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ABSTRACT 

We have computed complete (or refined) spherical Bouguer gravity anomalies for all 

1,095,065 land gravity observations in the June 2007 release of the Australian national 

gravity database.  The spherical Bouguer shell contribution was computed using the 

supplied ground elevations of the gravity observations.  The spherical terrain correc-

tions, residual to each Bouguer shell, were computed on a 9 arc-second grid (~250 m by 

~250 m spatial resolution) from a global Newtonian integration using heights from ver-

sion 2.1 of the GEODATA digital elevation model (DEM) over Australia and the 

GLOBE and JGP95E global DEMs outside Australia.  A constant topographic mass-

density of 2670 kg/m3 was used for both the spherical Bouguer shell and spherical ter-

rain correction terms.  The difference between the complete spherical and complete pla-

nar Bouguer gravity anomaly exhibits an almost constant bias of about -18.7 mGal over 

areas with moderate elevation changes, thus verifying the planar model as a reasonable 
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approximation in these areas.  However, the results suggest that in mountainous areas 

with large elevation changes, the complete spherical Bouguer gravity anomaly should be 

selected in preference over the less rigorous complete planar counterpart. 

 

Keywords: Spherical Bouguer gravity anomaly, spherical terrain correction, digital ele-

vation models, Australia. 

 

 

INTRODUCTION 

The Bouguer gravity anomaly is frequently used in geophysics to infer geological in-

formation from observed gravity (e.g., Ervin 1977; Chapin 1996) and in geodesy to pro-

vide boundary values on the geoid, which have been reduced by the gravitational attrac-

tion effect of all masses above the geoid (e.g., Heiskanen & Moritz 1967; Vaníček et al. 

2004).  Central to both the geophysical and geodetic views is the requirement to alge-

braically consider the gravitational effects of the topographic masses.  While the general 

definition of the Bouguer gravity anomaly (either geophysical or geodetic) does not con-

tain any approximation, the gravitational effect of the topographic masses is frequently 

approximated, thus leading to different variants of the Bouguer gravity anomaly (e.g., 

Heiskanen & Moritz 1967; Ervin 1977; Chapin 1996; Vaníček et al. 2001; 2004).   

The simple planar Bouguer gravity anomaly only considers the gravitational ef-

fect of an infinitely planar plate (Bouguer plate or slab) whose thickness is equal to the 

elevation of the gravity observation, whereas the complete (or refined) planar Bouguer 

gravity anomaly also considers the gravitational effect of the terrain, residual to the 

Bouguer plate (planar terrain correction).  The planar model, however, only provides a 

crude approximation of reality, which is not the case for a spherical model providing an 

approximation closer to reality (e.g., Karl 1971; Qureshi 1976; Ervin 1977; Chapin 

1996; LaFehr 1998; Nowell 1999; Smith et al. 2001; Vaníček et al. 2001; 2004).  In 

analogy to the planar case, the simple spherical Bouguer gravity anomaly only considers 

the gravitational effect of a spherical Bouguer shell, and the complete spherical Bouguer 

gravity anomaly additionally considers the gravitational effect of the topography resid-

ual to the spherical shell (spherical terrain correction).  In terms of the computational 
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effort required, one disadvantage of the spherical model is that terrain corrections have 

to be computed over the global topography, whereas they need only be computed over a 

smaller area in the planar case.  

In the past, the planar approximation has often been used to compute Bouguer 

gravity anomalies (both simple and complete), even though extra corrections that ac-

count for the more realistic spherical shape of the Earth (e.g., Bullard B correction) were 

introduced a long time ago (see the references in Takin & Talwani 1966; LaFehr 1991b 

and Nowell 1999 and the discussions in Hensel 1992 and LaFehr 1992).  If these spheri-

cal terms are not accounted for, significant distortions may be introduced in the corre-

sponding Bouguer gravity anomalies (e.g., LaFehr 1991a; 1991b; 1992; Talwani 1998).  

One possible reason for the frequent use of the simple planar Bouguer gravity anomaly 

is the extremely simple computation procedure to obtain the gravitational effect of the 

Bouguer plate, thus requiring minimal computational power.  Moreover, the planar ter-

rain correction only has to consider the topography surrounding the computation point 

(e.g., up to Hayford zone O, 166.7 km).  Finally, fast Fourier transform (FFT) tech-

niques can be employed to compute a whole grid of planar terrain corrections very effi-

ciently (e.g., Parker 1972; Forsberg 1985; Sideris 1985; Li & Sideris 1994; Parker 1995; 

1996; Kirby & Featherstone 1999, 2002; Featherstone & Kirby 2002).   

