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Joint Surface Modeling With
Thin-Plate Splines

Mathematical joint surface models based on experimentally determined data points
can be used 1o investigate joint characteristics such as curvarure, CORZIrUency,
cartilage thickness, joint contact areas, as well as to provide geometric information
well suited for finite element analysis. Commonly, surface modeling methods are
based on B-splines, which involve tensor products. These methods have had success;
however, they are limited due 1o the complex organizational aspect of working with
surface patches, and modeling unordered, scattered experimental data points. An
alternative method for mathematical joint surface modeling is presented based on the
thin-plate spline (TPS). It has the advantage that it does nor involve surface paiches,
and can model scattered data points without experimenial data preparation. An
analytical surface was developed and modeled with the TPS to quantify its interpo-
lating and smoothing characteristics. Some limitations of the TPS include disconti-
nuity of curvature at exactly the experimental surface data points, and numerical
problems dealing with data sets in excess of 2000 points. However, suggestions for
overcoming these limitations are presented. Testing the TPS with real experimental
data, the patellofemoral joint of a cat was measured with multistation digital photo-
grammetry and modeled using the TPS to determine cartilage thicknesses and surface
curvature. The cartilage thickness distribution ranged between 100 1o 550 jim on the
patella, and 100 10 300 pm on the femur. It was found that the TPS was an effective
toal for modeling joint surfaces because no preparation of the experimental data
points was necessary, and the resulting unique function representing the entire
surface does not involve surface patches. A detailed algorithm is presented for
implementation of the TPS.

Calgary, T2P 1N4 Canzda

Introduction

Mathematical surface models based on experimental measures
are important for biomechanical studies because they can be used
to describe complicated surface geometry, and to determine pa-
rameters such as surface normals and curvature. This is useful, for
example, for finite element studies of joint mechanics, for estimat-
ing joint contact {Scherrer et al., 1979; Ateshian et al., 1994) or
cartilage thickness {Ateshian et al., 1991, Soslowsky et al., 1992),
for esimating joint congruency (Ateshian et al., 1992), and for
characterizing surfaces based on curvature analysis (Kwak et al.,
1997). Surface geometry, normals, and curvatre can be calculated
al any point on a joint using a mathematical surface model.

Representing a joint surface using a mathematical model based
on discrete measurements is challenging because biclogical sur-
faces exhibit complicated surface geometry. Typical difficulties
encountered with mathematical surface models are discussed by
Schut (1976} and Ateshian (1993). These include the difficulty of
modeling scattered (nenuniformly distributed) surface measure-
ments, modeling experimental data that are arranged in sparse
grids (i.e., data unavailable in rows and columns to complete a
fectangular grid), and modeling unordered data (no identification
0_f data points into defined rows and columns). Also, if there is a
significant level of measurement error in the surface points, it may
be advantageous to incorporate a model that fits (i.e.. smooths) the
Suface data rather than interpolating the data. Discontinuous
changes in curvature, which may be the case in joints that have
Sustained an injury, are problematic for surface models.

Various methods for modeling joint three-dimensional surfaces
have been proposed, each having their own strengths and limita-
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tions. Scherrer and Hillberry (1979) used piecewise bi-cubic sur-
face patches; however C* continuity {continuous second detiva-
tives, implying a smooth surface) was not maintained across patch
boundaries. Cubic B-splines exhibiting C* continuity were used by
Ronsky (1994) 10 model along MRI slice edges; however, linear
interpolation was used in the transverse direction to the slices, and
these did not have C' continuity (continuous first derivatives). A
technique for modeling a surface with quintic B-splines having C*
continuity in both parametric directions has been proposed by
Ateshian (1993). This method has been developed to deal with
sparse data, and somewhal nonuniformly distributed data points.
However, the primary limitation of this technique, and all the
others proposed, is that they are based on tensor products of
curve-fitting splines. The limitation of tensor products is that the
surface data must be nominally gridded (i.e., not randomly distrib-
uted) and arranged in a nonsparse grid, and require administration
of the surface patches. Methods have been developed to overcome
some of the limitations surrounding sparse grids (e.g., Ateshian,
1995), which require, for example, techniques such as B-spline
trimming curves.

