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8    Abstract 
 

9     Global Navigation Satellite Systems (GNSS) are emerging as possible tools 

10    for remote sensing high-resolution atmospheric water vapour that improves 

11     weather forecasting through numerical weather prediction models.   Nowa- 

12     days, the GNSS-derived tropospheric zenith total delay (ZTD), comprising 

13      zenith  dry  delay  (ZDD)  and  zenith  wet  delay  (ZWD),  is  achievable  with 

14     an accuracy of less than 1 cm.  However, if no representative near-site me- 

15     teorological information is available, the quality of the ZDD derived from 

16     tropospheric models is degraded, leading to inaccurate estimation of the wa- 

17     ter vapour component ZWD as di↵erence between ZTD and ZDD. On the 

18    basis of freely accessible regional surface meteorological data, this paper pro- 

19     poses a height-dependent linear correction model for a priori ZDD. By apply- 

20      ing the ordinary least-squares estimation (OLSE), bootstrapping (BOOT), 

21     and leave-one-out cross-validation (CROS) methods, the model parameters 
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22     are estimated and analysed with respect to outlier detection.   The model 

23     validation is carried out using GNSS stations with near-site meteorological 

24     measurements.  The results verify the efficiency of the proposed ZDD cor- 

25     rection model, showing a significant reduction in the mean bias from several 

26     centimetres to about 5 mm. The OLSE method enables a fast computation, 

27     while the CROS procedure allows for outlier detection.  All the three meth- 

28     ods produce consistent results after outlier elimination, which improves the 

regression quality by about 20% and the model accuracy by up to 30%. 

29     Keywords: GNSS meteorology; Zenith tropospheric delays; Regional 

30    surface meteorological data; Outlier detection; Linear regression 
 
 

31     1.  Introduction 
 

32 For nearly 20 years, Global Navigation Satellite Systems (GNSS), such as 

33     the U.S. Global Positioning System (GPS), have been used to remote sense 

34     atmospheric water vapour based on the delays of GNSS signals when prop- 

35     agating through the Earth’s troposphere (Bevis et al., 1992; Rocken et al., 

36     1993).  At sea level, the tropospheric delay in metric units is approximately 

37     2.3 m in the zenithal direction (Hofmann-Wellenhof et al., 2008, p. 135), 

38     and it increases to more than 10 m for an elevation angle of 10o. According 

39     to Hopfield (1969),  the tropospheric delay can be subdivided into a pre- 

40     dominant and well-behaved dry part and a complementary and volatile wet 

41     part.   The  dry  delay  term  amounts  to  about  90%  of  the  total  delay  and 

42     can be accurately determined using air density (Davis et al., 1985).  Under 

43     the assumption of hydrostatic equilibrium, the air density is obtainable from 

44     ground pressure measurements.  In contrast to the dry part, it is very dif- 
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45     ficult to evaluate the wet delay term due to the high temporal and spatial 

46     variability of atmospheric water vapour (Bevis et al., 1992). 

47 Nowadays, the zenith total delay (ZTD) can be obtained with an accuracy 

48     of less than 1 cm from GNSS data analysis (Douša, 2004; Byun and Bar-Sever, 

49     2009; Chen et al., 2011).  In addition, various studies have shown that the 

50     quality of the GNSS-derived ZTD can be considerably improved by specifying 

51    an appropriate stochastic model characterising the precision and correlations 

52    of GNSS measurements (Jin and Park, 2005; Luo et al., 2008; Jin et al., 2010). 

53     If representative meteorological data,  either observed near GNSS sites or 

54     derived from numerical weather models, are available, the zenith dry delay 

55     (ZDD) can be accurately computed by means of tropospheric models, e.g., 

56     the Saastamoinen model (Saastamoinen, 1973).  The complementary zenith 

57     wet delay (ZWD) is then determined as the di↵erence between ZTD and 

58     ZDD (Jin and Luo, 2009): 
 
 

59 ZWD = ZTD - ZDD, (1) 

 
60     which can be converted into the so-called precipitable water (PW) in metric 

