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1 Introduction

The vector equilibrium problem is a unified model of several problems, for example,

the vector optimization problem, the vector variational inequality problem, the vector

complementarity problem and the vector saddle point problem. In the literature, existence

results for various types of vector equilibrium problems have been investigated intensively,

e.g., see [7,12] and the references therein. The stability analysis of the solution mappings

for vector equilibrium problems is another important topic in vector optimization theory.

Recently, the semicontinuity, especially the lower semicontinuity, of the solution mappings

for parametric vector variational inequalities and parametric vector equilibrium problems

has been intensively studied in the literature, such as [5, 6, 8–11,13–21].

Among many approaches for dealing with the lower semicontinuity and continuity

of solution mappings for parametric vector variational inequalities and parametric vec-

tor equilibrium problems, the scalarization method is of considerable interest. Recently,

Cheng and Zhu [11] have obtained a lower semicontinuity result of the solution mapping

to a parametric vector variational inequality in finite-dimensional spaces by using a scalar-

ization method. Very recently, by virtue of a density result and scalarization technique,

Gong and Yao [13] have first discussed the lower semicontinuity of the efficient solutions

for a parametric vector equilibrium problem. By using the ideas of Cheng and Zhu [11],

Gong [14] has studied the continuity of the solution mapping for a class of parametric

weak vector equilibrium problems in topological vector spaces. Chen and Li [10] have

discussed and improved the lower semicontinuity and continuity results of the efficient

and weak efficient solution sets for parametric vector equilibrium problems given in the

aforementioned papers [13] and [14], respectively.

Motivated by the work reported in [5,10,11,14], this paper aims to establish the lower

semicontinuity and continuity of the solution mapping to a parametric generalized vector

equilibrium problem (PGVEP) by using a new proof method which is different from the

ones used in [11] and [14]. Our method on lower semicontinuity is based on a scalarization

representation of the solution mapping for (PGVEP) and a property involving the union

of a family of lower semicontinuous set-valued mappings. Moreover, we show that the

sufficient condition which guarantees the lower semicontinuity of the solution mapping is

also sufficient for continuity. The upper semicontinuity of the solution mapping is derived

by a scalarization method, which is also different from the ones used in the literature.

Our consequences are new and include the corresponding results in [11] and [14] as special

2



cases.

The rest of the paper is organized as follows. In Section 2, we introduce the problem

(PGVEP), and recall some concepts of semicontinuity and their some properties. In

Section 3, we discuss the lower semicontinuity and continuity of the solution mapping for

(PGVEP).

2 Preliminaries

Throughout this paper, let X and Y be real Hausdorff topological vector spaces, and

let Z be a real topological space. We also assume that C is a pointed closed convex

cone in Y with its interior intC 6= ∅. Let Y ∗ be the topological dual space of Y and let

C∗ := {f ∈ Y ∗ | f(y) ≥ 0,∀y ∈ C} be the dual cone of C.

Suppose that A is a nonempty subset of X and F : A × A → 2Y \{∅} is a set-valued

mapping. We consider the following generalized vector equilibrium problem (GVEP) of

finding x ∈ A such that

F (x, y) ⊂ Y \ − intC, ∀y ∈ A.

When the set A and the mapping F are perturbed by a parameter µ which varies over

a set Λ of Z, we consider the following parametric generalized vector equilibrium problem

(PGVEP) of finding x ∈ A(µ) such that

F (x, y, µ) ⊂ Y \ − intC, ∀y ∈ A(µ),

where A : Λ → 2X\{∅} is a set-valued mapping, F : B ×B × Λ ⊂ X ×X × Z → 2Y \{∅}
is a set-valued mapping with A(Λ) =

⋃
µ∈Λ A(µ) ⊂ B.

Special Cases.

(I) Let ϕ : B × B × Λ → Y and ψ : B × Λ → Y be vector-valued mappings. Let

F (x, y, µ) = ϕ(x, y, µ) + ψ(y, µ)− ψ(x, µ). Then (PGVEP) reduces to the parameterized

weak vector equilibrium problem (WVEP)µ considered in [14].