For data that are scattered, modeling techniques based on radial
basis functions can be successful. These represent the surface in
terms of a low degree polynomial surface, to which is added a
surface interpolating the difference between this polynomial and
the data at the data sites. The latter surface is expressed in lerms of
translates to the data sites of a suitable radially symmetric function
fix,v) = ®(M, ¥ = x* + v, chosen by the user. Examples of
such functions are the function r’ In (r) associated with the
thin-plate spline and the rotated Gaussian e ™, a > 0 (« is a
shape parameter). If there are r distinct data sites (x,, y,), | =i =
n, then there are n translates fi(x, y) = {x — x,, ¥ — ¥,), and the
representation of the surface involves a linear combination of
them, with coefficients determined by solving a system of linear
equations. As will be shown subsequently, this system involves the
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symmetric matrix whose clements are @, = f.(x,, y,). This matrix
requires certain properties related to invertibility, and consequently
the choice of ®(r) is not arbirrary. Ultimately the surface is
described by a single equation of the form z = S§(x, y). The
surface does not involve any patches, unlike spline methods based
on tensor products.

A classic interpolating function § is the thin-plate spline {TPS)
{Meinguet, 1979; Lancaster and Salkauskas, 1986), which is a
two-dimensional analogue of the natural cubic spline. The TPS
makes use of the radial function ®(r) = r* In (r) mentioned
above. It arose originally as a solution of the following idealized
mechanical problem: Determine the shape of a thin plate of infinite
extent that deforms only in bending (no shear), passes through a
number of specified data points, and has minimal linearized bend-
ing energy. By this it is meant that the plate has only to undergo
small deflections. For a surface of the form z = f{x, y) the energy
of the function f is given by the functional

62 2 62 2 62 2
Em:ff{[r?x{] +2[ax;;] + [g;fi] }dxdy. (0

2

where R? is the entire x—y plane.

For the energy £(f) to be finite, it is necessary for the surface
z = f(x, y) to flatten out far away from the data sites in the sense
of having small curvature. If the data consist of the values z, at the
points {x,, ), 1 = 1, ..., n, for n data points, then there is a
unique function S such that z, = S(x,, v,}, and for which E{f} is
minimized, i.e., E(S) = E(f). It consists of a first-degree poly-
nomial to which is added a linear combination of the translates to
the data sites of the radial function #* In (#). The derivation of this
result is complex and a simplified discussion can be found in
Lancaster and Salkauskas (1986).

In conditions where smoothing is desired, it is possible to
replace the interpolation conditions z, = S(x,, y,) by a least-
squares criterton. This resulis in a so-called smoothing spline. The
idea is to find a function § so that the functional

"

I =Ef)+ 2 wlf(x.y) - z]? )

1=1

is least when f = §. The positive weights, w,, determine how close
to z, the values f{x,, y,) will be when the minimization is carried
out. For noisy data z,, w, should be inversely proportional to the
variance of z,. For the case where the weights are large, the
minimization will focus on the dominant term of J(f) making
flx,, ¥)close to z,, and we will obtain a function S much like a
thin-plate spline that smooths, rather than interpolates, the data.
Alternatively, for the case where the weights are close to zero,
there is little regard for the data z,, and the minimization focuses
on the energy term resulting in an almost planar surface will result.

The purpose of this study is to present the thin-plate spline for
the mathematical modeling of joints in biomechanical applications
in a simple and efficient manner. It is hypothesized that the TPS
can provide an accurate mathematical model of a joint surface. The
TPS modeling characteristics will be quantified using analytical
surface data. The technique will be applied to surface data from a
cat patellofemoral (PF} joint from which useful biomechanical
information such as cartilage thickness and surface curvature mea-
sures will be determined. Detailed methods used for interpolating
and smoothing surfaces, as well as determining higher order de-
rivatives used for surface normals and surface curvature, will be
presented. It will be shown that the technique is easy to implement
for modeling unordered, scattered data points to produce a math-
ematical surface model that is valuable for biomechanical research.

Methods

Surface Data Sets. An analytical surface was developed to
quantify the interpolating and smoothing characteristics of the
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TPS, as well as the influence of modeling the data in Cartesjan
versus cylindrical coordinate systems. The surface was designed tq
have topological features similar to a natural joint. A surface of
revolution about the x axis {+80 deg) was created based on 3
fourth-order polynomial

z=—(x)*+3(Fx)?+6,—10 = x = 10 (units of mm). (3

Five sets of randomly distributed data points (x,, v, z,} that lay
on the analytical surface were created ranging from 200 o 2000
points to test the error of the TPS interpolatng surface model,
Similarly, for TPS smoothing tests, two sets of 1000 randomly
distributed data points were generated with added random (white)
noise in the z direction of 50 um and 100 pm standard deviation
(5.12.). Included in the random points on the analytical surface
were points added to the edge to ensure the entire surface was
represented.

Iustrating the practical use of the TPS, experimental surface
data were collected from the PF joint of a cat, including both the
subchondral bone and cartilage surfaces, using the technique of
multistation digital photogrammetry (MDPG) (Ronsky et al,
1999). The surface data were measured in a Cartesian coordinate
system. The MDPG technique provides a three-dimensional coor-
dinate error estimate for each surface point, as well as an averaged
coordinate error estimate for all the points on each surface. These
error estimates were utilized for the weighted least-squares
smoothing implementation of the TPS.