61   units using PW ⇡ 0.15⇥ZWD (Bevis et al., 1994). Past studies have demon- 

62      strated that the PW derived from GNSS can reach an accuracy of about 

63     2 mm (Boccolari et al., 2002).  High-quality tropospheric delay and PW es- 

64     timates provide valuable information for weather forecasting (Awange, 2012, 

65     Sect. 10.4.1). For example, Poli et al. (2007, 2008) reported that the assimi- 

66     lation of GNSS-derived ZTD into numerical weather prediction models leads 

67     to improved forecasts of temperature, wind, and precipitation. Sasse (2011) 

68     showed that a combination of GPS and COSMO (Consortium for Small-scale 
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69     Modeling) data enhances the simulated regional precipitation in about 50% 

70     of the considered cases. Furthermore, a unique opportunity for GNSS-based 

71     water vapour determination is created by the establishment of networks of 

72      continuously operating reference stations (CORS), such as the NOAA GPS- 

73      IPW network in the USA (Wolfe and Gutman, 2000), the GEONET in Japan 

74     (Iwabuchi et al., 2000), the AGNES in Switzerland (Troller et al., 2006b), 

75     and the SAPOSQR
 in Germany (Gendt et al., 2004).  By applying GNSS to- 

 

76     mography in dense networks of CORS, three-dimensional water vapour fields 

77     can be reconstructed at high temporal and spatial resolution (Troller et al., 

78     2006a; de Haan and van der Marel, 2008; Bender et al., 2011a). As Bender 

79      et al. (2011b) showed, a combination of GPS, GLONASS, and Galileo ob- 

80     servations can increase the resolution of the recovered humidity fields up to 

81     30 km horizontally, 300 m vertically, and 15 min temporally. 

82 The ZTD in Eq. (1) can be precisely estimated depending on satellite ge- 

83     ometry, quality of the mapping function, and data availability (e.g., elevation 

84     mask). Therefore, the key issue for an accurate ZWD evaluation is the qual- 

85     ity of the ZDD, which will be strongly degraded if no representative near-site 

86     meteorological data are available.  In this case, site-specific meteorological 

87     parameters, such as pressure (p), temperature (T ), and relative humidity 

88     (rh), are usually obtained by extrapolating the standard atmosphere (e.g., 

89    NOAA/NASA/USAF, 1976) from mean sea level (MSL) to GNSS station 

90     level (HS ).  The ZDD computed based on the extrapolated meteorological 

91     data is called a priori ZDD, which is temporally invariable and cannot be used 

92     directly to derive the ZWD. For a reliable ZDD determination, meteorological 

93     input is indispensable. This can be gained from regional meteorological sites 
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on which both surface measurements (METM ) and station altitudes (HM ) 

above MSL are available. To derive representative p and T values for GNSS 

sites, Bai and Feng (2003) suggested a two-step procedure:  first, deducing 

the MSL values from METM (i.e., HM ! MSL), and second, deducing the 

station level data for GNSS sites from the MSL values (i.e., MSL ! HS ). 

Based on the di↵erence between HS and HM , Karabatić et al. (2011) extrap- 

olated the pressure and temperature data from the nearest meteorological 

station to the GNSS site of interest. 

Di↵ering from the two approaches mentioned above, where the mete- 

orological parameters p, T , and rh are considered, this paper uses freely 

accessible regional surface meteorological data to derive a height-dependent 

correction model for the a priori ZDD. The rest of this paper is organised 

as follows. Sect. 2 describes the study area and the data used. In Sect. 3, 

the ZDD correction model is presented, along with di↵erent methods for 

parameter estimation. The results are discussed in Sect. 4, including qual- 

ity assessments and model validation. Finally, Sect. 5 provides concluding 

remarks and an outlook on future research work. 
 
 
 

111 2. Study Area and Data 
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The study area is located in southwest Germany and is well covered by 

the GNSS Upper Rhine Graben Network (GURN), which was established 

to, among other things, automatically determine regional atmospheric wa- 

ter vapour at high temporal and spatial resolution (Fuhrmann et al., 2010; 

Mayer et al., 2012). This area is the warmest region of Germany, with hot 

summer and mild winter. Such meteorological conditions are due to frequent 
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southwest air mass flows from the western Mediterranean. The amount of 

precipitation increases towards the south and reaches the maximum in the 

southeast and the Black Forest region. 