On the other hand, the determination of spherical terrain corrections, hence 

complete spherical Bouguer gravity anomalies, cannot be adapted to FFT techniques as 

yet, and also require the global topography to be taken into account.  Therefore, the 

large computational power required, coupled with the need for a global digital elevation 

model (DEM), probably account for the major restrictions against the widespread com-

putation and use of the complete spherical Bouguer gravity anomaly. 

In this paper, we demonstrate that this is no longer a restriction because of the 

power of reasonably low-cost computers and the free availability of global high-

resolution DEMs.  We computed spherical terrain corrections on a 9-arc-second by 9-

arc-second grid (~250 m) over all Australia, which were then used to derive complete 

spherical Bouguer gravity anomalies for all land gravity stations in the 2007 release of 

Geoscience Australia’s (GA’s) gravity database (Murray 1997).  Like the planar terrain 

corrections and complete planar Bouguer gravity anomalies (Kirby & Featherstone 
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1999; 2002; Featherstone & Kirby 2002), the spherical terrain corrections and the com-

plete spherical Bouguer gravity anomalies will be supplied to GA for evaluation and 

possible future inclusion in the national gravity database. 

 

 

THEORY AND METHODOLOGY 

Bouguer gravity anomaly 

There are two conceptually different views of the Bouguer gravity anomaly (e.g., Li & 

Götze 2001; Hackney & Featherstone 2003; Vaníček et al. 2004): (1) In geophysics 

(e.g., Ervin, 1977; Chapin, 1996), the Bouguer gravity anomaly is defined at the location 

of the gravity observation and the Bouguer reduction aims to model and remove all 

“non-geological effects”.  This also requires upward continuation of normal gravity 

from the surface of the reference ellipsoid to the location of the gravity observation via 

the free-air correction (or reduction).  (2) In geodesy (e.g., Heiskanen & Moritz 1967; 

Vaníček et al. 2004), the Bouguer gravity anomaly is required on the geoid where the 

gravitational attraction of the topographic masses (including all geologically interesting 

mass variations) should be removed completely.  This also requires downward continua-

tion of gravity from the observation location to the geoid (e.g., Vaníček et al. 2001; 

2004).  Although there is this conceptual difference, the formulae, practical determina-

tion and numerical values of the geophysical and geodetic Bouguer gravity anomalies 

are identical if the same term to upward continue normal gravity is used.  

The Bouguer gravity anomaly at the gravity observation is given by  

0γδδδ −++−=∆ FCACTOPPB ggggg  (1) 

where Pg  is the observed gravity at point P (e.g., on the Earth’s surface), TOPgδ  and 

ACgδ  are the gravitational attraction of the topographic masses (complete Bouguer cor-

rection or topographic reduction) and atmospheric masses (atmospheric correction), re-

spectively, FCgδ  is the free-air correction and 0γ  is normal gravity on the surface of the 

reference ellipsoid.  In Eq. (1), the combined effect of TOPgδ  and ACgδ  removes the 

gravitational attraction of all masses outside the geoid.   
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The Bouguer gravity anomaly defined by Eq. (1) is exact in the sense that it does 

not use any approximations about the shape of and mass distribution in the topography.  

However, different approximations for TOPgδ  have been introduced, resulting in the 

simple and complete planar Bouguer gravity anomalies ( SPBg∆  and CPBg∆ ) and the 

simple and complete spherical Bouguer gravity anomalies ( SSBg∆  and CSBg∆ ).  

The simple planar Bouguer gravity anomaly SPBg∆  uses the approxima-

tion ≈TOPgδ BPgδ , which is the gravitational effect of the infinitely lateral Bouguer plate 

of constant thickness PH  corresponding to the height (above the geoid) of the gravity 

observation.  The gravitational effect of the Bouguer plate is given by PBP HGg ρπδ 2= , 

where ρ  is the (constant) mass-density of the Bouguer plate and G  is the universal 

gravitational constant.   

0γδδδ −++−=∆ FCACBPPSPB ggggg  (2a) 

The planar terrain correction PTCgδ  is added to this to give the complete planar Bouguer 

gravity anomaly CPBg∆ , thus accounting – in an approximate way – for the gravitational 

effect of the topography residual to the Bouguer plate.   