(II) Let X = Rn, Y = Rp and C = Rp
+. Let gi : B×Λ → Rn, i = 1, · · · , p and ψ : B×

Λ → Rp be vector-valued mappings. Let F (x, y, µ) = (〈g1(x, µ), y − x〉, · · · , 〈gp(x, µ), y −
x〉) + ψ(y, µ) − ψ(x, µ), where 〈·, ·〉 denotes the inner product in the Euclidean space.

Then, (PGVEP) also reduces to (WVVI)µ considered in [14]. Furthermore, let ψ ≡ 0.
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Then, (PGVEP) further reduces to the parameterized weak vector variational inequality

considered in [11].

For each µ ∈ Λ, let S(µ) denote the solution set of (PGVEP), i.e.,

S(µ) = {x ∈ A(µ) | F (x, y, µ) ⊂ Y \ − intC, ∀y ∈ A(µ)}.

In this paper, by using a new proof method which is different from the ones used in [11]

and [14], we will discuss the lower semicontinuity and continuity of S(·) as a set-valued

mapping from the set Λ into X.

Let µ ∈ Λ and x ∈ A(µ). Define F (x,A(µ), µ) :=
⋃

y∈A(µ) F (x, y, µ). Suppose that

Λ and Ω are Hausdorff topological spaces and G : Λ → 2Ω is a set-valued mapping with

nonempty values.

Definition 2.1 [1]

(i) G is said to be lower semicontinuous (l.s.c) at λ̄ ∈ Λ if for any open set Q ⊂ Ω with

G(λ̄) ∩ Q 6= ∅, there exists a neighborhood N(λ̄) of λ̄ such that G(λ) ∩ Q 6= ∅, for

all λ ∈ N(λ̄).

(ii) G is said to be upper semicontinuous (u.s.c) at λ̄ if for any open set Q ⊂ Ω with

G(λ̄) ⊂ Q, there exists a neighborhood N(λ̄) of λ̄ such that G(λ) ⊂ Q, for all

λ ∈ N(λ̄).

We say G is l.s.c (resp. u.s.c) on Λ, if it is l.s.c (resp. u.s.c) at each λ ∈ Λ. G is said to

be continuous on Λ if it is both l.s.c and u.s.c on Λ.

Proposition 2.1 [1, 3]

(i) G is l.s.c at λ̄ if and only if for any net {λα} ⊂ Λ with λα → λ̄ and any x̄ ∈ G(λ̄),

there exists xα ∈ G(λα) such that xα → x̄.

(ii) If G has compact values (i.e., G(λ) is a compact set for each λ ∈ Λ), then G is u.s.c

at λ̄ if and only if for any net {λα} ⊂ Λ with λα → λ̄ and for any xα ∈ G(λα), there

exist x̄ ∈ G(λ̄) and a subnet {xβ} of {xα}, such that xβ → x̄.

The following lemma plays an important role in the proof of the lower semicontinuity

of the solution mapping S(·).
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Lemma 2.1 [2, Theorem 2, p.114] The union Γ =
⋃

i∈I Γi of a family of l.s.c set-valued

mappings Γi from a topological space X into a topological space Y is also an l.s.c set-valued

mapping from X into Y , where I is an index set.

3 Lower Semicontinuity and Continuity

For each f ∈ C∗\{0} and for each µ ∈ Λ, let Sf (µ) denote the set of f -efficient solutions

to (PGVEP), i.e.,

Sf (µ) = {x ∈ A(µ) | inf
z∈F (x,y,µ)

f(z) ≥ 0, ∀y ∈ A(µ)}.

Throughout this section, assume that Sf (µ) 6= ∅ for all f ∈ C∗\{0} and µ ∈ Λ. To ensure

the existence, we give a kind of sufficient conditions as an example.

For each f ∈ C∗\{0}, let Vf denote the set of f -efficient solutions to (GVEP), i.e.,

Vf = {x ∈ A | inf
z∈F (x,y)

f(z) ≥ 0, ∀y ∈ A}.

A set-valued mapping E : A → 2A is called a KKM-mapping if co{x1, · · · , xn} ⊂
⋃n

i=1 E(xi) for any finite subset {x1, · · · , xn} of A, where co(D) denotes the convex hull of

the set D.

The set-valued mapping G : A → 2Y is said to be C-convex on A if for any x1, x2 ∈ A

and λ ∈ [0, 1], λG(x1) + (1− λ)G(x2) ⊂ G(λx1 + (1− λ)x2) + C.