As Fig. 1 shows, a total of 21 stations of the German  Meteorological 

Service (DWD)  are  used, which are homogeneously  distributed  in the  inves- 

tigation area, with altitudes ranging from 37 to 977 m above MSL. The freely 

accessible surface metrological data can be downloaded  from  the  DWD  web 

site1 and have a temporal resolution of 6 h. The period of investigation is 

DOY2008:276–285, corresponding to October 2–11, 2008 (Fuhrmann et al., 

2010). Apart from the DWD sites,  four  GNSS  stations  (dill,  efbg,  muej, 

bfo1) from the Integrated German Geodetic  Reference  Network  (GREF)  are 

also included, which are  symbolised  by  filled  triangles  in  Fig.  1.  Consider- 

ing  that  surface  metrological  measurements  (METR)  are  available  on  these 

GNSS sites, they are used to assess the accuracy of the proposed ZDD correc- 

tion model. The altitudes of the GREF stations are representative and vary 

between 181 and 647 m above MSL. Additional information about the DWD 

and GREF meteorological data is provided in Tables 1 and 2, respectively. 

 
 

135 FIGURE 1 
 

136 

Table 1: Resolution of the DWD surface meteorological data. 
 

Parameter Notation Resolution 

Air pressure 

Temperature 

Relative humidity 

pM 

TM 

rhM 

0.1 hpa 

0.1oC 

1% 

Time interval t::tM 6 h  
 
 

1www.dwd.de ! Services A-Z ! Freely Available Climate Data 

http://www.dwd.de/
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Table 2:   Resolution  of  the GREF surface meteorological 
data and the site altitudes above mean sea level (MSL). 

 

GREF 

site 

Altitude 

HS  [m] 

Time  interval1 

t::tR  [s] 

Resolution1
 

M ETR 

dill 181 10 R: RINEX 

efbg 355 900 pR: 0.1 hpa 

muej 548 10 TR : 0.1oC 

bfo1 647 15 rhR: 0.1% 
1 From RINEX meteorological data files 

 
 

138 3. Methodology 
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To achieve a better understanding of the height-dependent ZDD correc- 

tion model, its principle is schematically illustrated in Fig. 2. For an arbitrary 

GNSS site with altitude HS above MSL, the site-specific pressure pS [hPa], 

temperature TS [K], and relative humidity rhS [%] can be obtained by extrap- 

olating the standard atmosphere with p0, T0, and rh0 at MSL(Berg, 1948, 

pp. 122, 135; Dach et al., 2007, p. 243). According to Troller (2004, p. 16), 

it is possible to calculate the ZDD as 

 
 

146 ZDD = 0.002277D(p - 0.155471e), (2) 

 
 

147 
 

 
148 

where D considers the variation of gravity in the tropospheric air column 

above the site. It can be computed based on a normal gravity field as 

 
 

149 D = 1 + 0.0026 cos(2') + 0.00028H, (3) 
 
 
 

150 
 

 
151 

 

 
152 

where ' is the site latitude and H [km] is the site height above MSL. De- 

pending on T [K] and rh [%], the partial pressure of water vapour e [hPa] in 

Eq. (2) is obtained by means of the formula 
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✓ 
rh 

◆ 
e = 

100 
exp 

(
-37.2465 + 0.2131665T - 0.000256908T 2

) 
, (4) 
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where exp(·) is the exponential function (Xu, 2003, p. 52). Substituting 

(pS , TS , rhS ) and HS into Eqs. (2)–(4), which are also provided by Mayer 

(2006, pp. 115, 140, 141), the resulting a priori ZDD of GNSS signals is 

temporally invariable and is denoted as ZDD(HS ). 