PTCSPBCPB ggg δ+∆=∆  (2b) 

The simple spherical Bouguer gravity anomaly SSBg∆  uses the approximation 

≈TOPgδ BSgδ , which is the gravitational effect of the Bouguer shell of constant thick-

ness PH .  The gravitational attraction of the Bouguer shell is PBP HGg ρπδ 4= , being 

twice as large as that of the Bouguer plate  

0γδδδ −++−=∆ FCACBSPSSB ggggg  (2c) 

The (global) spherical terrain correction STCgδ  is added to give the complete spherical 

Bouguer gravity anomaly CSBg∆ , thus accounting for the global topography residual to 

the spherical shell.   

STCSSBCSB ggg δ+∆=∆  (2d) 
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The spherical terrain correction is much larger (takes the global terrain into account) 

than the planar terrain correction, thus countering the larger Bouguer shell term (see the 

discussion later). 

 

Gravimetric terrain corrections  

For both the complete planar and complete spherical Bouguer gravity anomalies, the 

corresponding terrain corrections must be determined.  With respect to all other reduc-

tions in Eq. (1), this is the most computationally intensive task.  Both the planar and 

spherical terrain corrections represent the gravitational attraction of the residual topog-

raphy (with respect to the Bouguer plate or shell).  Their contributions to the topog-

raphic reductions are indirectly defined through planar
TOP BP PTCg g gδ δ δ= −  and 

STCBS
spherical
TOP ggg δδδ −= , given through Eqs. (2b) and (2d), respectively.   

While the planar terrain correction PTCgδ  is always positive for stations on land 

(e.g., Hammer 1939) this is not the case for the spherical terrain correction, where the 

additional masses above the Bouguer shell count positive/negative when located 

above/below the local horizon of the gravity observation (cf. Figure 1).  Therefore, es-

pecially for low elevation gravity observations, the spherical terrain correction is gener-

ally negative (cf. Nowell 1999), as will be shown in the next section.  [Note that terrain 

corrections can also be negative for airborne or marine gravity observations.]   

 

[Figure 1] 

 

We determined the spherical terrain corrections through the application of New-

ton’s integral by discretised numerical integration based on spherical volume elements 

defined by the compartments of a DEM in geodetic coordinates.  The gravitational at-

traction of the corresponding masses is obtained through the superposition of the gravi-

tational attraction of a series of spherical volume elements (tesseroids) over the whole 

Earth (Kuhn, 2003).  The “innermost-zone” effect (i.e., terrain undulations around the 

computation point that have a smaller spatial resolution then that of the DEM used) has 

been neglected in this approach (cf. Leaman, 1998).  As such, the spherical terrain cor-

rections omit near-meter effects, as was the case for the planar terrain corrections com-
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puted by Kirby & Featherstone (1999, 2002).  Leaman (1998) shows that the near-meter 

effect can reach almost 0.1 mGal in only moderately undulating terrain, thus has to be 

accounted for in very precise gravity surveys.  However, these effects are of less impor-

tance for this study as they are practically the same for planar and spherical terrain cor-

rections, thus will cancel when both models are compared to each other (cf. Figure 5).  

 

Free-air correction  

Here we follow the common approach where the free-air correction FCgδ  is approxi-

mated by the vertical gradient of normal gravity (e.g., Heiskanen & Moritz 1967).  

However, we do not use the linear approximation of 0.3086 mGal/m, but a second-order 

approximation that accounts for both a change of the gravity gradient with height and 

with geodetic latitude (φ) (e.g., Featherstone 1995).  The second-order approximation of 

the free-air reduction is  

2
2
020 3

)sin21(
2

PPFAC H
a

Hfmf
a

g
γ

φ
γ

δ −−++=  (3) 

where PH  is the height of the gravity observation at P above the geoid, f is the geomet-

rical flattening of the reference ellipsoid, m is the geodetic parameter, which is the ratio 

of gravitational and centrifugal forces at the equator, and a is the semi-major axis length 

(equatorial radius) of the reference ellipsoid used (see Table 1).  Over Australia with an 

average height of 272 m (min: -16 m, max: 2228 m, cf. Figure 3), the average difference 

between the free-air correction using Eq. (3) and the linear approximation is 0.017 mGal 

with a maximum value of 0.318 mGal.  Therefore, the use of Eq. (3) in preference to the 

linear approximation of the free-air correction is important for precise gravity surveys at 

elevation. 