Proposition 3.1 Suppose that the following conditions are satisfied:

(i) A is a nonempty compact convex set;

(ii) For each y ∈ A, F (·, y) is l.s.c on A, and for each x ∈ A, F (x, ·) has nonempty

compact values on A;

(iii) F (x, x) ⊂ C, for all x ∈ A, and F (x, ·) is C-convex on A.

Then, for each f ∈ C∗\{0}, Vf 6= ∅.

Proof. Define M : A → 2A by

M(y) = {x ∈ A | inf
z∈F (x,y)

f(z) ≥ 0}, ∀y ∈ A.
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We first prove that for any y ∈ A, M(y) is a closed set. Let xα ∈ M(y) and xα → x0.

Then x0 ∈ A since A is compact. Let gy(x) = infz∈F (x,y) f(z) = − supz∈F (x,y)(−f(z)). It

follows from xα ∈ M(y) that

gy(xα) = inf
z∈F (xα,y)

f(z) ≥ 0. (1)

Since f is continuous and F (·, y) is l.s.c at x0, by Proposition 19 of [1, §3-1, p.118], gy(·)
is upper semicontinuous at x0. It follows from (1) that

inf
z∈F (x0,y)

f(z) = gy(x0) ≥ lim sup
xα→x0

gy(xα) ≥ 0.

Thus, x0 ∈ M(y). So M(y) is a closed set. Moreover, since M(y) ⊂ A and A is compact,

M(y) is also a compact set.

Next, we show that M is a KKM-mapping. Suppose it is false. Then there exist a finite

subset {y1, · · · , yn} ⊂ A and t1, · · · , tn ≥ 0 with
∑n

i=1 ti = 1 such that ȳ =
∑n

i=1 tiyi 6∈
⋃n

i=1 M(yi). Then, for each i ∈ {1, 2, · · · , n}, ȳ 6∈ M(yi), i.e.,

inf
z∈F (ȳ,yi)

f(z) < 0.

Since f is continuous and F (ȳ, ·) is a compact set, for each i ∈ {1, 2, · · · , n}, there exists

zi ∈ F (ȳ, yi) such that

f(zi) = min
z∈F (ȳ,yi)

f(z) < 0. (2)

From the condition (iii), we have

n∑

i=1

tizi ∈
n∑

i=1

tiF (ȳ, yi) ⊂ F (ȳ, ȳ) + C ⊂ C + C ⊂ C.

By the linearity of f and f ∈ C∗\{0}, we get

n∑

i=1

tif(zi) = f(
n∑

i=1

tizi) ≥ 0.

On the other hand, it follows from ti ≥ 0, i = 1, 2, · · · , n, with
∑n

i=1 ti = 1 and (2) that

n∑

i=1

tif(zi) < 0,

a contradiction. Hence, M is a KKM-mapping.

By the well-known Ky Fan lemma (e.g., see Lemma 2.2 of [15]),
⋂

y∈A M(y) 6= ∅. Thus,

Vf =
⋂

y∈A M(y) 6= ∅. 2

From Proposition 3.1, we have the following result on the existence of Sf readily.
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Proposition 3.2 Let µ ∈ Λ. Suppose that the following conditions are satisfied:

(i) A(µ) is a nonempty compact convex set;

(ii) For each y ∈ A(µ), F (·, y, µ) is l.s.c on A(µ), and for each x ∈ A(µ), F (x, ·, µ) has

nonempty compact values on A(µ);

(iii) F (x, x, µ) ⊂ C, for all x ∈ A(µ), and F (x, ·, µ) is C-convex on A(µ).

Then, for each f ∈ C∗\{0}, Sf (µ) 6= ∅.

Now we establish the lower semicontinuity and continuity of S(·) to (PGVEP).

Lemma 3.1 For each µ ∈ Λ, if for each x ∈ A(µ), F (x,A(µ), µ) + C is a convex set,

then

S(µ) =
⋃

f∈C∗\{0}
Sf (µ).

Proof. “⊃” Let x ∈ ⋃
f∈C∗\{0} Sf (µ). Then there exists f ′ ∈ C∗\{0} such that x ∈ Sf ′(µ).