Thin-Plate Spline Model. The description of the TPS model
is provided in detail so that the interested reader may write sofi-
ware lo implement the TPS.

It can be shown (Meinguet, 1979) that the thin plate spline
surface has an equation of the form

S(xs J‘) = E CLfl(xl' yl) + E-n‘+l + CpiaX + Cpt3Y (4)

=1

where the ¢, are certain constants and the functions f, are translates
of r* In (r} to the data sites (x,, v,), i = L, ..., n, for n daa
points. Thus,

®(r) = filx. ¥) = rlln(r),
withri= (x—x)?+ (y —y)%

The f, are indeterminate at (x,, y,); an application of I"Hépital's
rule shows that the value should be defined to be zero. This makes
the f, continuous. Also, the first partial denvatives are continuous,
but the second derivatives are discontinuous at the data sites.

The n + 3 coefficients in § are only partially determined by the
r interpolation conditions

z,=8x,y), i=1,...,n (6)

An additional polynomial precision condition is that if the Poinﬁ
(., ¥., 2, lie on a plane, then S(x, y) reduces to the equation of
that plane by virtue of the vanishing of the coefficients c,, ¢ =
I, ....n Itis convenient to use matrix notation to describe 5(x
v) and the method for determining its coefficients:

S(x, y) = fc’, {7

where [ = [ f{x, ¥),.
Caral. . |
The interpolation and polynomial precision conditions IMPY
that the coefficient vector ¢ is a solution of the following {7

3) X (n + 3) linear system, conveniently written in block form 28

FEE
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The entries in A are a,, = f{x, ¥),{ # jia, =0,i,j=
1, ..., n. This matnx is in fact symmeiric. As menuoned earlier,
A, which is created from the radial function ®. has ta be such that
the matrix in (8) is invertible. The other vectors and matrices have
the forms

1 i 1 1
Bi=|x x; x» - x|, el=[c, a0 .0

Yo Y1 ¥ o Ve
r— [ R — [ - 17 ]
C; Cotin Cpens Ln+_'!]v Z FATIA PRNE "-n] . ( }
The first “block™ equation Ac, + Be, = z represents the

interpolation conditions, and the second one, Ble, = 0, is the
polynomial precision condition. The coefficients in ¢ can be de-
termined from this system by using any linear equation solver.
These solvers use techniques that may be more efficient than
matrix inversion. Formally, the solution may be written

A Bl 'z
Lo 5] 18]
If smoothing is desired, then the functional J(f) can be mini-
mized. The optimal function is closely related to the thin-plate
spline (Wahba, 1990). It has the form 5(x, y) = fc’. where £ is as
in Eq. (7)., and the system (8) is modified to

A+D Bl|le| |2
BT Olie] O]
where D is a diagonal matrix comtainmg the reciprocals of the
weights w, of Eq. (2),

(10}

(1)

D= diag (1w, ..., 1/w,). (12)

The weights w, are a function of the standard deviation of the data,
¢?, and a smoothing parameter, A, expressed as
w, = Alar, (13)

Derivatives. The determination of surface normals and curva-
ture equires the first and second partial derivatives of the surface
function S in Eq. (7). The coefficient vector ¢ of Eq. (7) has already
been abtained by solving the system in Eq. (8) or (11); therefore
only partial derivatives of the functions f, in the vector f need to be
calculated, The first partial derivatives are calculated as follows:

@
SN =R A A £ 0] e
af ,
ff:a[:(x—-’f,) In{r;) +ix—x) (14)
A similar calculation yields 2579y and [}
The second partial derivatives are’
a?
Sy =L 8 A £ 0 0 0k
atf 2x - x)?
== — + In{rh+ 1, (15)
ind similarly for °8/¢v™ and /7. Finally,
2
gx_a;s(x, yi=[f 5 Y - 0 0 0],
af 2 - x My — )
n =% (16)

O Axdy rl

'

A".alytical Surface Modeling. Quantitative analysis of the
Interpolating and smoothing charactenistics was done using
¢ analyucal surface data. For each of the five randomly distrib-
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uted data set ranging in size from 200 to 2000 points, the inter-
polating TPS was used to model the data in either the Cartesian or
cylindrical coordinate systems. The choice for the cylindrical
coordinate system was determined by finding the axis of a cylinder
that best fits the data using least-squares estimation. Comparison of
the TPS surface to the analytical surface was done by resampling
in a grid pattern from the TPS surface and estimating the error at
each resampling point telative to the true analytical surface.