 

Atmospheric correction 

In contrast to the frequently used definition of the Bouguer gravity anomaly (e.g. Ervin 

1977; Chapin 1996), we now include the atmospheric correction ACgδ , which is theo-

retically necessary because the reference ellipsoid includes the gravitational effect of the 

atmospheric masses, which is the case for GRS80 (Moritz 1980), and thus has to be re-



 

 

8  

 

moved.  The atmospheric correction is modelled by a second-order polynomial fit to the 

values in IAG (1971) (cf. Featherstone & Dentith 1997). 

294 103105.5100298.1871.0 PPATC HHg −− ×+×−=δ   [mGal] (4) 

Over the Australian elevation range between -16 m and 2228 m, the range of the atmos-

pheric correction over Australia is between 0.871 mGal and 0.668 mGal. 

 

Normal gravity (latitude correction) 

We use the more exact Somigliana-Pizzetti closed formula (e.g., Heiskanen and Moritz 

1967, Eq. 2-78) instead of the Chebyshev approximations often used in geophysics (cf. 

Chapin 1996; Li & Götze, 2001) to compute normal gravity 0γ  (also called the latitude 

correction in geophysics).  The Somigliana-Pizzetti formula, given here in a numerically 

more convenient form (cf. Moritz 1980), is  

φ

φγγ
22

2

0
sin1

sin1
e
k

e
−

+
=  (5) 

where k is the normal gravity constant, γe is normal gravity acceleration at the equator, 

e2 is the square of the first numerical eccentricity of the reference ellipsoid, and φ is the 

geodetic latitude.  If desired, a higher accuracy formula for normal gravity is given in 

Ardalan & Grafarend (2001), but 0γ  derived by Eq. (4) is already one order of magni-

tude more accurate than the accuracy of modern gravimeters.   

For geodetic applications, the GRS80 reference ellipsoid is usually used (e.g., 

Hackney & Featherstone, 2003), whereas the WGS84 reference ellipsoid is commonly 

used in geophysical applications (e.g., Fairhead et al. 2003).  Differences in the normal 

gravity value using either the GRS80 or WGS84 reference ellipsoid are almost constant 

throughout Australia.  The magnitude of their difference is 0.143 mGal, but their varia-

tion is less than 1 µGal over the latitude range between 10°S and 45°S. 

 

Numerical values of the parameters used 

Table 1 lists numerical values of the parameters needed in the above equations for 

GRS80 (Moritz, 1980), WGS84 (NIMA, 2000) and the best-available estimate of the 
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universal gravitational constant from the Committee on Data for Science and Technol-

ogy’s (CODATA’s) 2006 release of the fundamental physical constants.  It is worth 

pointing out that the free-air gravity anomalies supplied in the GA database are also 

computed using a second-order free-air correction, but for the now-outdated GRS67 ref-

erence ellipsoid (IAG, 1971).  Since the Geocentric Datum of Australia 1994 (GDA94) 

uses the GRS80 ellipsoid, it is logical to use this international standard to achieve cur-

rency and consistency.  As such, all gravity anomalies recomputed here use the GRS80 

ellipsoid parameters in Table 1.  

 

[Table 1] 

 

 

DATA USED 

The Australian national gravity database 

In this study, we used all 1,095,065 land gravity observations in the Australian national 

gravity database (Murray 1997), which are now freely available via a web-based deliv-

ery system (http://www.geoscience.gov.au/gadds), though subject to licence conditions.  

All land gravity observations were extracted from the database in June 2007 (hereafter 

called the 2007 release) and their spatial distribution is illustrated in Figure 2.  The grav-

ity datum is ISOGal84 (Wellman & Murray 1985), which is tied to the global interna-

tional gravity standardisation network, IGSN71 (Morelli et al. 1974). 