Therefore, x ∈ A(µ) and infz∈F (x,y,µ) f ′(z) ≥ 0, ∀y ∈ A(µ). Whence, we get ∀y ∈ A(µ) and

∀z ∈ F (x, y, µ), f ′(z) ≥ 0, which deduces that z 6∈ −intC. Otherwise, if z ∈ −intC, then

it follows from f ′ ∈ C∗\{0} that f ′(z) < 0, a contradiction. Thus, by the arbitrariness of

z, we obtain F (x, y, µ) ⊂ Y \ − intC, ∀y ∈ A(µ), and hence x ∈ S(µ).

“⊂” Let x ∈ S(µ). Then x ∈ A(µ) and F (x, y, µ) ⊂ Y \ − intC, ∀y ∈ A(µ). Thus,

F (x,A(µ), µ) ∩ (−intC) = ∅,

and hence,

(F (x,A(µ), µ) + C) ∩ (−intC) = ∅.

Because F (x,A(µ), µ) + C is a convex set, by the well-known Eidelheit’s separation

theorem (see [4, Theorem 3.16]), there exist a continuous linear functional f ∈ Y ∗\{0}
and a real number γ such that

f(ĉ) < γ ≤ f(z + c),

for all z ∈ F (x,A(µ), µ), c ∈ C and ĉ ∈ −intC. Since C is a cone, we get f(ĉ) ≤ 0 for

all ĉ ∈ −intC. Thus, f(ĉ) ≥ 0 for all ĉ ∈ C, that is, f ∈ C∗. Moreover, it follows from

c ∈ C, ĉ ∈ −intC and the continuity of f that f(z) ≥ 0 for all z ∈ F (x,A(µ), µ). Thus,

∀y ∈ A(µ), we have infz∈F (x,y,µ) f(z) ≥ 0, i.e., x ∈ Sf (µ) ⊂ ⋃
f∈C∗\{0} Sf (µ). 2
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Lemma 3.2 Suppose that the following conditions are satisfied:

(i) A is continuous with nonempty compact values on Λ;

(ii) F is u.s.c with nonempty compact values on B ×B × Λ;

(iii) F (·, ·, µ) is C-strictly monotone on A(µ) × A(µ) for any given µ ∈ Λ, i.e., for all

x, y ∈ A(µ) and x 6= y, F (x, y, µ) + F (y, x, µ) ⊂ −intC.

Then, for each f ∈ C∗\{0}, Sf (·) is l.s.c on Λ.

Proof. Suppose to the contrary that there exist f ∈ C∗\{0} and µ0 ∈ Λ such that Sf (·)
is not l.s.c at µ0. Then there exist {µα} with µα → µ0 and x0 ∈ Sf (µ0), such that for any

xα ∈ Sf (µα), xα 6→ x0.

Since A(·) is l.s.c at µ0, there exists a net x̄α ∈ A(µα) such that x̄α → x0. For any

yα ∈ Sf (µα), because A(·) is u.s.c at µ0 with compact values, there exist y0 ∈ A(µ0) and

a subnet {yβ} of {yα} such that yβ → y0. It follows from x0 ∈ Sf (µ0) and y0 ∈ A(µ0)

that

inf
z∈F (x0,y0,µ0)

f(z) ≥ 0.

Since f is continuous and F (x0, y0, µ0) is a compact set, there exists z0x ∈ F (x0, y0, µ0)

such that

f(z0x) = min
z∈F (x0,y0,µ0)

f(z) ≥ 0. (3)

On the other hand, since yβ ∈ Sf (µβ) and x̄β ∈ A(µβ), we get infz∈F (yβ ,x̄β ,µβ) f(z) ≥ 0.

Since f is continuous and F (yβ, x̄β, µβ) is a compact set, there exists zβ ∈ F (yβ, x̄β, µβ)

such that

f(zβ) = min
z∈F (yβ ,x̄β ,µβ)

f(z) ≥ 0. (4)

Because F (·, ·, ·) is u.s.c at (y0, x0, µ0) with compact values, there exists z0y ∈ F (y0, x0, µ0)

such that zβ → z0y (taking a subnet if necessary). It follows from the continuity of f and

(4) that

f(z0y) ≥ 0. (5)

By (3), (5) and the linearity of f , we get

f(z0x + z0y) = f(z0x) + f(z0y) ≥ 0. (6)
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Assume that y0 6= x0. Since F (·, ·, µ0) is C-strictly monotone on A(µ0) × A(µ0), we

have

F (x0, y0, µ0) + F (y0, x0, µ0) ⊂ −intC.