The smoothing characteristics of the TPS were tested using the
analytical data sets of 1000 points with added random noise.
Selection of the smoothing parameter, A, involved systematically
applying a range of values, and measuring the fitting error between
the smoothed TPS surface and the noisy data. With a priori
knowledge of the noise in the data (30 pm S.D. or 100 pm 5.D.)
it is possible to interpolate an appropriate smoothing parameter, A.
This is a standard method for determining the smoothing factor for
experimental data based on a priori estimated noise (e.g.,
Ateshian, 1993). We also investigated the proximity of the
smoothed TPS surface (based on the noisy data) to the true
analytical surface for the same range of smoothing parameters, A,
The percent error was calculated between an optimally smoothed
surface, which occurs presumably when the TPS represents the
true analytical surface with minimum error, and the smoothed
surface based on the smoothing factor determined from the a priori
known noise.

Curvature maps of the interpolated and smoothed noisy data
were used to provide information regarding the smoothness of the
TPS surface that is difficult to detect on the plotted surfaces alone.
Gaussian curvature, which is based on the product of the principal
curvatures (K = k,«.}, is sensitive to discontinuities (either
natural or caused by measurement errors) in the surface curvature.
The principal curvatures (k) and their orientation (k) were deter-
mined by solving for the roots of the following two equations
(Mortenson, 1985) at every re-sampled point on the surface based
on partial derivatives determined from the TPS calculations:

(EG — FH«? — (EN + GL — 2FM)x + (LN - M%) =0,

(FN— GM)h' — (EN— GL)h+ (EM - FL)=0. (I
Here,
E=8*:§8" F=8§"§' G=§"8§,
L=8*n M=8%mn, N=8"'n,
and,
S‘-]OBS S’—OIBS
B ax |’ B ay |’
§==10 0 0’ §#=10 0 o3
B ax?|" B ay'|"
§¥=10 0 2’8
B dxoy |’
where n is a surface normal vector, and - ™ indicates a dot product

of two vectors.

Experimental Surface Modeling. The interpolating TPS was
used to model the data from the cat PF joint data in the Cartesian
coordinate system. The modeled surfaces were resampled in a grid
pattern with spacing of 0.5 mm. Because the modeled surface
extends beyond the inpul surface data to infinity, an automatic
method of discarding resampled data points far from the original
data points was devised. For every resampled point, an algorithm
{Matlab, v5, Mathworks, Inc., Natick, MA) calculated the distance
to the three closest original data sites. If the average distance to
those three points was greater than the mean distance between the
entire set of points, the resampled point was discarded.
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Cartilage thickness was determined for the cat PF joint, includ-
ing the patella and the femur condylar groove. The thickness
measurement was made using a computer algorithm in which
thickness was defined as the distance along the normal, n, pro-
jected from a resampled point on the bone surface to its intersec-
tion with the cartilage surface. The resampled points on the two
TPS surfaces do not need to be matched. When n is normalized
(/[ml), then the distance, ¢, is measured in the same units as the
surface measurements (i.e., mm). The distance ¢ at which the
normal vector from the bone intersects with the cartilage surface is
a direct measure of the thickness at one point on a surface (Fig. 1).
Taking several such estimations yields an overall map of the
cartilage thickness (Ateshian et al., 1991).

Solving for the cartilage thickness is possible with the TPS
model on a point-by-point basis by determining the distance ! for
every resampled point on the bone. First, the line normal to the
bone surface is parametrized. If (x,, y,. 2,) 18 @ resampled point
on the bone surface, and (x,, ¥, z,) is a point a distance t along the
surface normal line, n, then the parametrized line is

(18)

Because the sarface heights, z, are represented by a function of
two variables ( x, y), a closed equation can express the intersection
of the line with the surface. Intersection occurs when the height, z,
of the cartilage surface, S, at the x, and y, values along the normal
line equals the z, value of that line:

Sixn,y)—z=0,

or, after substitution of the parametrized line in terms of 1,

=00+ X, Y=ty =0t + Z,.

(19)

Sf(n.lt + xﬂ‘ n)'l + .YO) - (nlt + ZU) = 0'

Solving for the only unknown, ¢, in the proximity equation is
done using Newton's method after re-arranging the equation:

o, S (a2 o0

d
T (50) — (nz + 2.))

where, using the chain rule,

as. BS,) dx N BSE)(ay)
dr  \ax/\at ay/\at)’

For each discrete resampled point on the bone surface, a mea-
sure of cartilage thickness was estimated.