 

[Figure 2] 

 

GEODATA, GLOBE and JGP95E DEMs 

The topographic masses over Australia were modelled from the 9-arc-second by 9-arc-

second (~250 m spatial resolution) GEODATA (version 2.1) DEM (Hutchinson, 2001), 

which is now freely available at http://www.ga.gov.au/products/digidat/dem.htm (Figure 

3).  The GEODATA DEM was extended to 100ºE to 165ºE and 0ºS to 55ºS, where areas 

around Australia were filled in by the 30-arc-second by 30-arc-second (~1 km spatial 

resolution) GLOBE v1 global DEM (Hastings & Dunbar 1998).   

http://www.geoscience.gov.au/gadds�
http://www.ga.gov.au/products/digidat/dem.htm�
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While the 9-arc-second GEODATA DEM provides sufficient information to 

compute planar terrain corrections (Kirby & Featherstone 1999; 2002), spherical terrain 

corrections require information about the global topographic mass distribution.  These 

were modelled outside the area specified above from the 5-arc-minute by 5-arc-minute 

(~10 km by spatial resolution) JGP95E global DEM (Lemoine et al. 1998, chapter 2), 

which classifies the terrain into six different types: (1) dry land below mean sea level, 

(2) lake, (3) oceanic ice shelf, (4) ocean, (5) glacier ice, (6) dry land above mean sea 

level.  These different mass distributions were converted into equivalent rock heights 

using mass-balance formulae in spherical approximation (e.g., Rummel et al., 1988; 

Kuhn & Seitz, 2005) for a constant topographic mass-density of 2,670 kg/m3.  Effec-

tively, this replaces the ocean water masses by a smaller thickness of rock masses.  

Thus, the ocean is effectively replaced by rock with smaller depth values (with respect 

to the ocean surface) than the original bathymetry due to the larger density (2,670 kg/m3 

for rock and 1,030 kg/m3 for seawater). 

So as to profit from increased spatial resolution, JGP95E was replaced by the 9-

arc-second GEODATA DEM over Australia (filled in with the GLOBE DEM, see 

above), arithmetically averaged to a 5-arc-min grid, which ensures that there is no dif-

ference in mass distribution caused by the use of DEMs with different resolutions.  Fur-

thermore, the combined GEODATA/GLOBE/JGP95E DEM has been generalised (by 

arithmetical averaging) to four coarser resolutions as specified in Table 2.  This is per-

mitted because the gravitation attraction decreases with distance-squared, so lower reso-

lutions can be used in remote regions to accelerate computations while not compromis-

ing accuracy.   

The coarser resolutions and corresponding areas were chosen empirically so that 

the corresponding approximation error (with respect to the finer resolution) always re-

mained below 1 µGal for the spherical terrain correction (e.g. Kuhn, 2003).  Table 2 

also shows the spatial extension over which a given DEM resolution has been applied to 

determine the global spherical terrain corrections.   

 

[Table 2]   &   [Figure 3] 
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RESULTS  

Here we focus on the spherical Bouguer gravity anomaly (simple and complete) and the 

spherical terrain correction, but provide comparisons with planar Bouguer gravity 

anomalies computed by Kirby & Featherstone (2002).  These four approximations of the 

Bouguer gravity anomaly are determined according Eqs. (2a) to (2d), where the free-air 

correction, atmospheric correction and normal gravity are determined according Eqs. 

(3), (4) and (5), respectively.  All numerical results for the Bouguer gravity anomalies 

and terrain corrections are presented in Figures 4 and 5 and are based on the constant 

topographic mass-density of 2670 kg/m3 and the numerical values of the parameters in 

Table 1.   

For display purposes, the Bouguer gravity anomalies, terrain corrections in Fig-

ure 4 and differences in Figure 5 at the locations of the gravity observations have been 

interpolated onto a 15-arc-min by 15-arc-min (~25 km spatial resolution) grid using ten-

sioned splines with a tension factor of T=0.25 (Smith & Wessel, 1990).  Furthermore, 

Figures 2 to 5 have been produced using the Generic Mapping Tools software (Wessel 

& Smith, 1998; http://gmt.soest.hawaii.edu/).  In Figures 4 and 5, no data are displayed 

outside the area defined by the GEODATA DEM. 

 

Planar Bouguer gravity anomalies 

The simple planar Bouguer gravity anomaly in Figure 4a was calculated according to Eq 

(2a), where the height PH  is the ground height of the observation location provided in 

the June 2007 GA database.  The complete planar Bouguer gravity anomaly was derived 

from the simple planar Bouguer gravity anomaly by adding the planar terrain correction 

(Figure 4b), which has been interpolated (bi-cubic) at each gravity observation location 

from the 9-arc-second grid of planar terrain corrections given by Kirby and Feathestone 

(2002).  The planar terrain corrections and the complete planar Bouguer gravity anoma-

lies are illustrated in Figures 4b and 4c, respectively. 
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Spherical Bouguer gravity anomalies 

The simple spherical Bouguer gravity anomaly (Figure 4d) was computed according Eq. 

