, rice protein concentrate.  
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Table 1 Powder recoveries of spray drying of sucrose/protein and protein only 

solutions a  

      proteins 
b WPI HWP CCP HCP SPI PPI RPC 

99.75:0.25 c51.55±0.55a 50.48±0.65a 50.85±0.33a 57.71±0.77a 50.14±0.54a 48.47±0.72a 22.16±0.46a 
99.5:0.5 57.12±0.43b 53.83±0.53b 53.61±0.46b 58.20±0.48ab 50.34±0.55a 48.71±0.77a 31.62±0.72b 
99.0:1.0 57.96±1.02b 59.93±0.91c 54.03±0.44b 58.99±1.05ab 50.48±0.41a 49.34±0.81ab 31.76±0.95b 
97.5:2.5 59.22±0.58bc 59.97±1.22c 57.62±1.01c 60.53±0.88b 54.41±0.65b 49.96±0.60ab 39.47±0.75c 
95.0:5.0 60.95±0.87bc 60.33±0.81c 58.88±1.22c 60.66±0.90b 59.54±0.66bc 50.37±0.87b 40.31±0.77c 
90.0:10.0 62.51±0.85c 60.61±1.33c 63.90±0.65d 61.03±0.89b 61.67±1.05c 51.87±1.12b 40.43±0.58c 
Protein only 65.61±0.81d 85.82±1.11d 65.93±1.25d 65.66±1.57c 62.99±1.77c 53.77±1.04b 44.05±0.96d 
a The feed concentrations of all samples were 10g/100g 

b WPI, whey protein isolate; HWP, hydrolysed whey protein; CCP, calcium-caseinate; 

HCP, hydrolysed caseinate; SPI, soy protein isolate; PPI, pea protein isolate; RPC, 

rice protein concentrate. 

c Same letters in the same column indicate no significant difference (p>0.05) 

Ratio 
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Table 2 Correlation coefficients (R) of the spray dried sucrose powder recoveries to 

the surface tension of feed solution and surface protein contents of sucrose/protein 

systems 

Powder recovery WPI HWP CCP HCP SPI PPI RPC 

Surface tension 0.830 0.812 0.924 0.863 0.831 0.114 0.941 

Surface protein 0.864 0.793 0.990 0.924 0.873 0.179 0.935 

WPI, whey protein isolate; HWP, hydrolysed whey protein; CCP, calcium-

caseinate; HCP, hydrolysed caseinate; SPI, soy protein isolate; PPI, pea protein 

isolate; RPC, rice protein concentrate.  
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Table 3 Distributions (%) of carbon, nitrogen and oxygen, and protein contents in the 