Results

The TPS was successful at creating a mathematical model of ail
the analytical and surface data sets. Test results are presented for

Femur subchondral
bone surface

Femur

cartilage surface Thickness. f
Fig.1 The cartllage thickneass Is calculaled by determining the intersec-
tion distance, t, along the normal, n, from each resampled point on the
bona surface to the cartilage surlace. Alternativaly, the same mathod
may be used to find the proximity of one surface to another to estimate
Joint contact.
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the TPS with the randomly distributed data sets (200 to 2000
points) lying on the analytical surface (Fig. 2(a)) to determine the
TPS modeling error relative to the true analytical surface (Table 1),
The mean error decreased as the number of poinis in the data set
increased. This result confirms what is expected of all reasonable
mathematical models for complex surfaces, that increasing the
number of data points improves the representation of the true
analytical surface. An interesting result was that the error was
decreased by an order of magnitude when the data sets were
modeled in a cylindrical coordinate system. Regionally, in the
Cartesian coordinate system, the largest errors occurred near the
edges of the analytical surface when the langent of the surface
exceeds 75 deg relative to the X-Y plane (Fig. 2(b)); however, in
the cylindrical coordinate system these errors were significantly
reduced (Fig. 2(c)). The Gaussian curvature map (Fig. 2(d)) of the
surface represented in the Cartesian coordinate system illustrates
that the TPS surface is smooth, with the exception of the regions
near the edge where fluctuations in curvature were present.

Selection of an appropriate smoothing factor for the analytical
data with added noise was investigated with the fitting-error curves
in Fig. 3(a). As expected, increasing the smoothing factor toward
infinity creates a surface that more closely interpolates the noisy
data (i.e., solid lines approach zero). Also, the error with respect to
the true analytical surface (dashed lines) reaches a minimum and
then increases asympotically to the noise level of the input data (as
A approaches infinity). Basing the selection of the smoothing factor
on the a priori known error in the analytical data (in this case, 50
pum S.D.) produces a smoothing factor (A = 1.37) with surface
modeling errors within 3 percent of the optimal error, and the
surface is slightly oversmoothed. Optimal smoothing for this an-
alytical data cccurs when the curves representing the proximity of
the smoothed TPS surface to the true analytical surface (dashed
lines) are minimized. The Gaussian curvature when the noisy
surface data are smoothed at A = 1.37 has reduced fluctuations
(Fig. 3(b)) compared to the unsmoothed surface (Fig. 3(c)).

A summary of the experimental data sets obtained using MDPG
is presented in Table 2. Plots of the original surface data points and
the TPS surfaces are presented for the cat femur and patella
subchondral bone (Fig. 4). The cartilage thickness of the patella
and femur in the cat PF joint was determined. The cartilage
thickness pattern represented with gray-scale contours is markedly
different for the fermur (Fig. 5) and patella (Fig. 6). Cartilage
thickness ranges from between 100 to 550 pm for the patella, and
100 to 300 pm for the femur.

Gaussian surface curvature maps (similar to Fig. 2(d}) were
calculated for all four of the experimental data surface sets (Table
2), which revealed that when no smoothing was applied (ie.
interpolation, or A = &) then there were curvature fluctuations near
some of the data points. However, when the surfaces were
smoothed, these fluctvations decreased. The selection of the
smoothing factor was based on a priori knowledge from the
MDPG technique measurement error. For example, the MDPG
error was 10.6 um for the patellar subchondral bone surface (Table
2), and the same technique as shown in Fig. 3(a) was used to select
a smoothing parameter of A = 2.8.

Discussion

The radial basis function method is a new alternative in biomc-
chanical research for joint surface modeling that can interpolate
surface data using the TPS, and can smooth surface data by
incorporating least-squares smoothing. Using random, unordered
analytical data, it was shown that the TPS represents the ue
analytical surface with low error. Practical use of the TPS on the
experimental data collected with MDPG of the cat PF joint was
demonstrated, and important joint surface characteristics such as
cartilage thickness and surface curvature were determined.

The ability of the radial basis function model to create 2 math-
ematical surface model z = S(x, y) from unordered, scattered datd
(Fig. 2(a)) simplifies the modeling process. The TPS method does
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Fit Error
(mm)
0.10

(9]
Fit Error

(mm)0.1 0
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I require specification of control points, knot sequences, and
assignment of parametric coordinates to experimental data points
as with tensor product based methods. This is useful, for example,
1o avoid a frequently encountered difficulty with experimental data
from photogrammetric measurements (e.g., Ateshian et al., 1991;
Boyd et al., 1997) where multiple grid sets from different regions
of the same joint overlap (i.e., Fig. 4(b)). With the TPS technigue,
o organization of data points is necessary before a full mathe-
Matical description of the surface can be obtuined and represented
with a single function, z = S(x, v). The use of a single function
Tepresenting the entire joint surface without piecewise representa-
ton simplifies analysis compared (o tensor product methods be-
Cause the organizational aspect of analyzing surfaces on a patch-
by-pach basis is eliminated.