(2c) where the computational effort to determine the simple planar and spherical effects 

is exactly the same.  

The 9-arc-second DEM was used to determine the gravitational effect of the re-

sidual (to each Bouguer shell) topographical masses in the vicinity of the computation 

point out to 15 by 15 arc-minutes (approximately out to Hayford zone L).  The contribu-

tion to the spherical terrain correction from the remaining distant global residual terrain 

masses was computed from the combination of the GEODATA, GLOBE and JGP95E 

DEMs generalised to coarser resolutions for the more distant topographic masses around 

the computation point (cf. Table 2).  A total of 111,402,348 terrain corrections at the 

nodes of the 9-arc-second DEM were computed over all Australian landmasses, which 

took about two months on a Sun UNIX workstation with two parallel 1 GHz processors 

and 16 Gb of core RAM. 

Figure 4e shows that the spherical terrain correction is negative (unlike the al-

ways-positive planar terrain correction on land) in low elevation areas on land.  These 

spherical terrain corrections were algebraically added to the simple spherical Bouguer 

gravity anomalies to give the complete spherical Bouguer gravity anomalies (Eq. 2d).  

As for the planar terrain correction, the spherical terrain correction was bi-cubically in-

terpolated from the 9-arc-second grid of spherical terrain corrections to each gravity ob-

servation location.  The spherical terrain corrections and the complete spherical Bouguer 

gravity anomalies are illustrated in Figures 4e and 4f, respectively. 

 

[Figure 4] 

 

 

DISCUSSION 

First, it is informative to look at the descriptive statistics (minimum, maximum, mean, 

standard deviation and RMS) of the different approximations of the Bouguer gravity 

anomaly and the terrain corrections (Table 3).  The statistics of the planar and spherical 
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terrain corrections are also given in Table 3 for both the whole 9-arc-second grid and 

when interpolated to the gravity observation locations.   

 

[Table 3] 

 

From the mean values in Table 3, the various approximations of the Bouguer 

gravity anomalies are all largely negative (cf. Figures 4a, 4c, 4d and 4f).  This is a well-

known characteristic of Bouguer gravity anomalies on land, which shows that the topog-

raphic masses are generally isostatically compensated by mass anomalies in the litho-

sphere, at least at very long (> thousands of km) wavelengths (e.g., Watts, 2001).  From 

the standard deviations in Table 3, despite the fact that Bouguer gravity anomalies are 

supposed to be smoother than free-air gravity anomalies (cf. Goos et al., 2003), the 

standard deviation of the latter is smaller.  However, this is not because the Bouguer 

gravity anomalies are “rougher”, but the higher standard deviations are due to the large 

negative values for most of the anomalies (Table 3).  

Comparing the simple planar and spherical Bouguer gravity anomalies (cf. Fig-

ures 4a and 4d), the spatial structure appears identical, but the magnitudes are different. 

The range (maximum minus minimum) is larger for the simple spherical Bouguer grav-

ity anomaly, which is caused largely by the gravitational attraction of the Bouguer shell 

being twice as large as that of the Bouguer plate.  Similarly, comparing Figures 4b and 

4e, the planar and spherical terrain corrections exhibit similar spatial characteristics, but 

the magnitudes are also different.  While most of the planar terrain corrections are small 

over Australia (over 92% of values are less than 0.5 mGal), the spherical terrain correc-

tions can reach magnitudes of over 200 mGal.   

Furthermore, as illustrated in Figure 4e, the spherical terrain correction can be 

negative, which is evident in most low-lying areas (e.g. Lake Eyre and the Murray-

Darling river basin).  This is because a considerable part of the global terrain masses are 

below the local horizon of the computation point but above the spherical shell, thus con-

tributing negatively to the spherical terrain correction (also see Figure 1). 