Then it follows from f ∈ C∗\{0} and z0x + z0y ∈ −intC that

f(z0x + z0y) < 0,

which contradicts (6). Therefore, y0 = x0. This is impossible by the contradiction as-

sumption. 2

Theorem 3.1 Suppose that the following conditions are satisfied:

(i) A is continuous with nonempty compact values on Λ;

(ii) F is u.s.c with nonempty compact values on B ×B × Λ;

(iii) F (·, ·, µ) is C-strictly monotone on A(µ)× A(µ) for any given µ ∈ Λ;

(iv) For each µ ∈ Λ and for each x ∈ A(µ), F (x, ·, µ) is C-convexlike on A(µ), i.e., for

any x1, x2 ∈ A(µ) and any ρ ∈ [0, 1], there exists x3 ∈ A(µ) such that ρF (x, x1, µ)+

(1− ρ)F (x, x2, µ) ⊂ F (x, x3, µ) + C.

Then, S(·) is l.s.c on Λ.

Proof. For each µ ∈ Λ and for each x ∈ A(µ), since F (x, ·, µ) is C-convexlike on A(µ),

F (x,A(µ), µ) + C is a convex set. Thus, by virtue of Lemma 3.1, for each µ ∈ Λ, it holds

that

S(µ) =
⋃

f∈C∗\{0}
Sf (µ).

It follows from Lemma 3.2 that for each f ∈ C∗\{0}, Sf (·) is l.s.c on Λ. Thus, in view of

Lemma 2.1, we obtain that S(·) is l.s.c on Λ. 2

The following example illustrates that the assumption (iii) in Theorem 3.1 is essential.

Example 3.1 Let X = Z = R, Y = R2, Λ = [−1, 1] and C = R2
+. Suppose that

A(µ) = [0, 1], F (x, y, µ) = (µx(y − x), x(y − x)), B = [0, 1], and µ0 = 0.

9



Then the assumptions (i) and (ii) in Theorem 3.1 are clearly satisfied. It can be checked

that for each µ ∈ Λ and for each x ∈ A(µ), F (x, ·, µ) is R2
+-convex on A(µ), i.e., for

every y1, y2 ∈ A(µ) and t ∈ [0, 1],

tF (x, y1, µ) + (1− t)F (x, y2, µ) ∈ F (x, ty1 + (1− t)y2, µ) + R2
+.

Thus, the assumptions (iv) of Theorem 3.1 holds. However, the assumption (iii) in The-

orem 3.1 is violated, since for any x, y ∈ A(µ0) and x 6= y,

F (x, y, µ0) + F (y, x, µ0) = (µ0(2xy − x2 − y2), 2xy − x2 − y2)

= (0, 2xy − x2 − y2)

6∈ −intR2
+.

It follows from a direct computation that

S(µ) =





[0, 1], if µ ∈ [−1, 0].

{0}, if µ ∈ (0, 1],

Clearly, we see that S(·) is not l.s.c at µ0 = 0. Hence, the assumption (iii) in Theorem

3.1 is essential.

Proposition 3.3 If F has nonempty compact values on B × B × Λ and F (·, ·, µ) is C-

strictly monotone on A(µ)× A(µ) for any given µ ∈ Λ, then for each f ∈ C∗\{0}, Sf (·)
is a singleton on Λ.

Proof. Suppose that there exists f ∈ C∗\{0} such that Sf (·) is not a singleton on Λ.

Then there exist µ ∈ Λ and x1, x2 ∈ Sf (µ) satisfying x1 6= x2. Thus we have x1, x2 ∈ A(µ)

and

inf
z∈F (x1,x2,µ)

f(z) ≥ 0,

and

inf
z∈F (x2,x1,µ)

f(z) ≥ 0.

Since f is continuous and F (x1, x2, µ) is a compact set, there exists z1 ∈ F (x1, x2, µ) such

that

f(z1) = min
z∈F (x1,x2,µ)

f(z) ≥ 0. (7)

Similarly, there exists z2 ∈ F (x2, x1, µ) such that

f(z2) = min
z∈F (x2,x1,µ)

f(z) ≥ 0. (8)
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It follows from (7), (8) and the linearity of f that

f(z1 + z2) ≥ 0.