Modeling problems may occur 1f two adjacent data points rep-
Tesenting a smooth articular surface have different heights, causing
2surface discontinuity. Unless a physical discontinuity Is present,
the difference in height is likely due to error in the experimental
Measurement technique. Applying a smoothing factor with the

S becomes necessary so that a smooth mathematical represen-

- Journal of Biomechanical Engineering

Curvature

Y

Fig. 2 (A} Randomly distributed data points that lle on an analytical
surface (1000 polnts in this example) and the TPS mesh generated from
moedeling these points. (8) The random data points are modeled in the
Cartesian coordinate system, and errors betwean the TPS mesh and the
true analytical surface are represented as gray-scale contours oh the
mesh. (C) The same polnts are modeled in the cylindrical coordinate
system with error represented as gray-scale contours, which are negli-
glble. ( D) The Gaussian curvature for tha data modeled In the Carteslan
coordinate system. The surlace Is smooth except at the edges.

tation of the joint is possible. The ability to smooth raw surface
data is an important feature of all surface models because often
there is measurement error inherent in the data. Selection of an
appropriate smoothing factor controls the amount of fitting error
between the mathematical surface and raw surface data. Potential
extremes to the selection of the smoothing factor include a factor
of infinity (A = ), which results in no smoothing (raw data is
interpolated), and a factor near zero (A = 0), which results in
oversmoothing and the mathematical model degenerates into a
plane. Selection of an appropriate smoothing factor was tested on
the analytical data, which involved comparison of the fitting error
1o the a priori known noise in the data (Fig. 3(a)). It appears that
this selection criterion results in slight oversmoothing of the sur-
face, and that the optimal smoothing factor is reached when the
TPS surface proximity is minimized (at a larger value of A). The
error due to nonoptimal selection of the smoothing factor based on
the analytical data set was less than 3 percent of the minimum
possible error for data with 50 um S.D. of noise. The potential
errors, however, increase with increasingly noisy data, and the
error was as high as 15 percent for data with 100 pm 8.D. of noise.
However, with experimental data, rather than analytical data, there
is no knowledge of the proximity of the surface model to the true
surface. Therefore, estimation of the smoothing factor based on
known (or estimated) measurement error is a useful, objective
method. A simple subjective check of the smoathing factor can be
done by inspecting the resulting curvature of the smoothed surface.

The TPS model smooths noisy surface data by combining the
minimal bending energy condition and a least-squares fitting error.
Unlike polynomial smoothing in the sense of regression, the
smoothing spline involves as many basis functions (i.e,n+ 3)as
the interpolating spline. Polynomial interpolants and least-squares
approximants of high degree are prone to large oscillations and are

Table 1 Tha error of tha TPS surface based on randomly distributed
date sets lylng on a known analytical surlace with sizes ranging batween
200 and 2000 polnts (mean, standard devlation). The identical data points
were modeled In both the Carteslan and cylindrical coordinate sysiems.

T
Coordinate | - Fukror | | gonpg | 000ps | 1s00me | 20008
system nm
- Moan goms) l' fo2 | 00093 | Douse | Oubdl
artesian N 1L 0ose | (00223) | idkses | a0l
Pol mMean D 00zE 0 G008 0.0003 G000 33002
ar (SD) (00054} | (0.0027) | (00003) | (00002) | (00002}
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Flg. 3 (A) The fitting error of the welghted TPS smoothed surface
models based on data with added nolse (50 pm 5.D.—solld circles, and
100 pm $.D.—hollow squares) while varying the smoathing paramater (0
1o 3.5, corresponding to decreasing smoothing). The solld lines repre-
sent the proximity of the surlace 1o the nolsy data, and the dashed lines
represent the proximity of the surface to the undarlying analytical sur-
face without added nolse. A smoothing lactor of 1.37 |s chosen for the
data with 50 zm S.D. added nolse based on the corresponding curve. (B)
The gaussian curvature s calculated for the TPS surface while applying
a smoothing factor of 1.37, and ( C) the same surface without smoothing
(interpalating) Is preaented to show how the surface |8 rippled compared
to the smoothed surface { B).

not recommended. The minimization of the functional J helps to
reduce oscillations in the fitted surface, although these cannot be
avoided entirely.