 
 

158 FIGURE 2 
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Using surface measurements from regional meteorological sites located 

at representative heights (pM , TM , rhM ), one can directly obtain the ZDD, 

which is termed as ZDD(METM ) and predominantly reflects pressure vari- 

ations (see Eq. (2)). On the other hand, based on the standard atmosphere 

and the altitudes of the meteorological stations HM above MSL, the a priori 

ZDD(HM ) can be derived, which is also invariable over time. The discrep- 

ancy between ZDD(METM ) and ZDD(HM ) is utilised to establish a linear 

height-dependent ZDD correction model, i.e., 

 
 

167 6ZDDM = ZDD(METM ) - ZDD(HM ) = aHM + b = f (HM ), (5) 
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171 

where a (slope) and b (intercept) are the unknown regression coefficients that 

must be reliably estimated. Assuming that, on a regional scale of hundreds 

of kilometres, the function f (·) is also valid for the GNSS sites which are 

located in the same area, the correction value for the a priori ZDD(HS ) is 

 
 

172 6ZDDS = f (HS ) = aHS + b. (6) 

 
 

173 Accordingly, the corrected ZDD can be expressed as 
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174 ZDDS = ZDD(HS ) + 6ZDDS , (7) 
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which is supposed to vary temporally and is more suitable than the a priori 

ZDD(HS ) for determining the ZWD from Eq. (1). 

In this paper, the regression coefficients a and b of Eq. (5) are esti- 

mated using three di↵erent methods, namely ordinary least-squares esti- 

mation (OLSE), bootstrapping (BOOT), and leave-one-out cross-validation 

(CROS) in order to find a computationally efficient and statistically reli- 

able approach, particularly in the presence of outliers. The OLSE method 

minimises the squared sum of residuals vi, i.e., 
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n 

X 
v2

 

i=1 

n 

X 
 
i=1 

[(axi + b) - yi]
2 ! min, (8) 
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where n is the number of the used meteorological sites, xi and yi are the values 

of  HM  and  6ZDDM ,  respectively  (see  Eq.  (5)).  For  a  reliable  estimation 

of the regression coefficients, outlier detection is performed by analysing the 

so-called studentised residuals ri defined as 

 
 

 
 

188 r = 
vi 

i
 

(J
ˆ 

 
= 

(Ĵ

0 

vi 

   ⇠ ⌧f , (9) 
Qvv (i, i) 
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where (Ĵ 2  is the a posteriori variance factor, and Qvv (i, i) is the i-th diago- 

nal element of the residual cofactor matrix Qvv (Cook and Weisberg, 1982, 

p. 18). The studentised residual follows Pope’s ⌧ -distribution with f degrees 

of freedom (f : redundancy of the OLSE; Pope, 1976, p. 15; Heck, 1981b), 

which can be related to Student’s t-distribution with f -1 degrees of freedom 
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194 for f � 2 (Beckman and Trussell, 1974; Heck, 1981a): 

s 
(f - 1)r2

 

195 ti = 
i 

f - r2
 
⇠ tf -1. (10) 
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The outliers are detected at a significance level of ↵ if ti > tf -1;1-↵/2, where 

tf -1;q is the q-quantile of Student’s t-distribution with f - 1 degrees of free- 

dom,  and ↵ denotes the probability of committing a Type I error.   Note 

that the identified outliers can be attributed to both improper meteorolog- 

ical measurements and site-specific environments, resulting in considerable 

deviations from the assumed linear regression model. 

The bootstrapping (BOOT) method chooses random samples from the n 

pairs of (HM , 6ZDDM ) with replacement, meaning that a  particular  data 

point could appear multiple times in a bootstrap sample.  The number of 

elements in each bootstrap sample is equal to the number of elements in 

the original data set (i.e., n). The OLSE method is then applied to each 

bootstrap sample, and the final estimates of the regression coefficients are 

the arithmetic means of all individual solutions.  Since the statistics of the 

subsamples provide better information about the characteristics of the pop- 

ulation than the statistics computed from the full data set, the BOOT algo- 

rithm produces more reliable parameter estimates and allows assessing the 

statistical significance of results. A major disadvantage of this method, how- 

ever, is the high computational cost caused by the resampling procedure. For 

a more detailed discussion of bootstrapping, the reader is referred to Efron 

(1982, Chap. 5) and Trauth (2007, pp. 66, 74). 