The large difference in absolute magnitude between the planar and spherical ter-

rain corrections is because the spherical terrain correction takes the gravitational attrac-
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tion of the global topography into account.  This is contrary to the behaviour of the pla-

nar terrain correction, where only terrain masses in the close proximity contribute to the 

planar terrain correction and masses further away (e.g., beyond Hayford zone O) can be 

neglected.  As such, the planar terrain correction is generally small (cf. Figure 4) and 

usually only has to be accounted for in mountainous areas (e.g. Hammer 1939).  This is 

in contrast to the spherical terrain correction, where most of the contribution comes 

from the global terrain masses, rather than the masses in the close proximity to the com-

putation point (e.g., compare the statistical values for the planar and spherical terrain 

corrections in Table 2).   

Finally, comparing the complete planar and complete spherical Bouguer gravity 

anomalies (cf. Figures 4c and 4f) shows that they are very similar both in spatial struc-

ture and magnitude (cf. Table 3).  Therefore, the different magnitudes between them and 

the planar and spherical terrain corrections largely compensate one another.  Figure 5 

shows the difference between the complete planar and complete spherical Bouguer grav-

ity anomalies, which exhibits an almost-constant difference over large areas with minor 

spatial variations of a few mGal.  Only over mountainous areas the spatial variations of 

the differences reach magnitudes of > 10 mGal.   

The average difference of -18.66 mGal (Table 3) approximately corresponds to 

the far-zone effect of the topographic reduction in the spherical approximation.  This 

represents the gravitational effect of the global topographic masses, thus excluding 

masses in the localised area that have been considered by the planar terrain correction.  

The NW to SE trend visible in Figure 5 is the result of the relative location of the com-

putation points with respect to the global topographic masses (e.g., differences are more 

negative in the NW due to the closer proximity to the Himalayas, which cause the 

spherical terrain corrections to be more negative).  

Over areas with moderate elevation changes, this result bodes well for the inter-

pretation of (complete) planar Bouguer gravity anomalies in that, disregarding the bias, 

they appear to be generally good approximations of their theoretically more rigorous 

spherical counterparts.  For instance, they might be sufficient for geological interpreta-

tions, so long as the focus remains localised.  In these areas, it may suffice to use only 

the simple planar Bouguer gravity anomalies, especially as the planar terrain corrections 
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are mostly less than 0.5 mGal in these parts of Australia.  Only over mountainous areas 

may local geological interpretation be distorted when the complete planar Bouguer grav-

ity anomaly is used in preference over the more rigorous complete spherical Bouguer 

gravity anomaly.  

 

[Figure 4] 

 

 
CONCLUDING REMARKS 

We have shown that, with reasonably modest modern computer power and the free 

availability of global and regional DEMs, spherical terrain corrections and thus com-

plete spherical Bouguer gravity anomalies can be computed on a very dense grid over 

continental-size areas.  However, should this computational effort seem unattractive, we 

have also shown that planar Bouguer gravity anomalies turn out to be a very good ap-

proximation, at least over large areas of Australia with only moderate elevation changes.   

In these areas, the difference between the complete planar and complete spheri-

cal Bouguer gravity anomalies manifests as an almost constant bias (over 92% of differ-

ences are in a band of ± 2.5 mGal around the average of -18.660 mGal), suggesting that 

the choice of either approach is of minor importance for most applications in geophysi-

cal exploration and geodesy.  Only in areas with large elevation changes does the choice 

of the type of Bouguer gravity anomaly become more critical (cf. Flis et al. 1998).  In 

these cases, we recommend the use of the more rigorous complete spherical Bouguer 

gravity anomaly for geodetic applications, as the aim is to completely remove the global 

topography.  For geophysical applications with the aim of modelling known mass distri-

butions only rather close to the computation point (e.g. up to a few hundred kilometres), 

it seems the planar model or a spherical model with limited extension around the com-

putation point are more appropriate, thus the additional computational effort to compute 

the complete spherical Bouguer anomaly may not be justified.   

The complete spherical terrain corrections and Bouguer gravity anomalies will 

be supplied to Geoscience Australia for further evaluation and possible subsequent dis-

tribution to users via the Australian national gravity database. 
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Figure 1  Schematic diagram for the spherical terrain corrections 
 

Figure 2  Coverage of the 1,095,065 Australian land gravity observations in the 2007 

release from Geoscience Australia (Lambert projection) 

 

Figure 3  The 9-arc-sec by 9-arc-sec (~ 250 m by 250 m) GEODATA (version 2.1) 

DEM (Hutchinson 2001) (Units in metre, Lambert projection) 

 

Figure 4  Left: simple planar Bouguer gravity anomaly (a), planar terrain correction (b) 

and complete Bouguer gravity anomaly (c).  Right: simple spherical Bouguer gravity 

anomaly (d), spherical terrain correction (e) and complete spherical Bouguer gravity 

anomaly (f) (Units in mGal; Lambert projection) 

 

Figure 5  Difference between the complete planar and complete spherical Bouguer 

gravity anomaly (Units in mGal; Lambert projection) 
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Table 1  Parameters used to compute the second-order free-air correction (Eq. 3) and 

normal gravity (Eq. 4).  Values for the GRS80 reference ellipsoid are taken from Moritz 

(1980). 