Furthermore, with regards to the concept of local support, both the
TPS and cubic (or quintic) splines share the property that the pertur-
bation of the data at one site propagates throughout the domain,
although it attenuates rapidly. Alternatively, univariate splines have a
compactly supported basis for their representation utilizing B-splines.
The compact support makes the computation more efficient than the
TPS, which involves full, rather than sparse, matrices. However, with
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widely available efficient computers, this difference in processing
speed has little practical influence.

Due to the rapidly attenuated TPS, there is only a limited region
of practical local support. This region can be estimated with 3
simple test, which involves modeling an impulse function. This is
where data representing a planar surface include a single point that
lies one unit out of the plane, and the region of the modeled plane
that is no longer flat is the region affected by local support. The
size of this region will depend on factors such as the point density
of the data set and the magnitude of the impulse applied o the
point. A quick test with a planar data set having a point distribution
similar to the experimental data (Table 2), and an impulse function
of magnitude of 1 mm, yielded a radial region of influence ap-
proximataly 2 mm. Similar tests of local support may be usefol
with other types of experimental data sets.

Caution must be exercised when modeling some types of sur-
face data sets. Fiest, numerical errors will occur if fewer than three
noncollinear points are modeled. Second, numerical difficulties
may occur if the data set is very large. This is because radial
functions require the solution of a linear system with a full matrix,
and round-off errors may occur {Franke and Salkauskas, 1996).
The maximum size of the data set is machine and software spe-
cific; however, surface data sets with up to 2000 data points were
successfully modeled in this study (SGI Indigo 2, Matlab v5).
Maost surface measurement techniques used in biomechanics result
in surface data sets with fewer than 1000 points (Seedhom et al,,
1972; Scherrer and Hillberry, 1979; Wismans et al., 1980; Shiba et
al., 1988; Wijk, 1980, Ghosh, 1983; Huiskes et al., 1985; Ronsky,
1994), which do not present numerical problems for the TPS
technigue. In cases of exceptionally large data sets, for example,
from laser scanned images, techniques for improving the condi-
tioning of the system may be necessary (Narcowich and Ward,
1992). Additionally, there are some recent developments in the
arca of positive definite functions with compact support {Wend-
land, 1995). The use of such functions leads to a sparse marix to
which one may apply special numerical methods. A technique that
has been described as “convolution windowing” (Franke and
Salkauskas, 1996) may also be used where large data seis are
subdivided into regions, or windows, of overlapping data sets.

A potential imitation of the TPS is that although it has infinitely
continuous derivatives of all orders over the majority of the sur-
face, it is not C? at just the original data points due to discontin-
uous second derivatives at these points. This may contribute to the
curvature fluctuations near some of the original data points in the
interpolated experimental data; however, these fluctuations are
more likely to due noise in the data. In Fig. 2(d), for example, the
only fluctuations in curvature occur near the edge of the surface
where normal problems associated with edge effects are likely the
cause. The lack of C? continuity at exactly the data points, there-
fore, appears to have little effect on the smoothness of the anal_yt—
ical surface. Interestingly, with tensor product methods a similar
{imitation exists where, although C’ continuity and higher may
exist at knot points and within patches, the continuity is reduced
along the intersection lines between adjacent patches. .

However, with the TPS, if maintaining C* continuity is reguired
even at exactly the data points, then instead of d(r)=r'ln m'

Table 2 Experlmental surface data and corresponding measurerﬂ::[:
error from MDPG measurements of the four surfaces on the cat patalc
lofemorsl Joint s

Mean § D. [m)m
#ps ——T T .
S.D, 5D, sD.
Patella 75 1.5 6.8
Bone
Femur 291 8.0 8.7
Patella 1.1 11.1 10.0
Cantilage
Femur 217 12.7 15.3
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Fig. 4 A TPS mathematical surface model from MDPG measurements
{resampled in a grid pattern) of {A) the cat distal femur, and {B) atop view
of the same mesh with the original data polnts plotted over the resam-
pied mesh. Note that the MDPG measurements were collected from two
gnd projectlons on the same surface and result In scattered data at the
intersection of the two grid projections Indicated by arrows. The TPS
mesh with orlginal MDPG measurements of the cat patella {C) was
collected In one MDPG measurement session.

one may use other radial functions (0 generate an interpolating or
smoothing scheme. Meinguet (1979) presents the radial basis
: functions associated with functionals J similar in form to Eq. (1),
but involving derivatives of orders m = 2,3,.... The resulting
§ surfaces no longer have the minimum bending energy property
E whenm > 2, but gain differentiability. Their polynomial precision
E ism — 1, and Egs. (8) and (11) apply with a change in the entries
of A and B". The matrix B involves the basis functions for
':' bi-variate polynomuals of total degree m — 1. Tt is shown that

1 q’(f) = #7 |n (r), and there is a discontinuity in the 2mth
b derivative.
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Fig. 5 Cartilage thickness of the cat distal femur represented with
gray-scale contours projected onto a surface grid mesh. Thickness mea-
surements were not available In reglons where no gray-scale contour is
presented.