The leave-one-out cross-validation (CROS) method is also employed to 
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evaluate the goodness-of-fit of the regression (Trauth, 2007, p. 77). It works 

by  first  temporarily  removing  the  i-th  element  (xi, yi),  and  then  using  the 

remaining n - 1 observations to estimate the regression line with the OLSE 

method. Afterwards, the i-th data point is predicted from the resulting 

regression model, meaning that fi(xi)  = aixi + bi. The di↵erence between 

the observation yi  and the prediction fi(xi), i.e., 

 
 

223 r5i = yi - fi(xi), (11) 
 
 

224 
 

 
225 

 

 
226 

 

 
227 

is known as prediction error, which in the optimal case follows a normal 

distribution with zero mean. Relying upon the prediction sum of squares 

provided by Allen (1974), the mean prediction error over all n data points 

can be written as 
2 

n
 3  

2
 X

  2 

228 

r5 = 4 
n
 

i=1 

(yi - fi(xi)) 5 
| {z } 

i 

. (12) 
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The CROS method provides not only valuable information about the goodness- of-

fit of the regression, but also the possibility of detecting outliers through 

analysing the prediction error.  This technique can also be used for quality 

control in other fields, e.g., spatial and temporal prediction. 

 
 

233 4. Discussion of the results 
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Since the efficiency of the above-discussed methods in estimating regres- 

sion coefficients can be considerably a↵ected by outliers, Fig. 3 first illustrates 

a representative example of outlier detection and its impact on the results of 

linear regression.  For the time interval 6–12 h UTC on DOY2008:277 (i.e., 

October 3, 2008), Fig. 3a depicts that the outlier, DWD site Kahler Asten, 
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can be clearly identified at a significance level of ↵ = 5% based on studentised 

residuals and t-statistics, given by Eqs. (9) and (10), respectively. Fig. 3b 

compares the resulting regression lines determined by means of the OLSE 

method, where the outlier elimination leads to a significant change in the 

slope estimate from -0.27 to 0.23 [cm/km]. Moreover, after removing the 

outlier, the width of the 95% prediction bounds is reduced, indicating higher 

reliability in forecasting a future data point. This particular DWD station 

is considered as outlier in about 80% of all regressions, which is due to the 

mountainous location (see Fig. 1) and the humid climate rather than im- 

proper meteorological measurements. For the entire period of investigation, 

Fig. 3c shows that, in most cases, the outlier removal increases the absolute 

values of the bootstrap estimates of Pearson’s correlation coefficients between 

HM and 6ZDDM . This implies a stronger linear trend in the outlier-free bi- 

variate data set and verifies the validity of the linear correction model given 

by Eq. (5). Fig. 3d displays the mean prediction errors produced by the 

cross-validation method (see Eq. (12)), emphasising once again the necessity 

of statistically rigorous outlier detection. 
 
 
 

256 FIGURE 3 
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For the same example as shown in Fig. 3b, Fig. 4 displays the histograms 

of the slope (see a and b) and intercept (see c and d) estimates obtained 

from bootstrapping with 5000 samples. If outliers are preliminarily removed 

(see b and d), the determined regression coefficients illustrate smaller scat- 

ters, indicating more precise parameter estimates.  Comparing Fig. 4a and 

b with each other, the significant change in the mean slope from -0.25 to 
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263 0.27 [cm/km] coincides with the results presented in Fig. 3b. 
 
 
 

264 FIGURE 4 
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Fig. 5 provides an example of linear regression using the cross-validation 

method, which enables outlier detection through analysing the prediction 

errors r5i  defined by Eq. (11).  Examining the absolute values of r5i  shown in 

Fig. 5a, the  outlier  is  clearly  visible,  corresponding  to  the  results  displayed 

in Fig. 3a. Under the  assumption  of  a  normal  distribution  with  zero  mean, 

the statistical significance of r5i can be evaluated (Trauth, 2007, p. 78). To 

demonstrate the influence of outlier elimination, Fig. 5b depicts the estimated 

regression lines. It can be seen that the correct result is only obtained in the 

case where the  outlier  is  left  out  as  the  i-th  element  (cf.  Fig.  3b).  Like 

the bootstrapping method, the mean solution from cross-validation is also 

strongly biased in the presence of outliers (cf. Fig. 4a and c). 
 