surface layer of the sucrose/protein powders  

Samples Oxygen  Carbon  Nitrogen  Protein on surface 
aWPI 17.07±1.02 68.93±1.53 13.99±0.07 - 
Sucrose 53.65±1.99 46.35±2.01 - - 
Sucrose: WPI (99.75: 0.25) 32.26±1.22 64.87±1.01 6.87±0.33 b52.42±0.87a 
Sucrose: WPI (99.5:0.5) 30.41±2.12 61.86±1.97 7.73±0.45 54.42±1.56a 
Sucrose: WPI (99.0:1.0) 30.57±1.03 62.03±1.55 7.40±0.12 53.90±2.26a 
Sucrose: WPI (97.5:2.5) 28.61±1.44 63.81±2.87 7.58±0.46 60.67±1.75b 
Sucrose: WPI (95.0:5.0) 28.74±2.05 63.23±3.48 8.03±0.33 60.17±3.76b 
Sucrose: WPI (90.0:10.0) 28.28±1.55 63.35±1.03 8.36±0.66 61.73±2.88b 
HWP 17.48±0.37 67.44±2.11 15.8±0.09 - 
Sucrose: HWP (99.75: 0.25) 31.65±1.22 62.15±2.06 6.20±0.54 50.75±3.41a 
Sucrose: HWP (99.5:0.5) 31.27±0.48 61.86±1.36 6.87±0.75 52.11±2.14a 
Sucrose: HWP (99.0:1.0) 30.76±1.23 62.57±1.35 6.68±0.08 53.84±1.97ab 
Sucrose: HWP (97.5:2.5) 30.47±1.65 61.98±2.33 7.55±0.16 54.91±3.08ab 
Sucrose: HWP (95.0:5.0) 29.92±0.78 64.19±1.75 5.89±0.06 56.82±1.32ab 
Sucrose: HWP (90.0:10.0) 29.00±1.56 62.60±1.65 8.40±0.37 60.01±2.05b 
CCP 16.21±1.35 69.97±2.02 13.91±0.77 - 
Sucrose: CCP (99.75: 0.25) 31.08±0.87 61.78±2.03 7.14±0.55 50.63±3.06a 
Sucrose: CCP (99.5:0.5) 28.33±0.49 63.44±1.33 8.23±0.07 59.79±1.68b 
Sucrose: CCP (99.0:1.0) 27.67±0.55 62.76±1.73 9.57±0.49 61.79±1.75b 
Sucrose: CCP (97.5:2.5) 26.28±1.11 64.01±2.02 9.71±0.18 66.49±1.83bc 
Sucrose: CCP (95.0:5.0) 25.16±1.55 64.75±2.04 10.1±0.31 70.24±2.06cd 
Sucrose: CCP (90.0:10.0) 23.22±1.05 65.16±2.04 11.61±0.71 76.55±2.11d 
HCP 19.80±0.57 69.77±1.88 10.43±0.33 - 
Sucrose: HCP (99.75: 0.25) 31.14±1.35 62.40±2.07 6.46±0.51 57.01±2.11a 
Sucrose: HCP (99.5:0.5) 29.96±1.73 62.58±3.12 7.45±0.08 61.17±3.85ab 
Sucrose: HCP (99.0:1.0) 28.43±2.01 63.66±2.07 7.91±0.15 67.02±2.99bc 
Sucrose: HCP (97.5:2.5) 26.62±1.56 63.88±3.33 9.49±0.58 73.37±4.11cd 
Sucrose: HCP (95.0:5.0) 25.07±1.07 65.52±2.21 9.41±0.63 79.59±2.16d 
Sucrose: HCP (90.0:10.0) 24.55±1.62 65.67±2.12 9.78±0.72 81.46±2.05d 
SPI 17.93±1.43 67.53±2.37 14.54±0.29 - 
Sucrose: SPI (99.75: 0.25) 31.54±1.45 60.89±2.18 7.56±0.46 52.08±2.53a 
Sucrose: SPI(99.5:0.5) 31.19±0.76 61.95±2.17 6.86±0.23 53.28±2.61ab 
Sucrose: SPI (99.0:1.0) 29.85±1.22 63.65±3.04 6.50±0.45 57.94±3.08abc 
Sucrose: SPI (97.5:2.5) 29.14±0.85 63.00±2.54 7.87±0.59 60.50±2.81abc 
Sucrose: SPI (95.0:5.0) 28.80±1.56 63.68±2.87 7.53±0.49 61.67±2.65bc 
Sucrose: SPI (90.0:10.0) 28.50±1.38 63.54±2.54 7.96±0.65 62.73±2.35c 
PPI 16.52±1.75 70.53±3.67 12.95±0.83 - 
Sucrose: PPI (99.75: 0.25) 32.79±1.03 61.51±3.44 5.70±0.45 45.49±2.89a 
Sucrose: PPI (99.5:0.5) 31.79±1.42 62.30±3.81 5.91±0.76 48.91±4.05ab 
Sucrose: PPI (99.0:1.0) 29.97±1.45 63.01±2.65 7.02±0.54 54.92±3.22bc 
Sucrose: PPI (97.5:2.5) 29.09±1.08 62.92±2.23 7.99±0.61 57.70±2.96c 
Sucrose: PPI (95.0:5.0) 27.75±1.76 64.13±2.13 8.12±0.88 62.33±2.43c 
Sucrose: PPI (90.0:10.0) 26.65±1.67 64.13±2.65 9.22±0.57 62.83±3.05c 
RPC 18.10±1.65 76.39±3.05 5.51±0.67 - 
Sucrose: RPC (99.75: 0.25) 41.23±1.33 57.81±1.55 0.96±0.62 16.14±2.08a 
Sucrose: RPC (99.5:0.5) 40.70±1.49 58.25±2.71 1.05±0.48 20.04±1.97ab 
Sucrose: RPC(99.0:1.0) 40.26±1.67 58.58±2.34 1.16±0.57 21.56±2.33abc 
Sucrose: RPC (97.5:2.5) 39.61±1.55 58.85±2.75 1.54±0.54 23.54±2.08abc 
Sucrose: RPC (95.0:5.0) 38.94±1.63 59.28±2.32 1.78±0.46 25.77±2.11bc 
Sucrose: RPC (90.0:10.0) 37.80±1.57 60.17±3.03 2.03±0.65 29.77±3.02c 

a WPI, whey protein isolate; HWP, hydrolysed whey protein; CCP, calcium-caseinate; 
HCP, hydrolysed caseinate; SPI, soy protein isolate; PPI, pea protein isolate; RPC, 
rice protein concentrate. 
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b Same letters in the same column within the same protein type indicate no significant 
difference (p>0.05) 