It is not essential to involve & functional like E or J in the
creation of a fitted surface. The choices for ®(r), however, are not
arbitrary in that the resulting matrices must be invertible, Admis-
sible functions ®(r) involve the concepts of positive definiteness
and conditional positve definiteness. These ideas are connected to
the probabilistic approach found in the method known as Kriging
and elsewhere (Wahba, 1990). Examples of additional choices for
®(r) are presented for completeness, but have not be utilized in
this study:

fa) @)= e~ a > 0, continuity C”, polynomial precision
condition is not required.

(b) ®(r) = r', continuity C?, polynomial precision condition
of at least 1 is required.

The TPS model using ®{r} = r* In (r) was chosen for this
study because the minimization of the surface bending is an
appealing concept for governing how natural joint surfaces may be
shaped. Minimized surface bending would likely result in contact
conditions with minimized contact stress; however, testing of this
concept would require further investigation.

The analytical data were modeled- in both the Cartesian and
cylindrical coordinate systems. In the Cartesian coordinate system,
TPS errors became significant when the tangent of the modeled
surface became too steep, however, the error was reduced by an
order of magnitude when the same data were modeled in the
cylindrical coordinate system. This occurs mainly because the
analytical data is well suited for modeling in a cylindrical coordi-
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Fig. 5 Cartilage thickness of the cat patella represented with gray-scale
contours projected onto a surtace grid mesh. Thickness measurements
waere not available in reglons whera no gray-scale contour |5 presented.
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nate system. Tt does illustrate, however, that cylindrical or spher-
ical coordinates may be more suitable if surfaces are highly
curved, or if multiple z values exist for one x—y coordinate pair
{i.e., highly curved surfaces resembling a sphere). Parametrization
of experimentat data is also possible with the TPS, which requires
assigning experimental data (x, y, z) to parameters (u, ) in
parameter space. It is important to note, however, that minimiza-
tion of the bending energy of the TPS occurs in the coordinate
system chosen. For example, in the cylindrical coordinate system
{r, 8, 2), the surface has an equation of the form r = C(8, z), and
the minimization of the energy is over the 6z coordinate plane.
Thus, the energy is not minimized in the original (x, ¥, z) system.
Therefore, when surfaces are modeled in coordinate systems other
than the Cartesian coordinate system, the concept of minimized
bending energy may have little physical relevance. The resulting
surface, however, remains smooth as is the case with the analytical
data modeled in the cylindrical coordinate system (Fig. 2(c)).

Modeling of the experimental PF joint data was done in the
Cartesian coordinate system using the TPS without smoothing.
This was done because the surface measurements of the subchon-
dral bone and cartilage in the cat PF joint were obtained using
MDPG, and had small associated errors (10 wo 20 um) relative to
the thickness of the cartilage (100 to 550 um). The cartilage
thickness estimations expressed as contours for the femur (Fig. 5)
and patella (Fig. 6) exhibit little fluctuation, which supports the
conclusion that smoothing the raw data was not necessary.

The cartilage on the femur was a retatively constant thickness
over the entire surface and was in the range of 100 to 300 pm,
whereas the cartitage on the patelia varied significantly more over
the joint surface (100 to 550 um). In general, the cartilage was
thickest slightly proximal to the midpoint of the patella surface (up
to 550 pm) and thinnest near the proximal and distal ends of the
surface (~100 pm). There are no previous reports of cartilage
thickness maps of the cat PF joint in the literature. Comparison of
the distribution of the cartilage thickness on the cat patella with
studies of the human patella (Ateshian et al., 1991; Eckstein et al.,
1996) show similarities where the cartilage is thickest near the
midportion of the ariculating surface. The distribution of the
cartilage thickness on the patella in the dog (Kwak et al., 1993) is
different from the cat because the thickest region is located more
distally.

In addition to the TPS being practical for estimating entities
such as cartilage thickness er curvature in this study, it could also
be used for proximity contact measurements (Scherrer et al., 1979,
Soslowsky et al, 1992) between opposing surfaces with TPS
mathematical models of joint surfaces (Boyd, 1997). Although
there are limitations of the TPS, its strength lies in its simplicity for
creating a mathematical surface model described as a single func-
tion, z = S(x, y), from unordered, noisy, and scattered experi-
mental surface data. The algorithm is simple to implement {based
on detailed calculations presented), can be fully autemated, and
offers a powerful and efficient method for determining surface
characteristics of complex joint surfaces.
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