 
 

276 FIGURE 5 
 

 
 

277 
 

 
278 

 

 
279 

 

 
280 

 

 
281 

 

 
282 

 

 
283 

 

 
284 

After removing the detected outliers, the final ZDD correction model is 

estimated by means of the ordinary least-squares estimation (OLSE), boot- 

strapping (BOOT), and cross-validation (CROS) methods. The resulting 

linear regression coefficients are compared in Fig. 6. For both the slope and 

intercept parameters, the outcomes are largely consistent, where slight dif- 

ferences in the slope estimates are visible on DOY2008:279 (i.e., October 5, 

2008). This is due to  the  significant  increase  in  the  amount  of  precipita- 

tion on this particular day, as shown in Fig. 7b.  The results from the OLSE 
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method are almost identical to those from the BOOT and CROS approaches, 

which are in fact advanced in view of statistical reliability. This suggests the 

appropriateness of the OLSE technique in determining the ZDD correction 

model based on outlier-free data sets. The main advantage of the OLSE 

method compared to the other two alternatives is its fast computation. 

 
 

290 FIGURE 6 
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To  assess  the  goodness-of-fit  of  the  linear  regression,  the  model  error  is 

defined  as  the  standard  deviation  of  the  least-squares  residuals  vi  provided 

by Eq. (8).  As an alternative, the mean prediction error r5 resulting from the 

cross-validation process can be used for quality assessments (see Eq. (12)). 

As Fig. 7a illustrates, the model error is less than 5 mm in most cases. 

Moreover, the outlier removal considerably reduces the mean model error by 

about 20%, from 0.43 to 0.33 cm. By comparing the model error with the 

sum of precipitation recorded on all DWD sites contributing to the linear 

regression (see Fig. 7b), one can clearly discern that the regression quality 

decreases with increasing air humidity. In other words, it is more difficult to 

reliably derive the ZDD from Eq. (2) under humid atmospheric conditions. 
 
 
 

302 FIGURE 7 
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Using the GREF stations with near-site meteorological  measurements 

(METR; see Table 2), the accuracy of the proposed ZDD correction model 

can  be  evaluated  by  comparing  ZDD(METR)  with  the  corrected  a  priori 

ZDD obtained from Eq. (7).  The correction term 6ZDDS  is computed with 
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and without outliers by means of Eq. (6), and the resulting corrected values 

are denoted as ZDDO (with outliers) and ZDDS (without outliers), respec- 

tively. Taking the GREF sites with the minimum (dill) and the maximum 

altitude (bfo1) for example, Fig. 8 displays the ZDD (see a and c) as well 

as the bias with respect to ZDD(METR) (see b and d). The black dashed 

lines shown in Fig. 8a and c represent the temporally invariable a priori 

ZDD(HS ).    After  adding  the  correction  term  6ZDDS   to  ZDD(HS ),  the 

temporal variations in ZDD(METR) can be largely reconstructed in spite of 

the low temporal and spatial resolution of the freely accessible DWD surface 

meteorological data (see Fig. 1 and Table 1). Comparing Fig. 8a and c, the 

positive impact of outlier removal appears to be more obvious for the site 

bfo1. This can be explained by its higher altitude (dill: 181 m, bfo1: 647 m), 

making this site su↵er more strongly from the identified outlier (see, e.g., 

Fig. 3b). Considering ZDD(METR) as the reference, the biases of the a pri- 

ori ZDD depicted in Fig. 8b and d reach up to about 5 cm, and are reduced 

to predominantly less than 1 cm by means of the ZDD correction model, 

showing a significant bias reduction of up to 80%. 
 
 
 

324 FIGURE 8 
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Relying upon the di↵erence between ZDD(METR) and ZDDS , the model 

accuracy is assessed by computing the mean absolute bias (MAB) defined as 
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M AB = 

1 
N 

N 
|ZDD(METR,j ) - ZDDS,j | , (13) 

j=1 

 
 

328 where N is the number of di↵erences and depends on the sampling interval 
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of the GREF meteorological data (see Table 2). Table 3 presents the MAB 

values for all GREF stations, where the correction terms are derived with 

(6ZDDO )  and  without  outliers  (6ZDDS ).    In  the  absence  of  outliers,  a 

model accuracy of about 5 mm can be achieved. For high-altitude sites, such 

as muej and bfo1, the outlier elimination seems to be particularly beneficial, 

which has also been observed in Fig. 8. In this case, the model accuracy can 

be improved by up to about 30% if outliers are removed prior to estimating 

the final regression coefficients. 
 