 

29 
 

Table 4 Moisture content, water activity (aw), and glass transition temperature (Tg) of 

spray dried sucrose/protein powders a 

Samples Ratio Moisture content (%) aw (24.6°C) Tg (°C) 

Sucrose: WPI 99.75:0.25 3.23±0.03bc 0.168±0.011a 65.34±1.32b 
99.5:0.5 3.53±0.22c 0.176±0.020a 61.33±2.03a 
99.0:1.0 2.98±0.10b 0.181±0.024a 66.41±0.76b 
97.5:2.5 2.93±0.02b 0.183±0.031a 68.65±2.15b 
95.0:5.0 2.93±0.09b 0.196±0.025b 69.70±0.74b 
90.0:10.0 2.28±0.13a 0.190±0.017b 69.86±0.57b 

Sucrose: HWP 99.75:0.25 4.31±0.11c 0.269±0.021c 59.88±0.78a 
99.5:0.5 3.44±0.11b 0.237±0.032b 62.03±1.56ab 
99.0:1.0 3.02±0.66a 0.212±0.020b 65.34±1.88b 
97.5:2.5 3.41±0.07b 0.226±0.015b 63.05±2.07ab 
95.0:5.0 3.94±0.15c 0.206±0.023ab 60.25±1.33a 
90.0:10.0 3.71±0.05bc 0.175±0.014a 60.86±2.05a 

Sucrose: CCP 99.75:0.25 2.33±0.04c 0.091±0.014a 61.35±2.35a 
99.5:0.5 2.07±0.24c 0.138±0.024b 60.48±1.66a 
99.0:1.0 1.95±0.08c 0.118±0.026ab 63.24±0.97a 
97.5:2.5 1.67±0.14b 0.103±0.021a 65.72±1.83b 
95.0:5.0 1.26±0.26a 0.129±0.033ab 66.15±0.97b 
90.0:10.0 1.66±0.02b 0.152±0.028b 65.65±2.39b 

Sucrose: HCP 99.75:0.25 1.78±0.03a 0.142±0.012ab 68.54±0.75ab 
99.5:0.5 1.62±0.17a 0.136±0.019a 70.02±2.11b 
99.0:1.0 1.94±0.13ab 0.131±0.022a 67.38±1.35ab 
97.5:2.5 2.04±0.02b 0.164±0.037b 66.54±2.37ab 
95.0:5.0 2.12±0.01b 0.180±0.027b 66.18±1.76ab 
90.0:10.0 2.23±0.16b 0.179±0.023b 64.32±2.14a 

Sucrose: SPI 99.75:0.25 2.41±0.09a 0.225±0.018b 64.88±0.86b 
99.5:0.5 2.78±0.11b 0.219±0.031b 63.47±1.08ab 
99.0:1.0 3.74±0.20b 0.190±0.019ab 61.85±1.37a 
97.5:2.5 3.77±0.28b 0.193±0.011ab 61.25±1.49a 
95.0:5.0 2.83±0.06b 0.173±0.035a 62.78±0.76ab 
90.0:10.0 2.36±0.14a 0.170±0.030a 65.14±2.05b 

Sucrose: PPI 99.75:0.25 2.40±0.11a 0.256±0.017b 63.22±1.75ab 
99.5:0.5 2.12±0.03a 0.218±0.023a 64.08±2.04b 
99.0:1.0 3.83±0.12b 0.235±0.020ab 59.85±0.79a 
97.5:2.5 3.60±0.08b 0.218±0.021a 60.54±1.76a 
95.0:5.0 3.28±0.06b 0.207±0.021a 62.01±1.65ab 
90.0:10.0 3.47±0.09b 0.213±0.014a 61.89±2.06ab 

Sucrose: RPC 99.75:0.25 3.07±0.14a 0.146±0.013b 60.58±1.44a 
99.5:0.5 3.69±0.04b 0.152±0.018b 59.45±1.63a 
99.0:1.0 3.63±0.10b 0.147±0.022b 60.18±0.79a 
97.5:2.5 3.01±1.11a 0.145±0.026b 60.97±1.32a 
95.0:5.0 3.39±0.06ab 0.138±0.022a 60.36±0.88a 
90.0:10.0 2.79±0.05a 0.136±0.014a 61.59±1.56a 

a WPI, whey protein isolate; HWP, hydrolysed whey protein; CCP, calcium-caseinate; 

HCP, hydrolysed caseinate; SPI, soy protein isolate; PPI, pea protein isolate; RPC, 

rice protein concentrate. 

Same letters in the same column within the same protein type indicate no significant 

difference (p>0.05) 
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