Parameter Value Source Unit 

k normal gravity constant 
0.001 931 851 353 

0.001 931 852 652 

GRS80 

WGS84 
-- 

e2 first numerical ecentricity 
(squared) 

0.006 694 380 022 90 

0.006 694 379 999 01 

GRS80 

WGS84 
-- 

a ellipsoid semi-major axis 
6 378 137 

6 378 137 

GRS80 

WGS84 
m 

γe equatorial normal gravity 
9.780 326 7715 

9.780 325 339 

GRS80 

WGS84 
ms-2 

f Flattening 
1/298.257 222 101 

1/298.257 223 563 

GRS80 

WGS84 
-- 

m geodetic parameter 
0.003 449 786 003 08 

0.003 449 786 506 84 

GRS80 

WGS84 
-- 

G gravitational constant 6.674 28(67) x 10-11 CODATA m3kg-1s-2 
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Table 2  DEM resolutions and spatial extensions used for the practical determination of 

the global spherical terrain corrections.  The spatial extensions are given as arc-distances 

along a parallel and meridian and define an area centred around each computation point.  

Resolution Extension DEM Source 

9″ x 9″ 30′ x 30′ GEODATA 

45″ x 45″ 2º x 2º GEODATA/GLOBE 

3′ x 3′ 4º x 4º GEODATA/GLOBE 

15′ x 15′ 10º x 10º GEODATA/GLOBE/JGPE95E 

60′ x 60′ Global GEODATA/GLOBE/JGPE95E 
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Table 3  Descriptive statistics of various gravity anomalies and terrain corrections at 

the 1,095,065 Australian land gravity observation locations, and statistics of the planar 

and spherical terrain corrections at the gravity observation locations and over the whole 

9-arc-second Australian grid (units in mGal) 

Data type Min. Max. Mean Stdv. RMS 

Fee-air gravity anomalies -112.32 172.79 5.56 ±24.96 ±25.602 

Planar Bouguer gravity anomalies 

Simple 

 

-163.79 

 

83.09 

 

-20.59 

 

±29.13 

 

±35.67 

Complete  -163.74 83.09 -20.38 ±29.13 ±35.55 

Planar terrain corrections  

At location of gravity stations 

 

0.00 

 

30.10 

 

0.20 

 

±0.79 

 

±0.82 

9-arc-sec grid 0.00 53.71 0.08 ±0.48 ±0.48 

Spherical Bouguer gravity anomalies 

Simple 

 

-285.90 

 

83.09 

 

-46.85 

 

±43.83 

 

±64.16 

Complete -184.00 65.36 -39.04 ±29.66 ±49.03 

Spherical terrain corrections      

At location of gravity stations -20.10 229.12 7.80 ±20.40 ±21.84 

9-arc-sec grid -19.44 257.65 11.74 ±21.33 ±24.35 
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Figure 1  Schematic diagram for the spherical terrain corrections 
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Figure 2  Coverage of the 1,095,065 Australian land gravity observations in the 2007 

release from Geoscience Australia (Lambert projection) 
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Figure 3  The 9-arc-sec by 9-arc-sec (~ 250 m by 250 m) GEODATA (version 2.1) 

DEM (Hutchinson 2001). (Units in metre, Lambert projection) 
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Figure 4  Left: simple planar Bouguer gravity anomaly (a), planar terrain correction (b) 

and complete Bouguer gravity anomaly (c).  Right: simple spherical Bouguer gravity 

anomaly (d), spherical terrain correction (e) and complete spherical Bouguer gravity 

anomaly (f) (Units in mGal; Lambert projection) 
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Figure 5  Difference between the complete planar and complete spherical Bouguer 

gravity anomaly (Units in mGal; Lambert projection) 
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