337 
 
Table 3: Accuracy assessment of the ZDD correction model using repre- 
sentative GREF stations with near-site meteorological data (see Table 2). 

 

GREF site dill efbg muej bfo1 

Site altitude HS [m] 181 355 548 647 

MAB(with outlier) [mm] 

MAB(without outlier) [mm] 
4.5 

4.6 

8.2 

7.8 

6.6 

5.2 

6.2 

4.5 

Improvement [%] -2 5 21 27 
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In  order  to  verify  the  adequacy  of  the  linear  ZDD  correction  model,  the 

second-degree polynomial regression is performed using 

 

 
340 6ZDDM = aH2

 + bHM + c = f (HM ), (14) 
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where HM denotes the altitudes of the regional meteorological sites above 

MSL (cf. Eq. (5)). After eliminating outliers, the final regression coefficients 

a, b, c are also determined by means of the OLSE, BOOT, and CROS meth- 

ods, producing largely consistent parameter estimates. Taking the results 

from the OLSE as an example, Fig. 9 compares the model error and the cor- 

rected ZDD with respect to the order of regression. As can be seen in Fig. 9a, 

only insignificant enhancements in the regression quality are achieved by ap- 

plying a quadratic polynomial.   In Fig. 9b,  the corrected ZDD using the 
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linear and quadratic models are almost identical, indicating the adequacy of 

the proposed linear approach. For all GREF sites, Table 4 presents the model 

accuracy with regard to the degree of regression (see Eq. (13)). The improve- 

ments in the MAB values caused by the quadratic regression are marginal, 

where Fig. 9b actually represents the best case scenario. 

 
 

354 FIGURE 9 
 

 
355  

Table 4:  Model accuracy [mm] of the ZDD correction using di↵erent 
orders of regression (see Eq. (13), without outliers, OLSE method). 

 

Regression 

model 

dill 

(181 m) 

efbg 

(355 m) 

muej 

(548 m) 

bfo1 

(647 m) 

Linear 

Quadratic 

4.6 

4.8 

7.8 

7.8 

5.2 

4.9 

4.5 

4.4 

Improvement [%] -4 0 6 2 
 

 
 
 

356 5. Conclusions and Outlook 
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This paper proposed a practicable approach for a reliable and accurate 

determination of zenith dry tropospheric delays of GNSS signals if there 

are no representative near-site meteorological data available. The main 

findings of this contribution can be summarised as follows: 
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1. Using freely accessible surface data from regional meteorological sites, 

a height-dependent linear regression model is developed to correct the 

a priori zenith dry delay (ZDD) derived based on the standard atmo- 

sphere. Following a residual-based outlier detection, the final regression 

coefficients are estimated by means of the ordinary least-squares esti- 

mation (OLSE), bootstrapping (BOOT), and cross-validation (CROS) 
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methods, which produce largely consistent results. While the OLSE 

approach enables a fast computation, the CROS method allows outlier 

detection through analysing the prediction error. 

2. In order to assess the performance of the proposed ZDD correction 

model, model error evaluates the goodness-of-fit of linear regression, 

while model accuracy examines the overall deviation from ground truth. 

Within the framework of the presented case study, the model error (ac- 

curacy) is below (near) 5 mm in most cases. Furthermore, the statisti- 

cally rigorous outlier removal significantly reduces the model error  by 

about 20%, and improves the model accuracy by up to 30%. 

3. If outliers are appropriately eliminated before estimating the final re- 

gression coefficients, the use of a quadratic polynomial only insignifi- 

cantly enhances the results of ZDD correction, indicating the adequacy 

of the proposed linear approach. 
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Future research will focus on the refinement, verification, and application 

of the proposed ZDD correction model. For example, apart from altitude 

information, locations of regional meteorological sites should be taken into 

account when computing the correction values. Considering the availability 

of some meteorological information with short time latency, the possibility of 

applying the suggested method in near real time will be studied based on a 

larger number of meteorological and GNSS stations. Moreover, a comparison 

with other approaches, e.g., proposed by Bai and Feng (2003) and Karabatić 

et al. (2011), is also planned, where additional data sets should be included. 

Finally, the refined ZDD correction model will be applied to regional wa- 

ter vapour determination using GNSS alone (Fuhrmann et al., 2010), or in 
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combination with other sensors such as Interferometric Synthetic Aperture 

Radar (InSAR; Alshawaf et al., 2012). 
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Figure 1:  Selected DWD meteorological sites and GREF GNSS stations in the area of 
southwest Germany (digital elevation model: ETOPO1; Amante and Eakins, 2009). 
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Figure 2: Schematic presentation of a height-dependent correction model for the GNSS a 
priori ZDD using regional surface meteorological data (STDATM: standard atmosphere, 
MSL: mean sea level, index S/M : GNSS/meteorological sites). 
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Figure 3: Example of outlier detection and its impact on linear regression using di↵erent 
methods (a) Outlier detection based on studentised residuals and Student’s t-statistics 
(↵ =  5%), (b) Regression lines resulting from the ordinary least-squares estimation 

(OLSE), (c) Pearson’s correlation coefficients from bootstrapping, (d) Mean prediction 
errors from the cross-validation method (see Eq. (12)). 
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(a) Slope (with outlier) 
1800  a = -0.25±0.50 [cm/km] 

(b) Slope (without outlier) 
1800  a = 0.27±0.25 [cm/km] 

 
1500 

 
1500 

 

1200 1200 

 

900 900 

 

600 600 
 

300 300 

 
0 

-2.0  -1.6   -1.2   -0.8   -0.4     0.0    0.4 0.8 1.2 1.6 2.0 
0 

-2.0   -1.6   -1.2  -0.8   -0.4     0.0    0.4    0.8    1.2    1.6    2.0 
Slope a [cm/km]     Slope a [cm/km] 

 

1200 
 
 

1000 

 
(c) Intercept (with outlier) 

b = -1.46±0.16 [cm] 

1200 
 
 

1000 

 
(d) Intercept (without outlier) 

b = -1.61±0.11 [cm] 

 

800 800 

 

600 600 

 

400 400 

 

200 200 

 
0 

-2.0  -1.9  -1.8  -1.7  -1.6  -1.5  -1.4  -1.3  -1.2  -1.1  -1.0 
Intercept b [cm] 

0 
-2.0  -1.9  -1.8  -1.7  -1.6  -1.5  -1.4  -1.3  -1.2  -1.1  -1.0 

Intercept b [cm] 

 

Figure 4: Histograms of the linear regression coefficients estimated by means of bootstrap- 
ping with 5000 samples (DOY2008:277, 6–12 h UTC, cf. Fig. 3b). 
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Figure 5:  Example of linear regression using the leave-one-out cross-validation method 

(a) Outlier detection based on absolute prediction errors |bi| (see Eq. (11), cf. Fig. 3a), 
(b) Results of the linear regression (cf. Fig. 3b). 
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Figure 6: Comparison of the linear regression coefficients a (slope) and b (intercept) ob- 
tained by applying di↵erent parameter  estimation  methods  after  outlier  removal.  The 
mean  results  from  bootstrapping  and  cross-validation  are  used  for  this  comparison. 
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Figure 7: Impact of precipitation on the model error defined as the standard deviation of 
the least-squares residuals vi (see Eq. (8)). 
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Figure 8: Model validation using representative GNSS stations with near-site meteorolog- 
ical measurements (a) and (c) A priori ZDD(HS ), reference ZDD(METR), and corrected 
ZDDS values, (b) and (d) Biases from the reference values (see Eq. (7) for ZDDS ). 
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Figure 9: Comparison of the ZDD correction model using linear and quadratic regres- 
sion (see Eqs. (5) and (14), without outliers, OLSE method) (a) Model error defined as 
the standard deviation of the least-squares residuals, (b) A priori ZDD(HS ), reference 
ZDD(METR), and corrected ZDDS values. 