By the C-strict monotonicity of F , we have z1 + z2 ∈ −intC. Since f ∈ C∗\{0}, f(z1 +

z2) < 0, which leads to a contradiction. 2

Following the ideas of Cheng and Zhu [11] (see also Gong [14]), we have another proof

of Theorem 3.1 based on the fact of Proposition 3.3 as follows.

Another Proof of Theorem 3.1. For each fixed µ ∈ Λ, take arbitrary x ∈ S(µ) =
⋃

f∈C∗\{0} Sf (µ) and {µα} with µα → µ. Then there exists f ′ ∈ C∗\{0} such that {x} =

Sf ′(µ), because Sf ′(µ) is a singleton by Proposition 3.3. In view of Lemma 3.2 and

Proposition 3.3, Sf ′(·) is continuous at µ, since Sf ′(·) is single-valued. Hence, there exists

{xα} = Sf ′(µα) such that xα → x. Since xα ∈ ⋃
f∈C∗\{0} Sf (µα) = S(µα), by Proposition

2.1(i), we obtain that S(·) is l.s.c at µ. By the arbitrariness of µ ∈ Λ, S(·) is l.s.c on Λ. 2

Remark 3.1 Our approach on the lower semicontinuity of the solution mapping S(·) is

totally different from the ones used by Gong [14] and Cheng and Zhu [11] (cf. the above

proof). In our approach, Lemma 2.1 plays an essential role, which allows us to treat

Sf as a set-valued mapping directly. In fact, because the C-strict monotonicity of F is

imposed, we see that Sf is single-valued (Proposition 3.3), which plays key roles in [14]

and [11]. Obviously, our approach does not rely on whether Sf is single-valued or not. In

addition, compared with [14] and [11], the uniform compactness of A is not required (for

more details, see [10]), and the C-convexity of F is generalized to the C-convexlikeness.

Furthermore, we point out that under the assumptions of Theorem 3.1, the solution

mapping S(·) is continuous. We remark that the upper semicontinuity of S(·) is derived

by a scalarization method, which is different from the methods with respect to the upper

semicontinuity of solution mappings used in the literature, such as [5, 11,14,15,17].

Theorem 3.2 Suppose that all conditions of Theorem 3.1 are satisfied. Then, S(·) is

continuous on Λ.

Proof. We shall prove that for each µ ∈ Λ, S(·) is u.s.c at µ. Suppose that there exists

some µ0 ∈ Λ such that S(·) is not u.s.c at µ0. Then there exist an open set M satisfying

S(µ0) ⊂ M , and nets µα → µ0 and xα ∈ S(µα), such that xα 6∈ M , ∀α.
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By Lemma 3.1, we have that xα ∈ S(µα) =
⋃

f∈C∗\{0} Sf (µα). Thus there exists

f ′ ∈ C∗\{0} such that {xα} = Sf ′(µα), as Sf ′(µα) is a singleton by Proposition 3.3. Let

{x0} = Sf ′(µ0). Since Sf ′(·) is continuous at µ0 by Lemma 3.2 and Proposition 3.3, we

obatin that xα → x0. It follows from xα 6∈ M and the openness of M that x0 6∈ M , which

contradicts the fact that x0 ∈ ⋃
f∈C∗\{0} Sf (µ0) = S(µ0) ⊂ M . 2

From Theorem 3.2, we have the following corollaries readily. The results improve

Theorem 4.2 and Corollary 5.1 of [14], respectively, because the uniform compactness of

A is not required.

Corollary 3.1 Let ψ : B×Λ → Y and ϕ : B×B×Λ → Y be mappings. Let F (x, y, µ) =

ϕ(x, y, µ) + ψ(y, µ)− ψ(x, µ). Suppose that the following conditions are satisfied:

(i) A is continuous with nonempty compact values on Λ;

(ii) ψ is continuous on B × Λ and ϕ is continuous on B ×B × Λ;

(iii) ϕ(·, ·, µ) is C-strictly monotone on A(µ)× A(µ) for any given µ ∈ Λ;

(iv) For each µ ∈ Λ and for each x ∈ A(µ), ϕ(x, ·, µ) + ψ(·, µ) is C-convexlike on A(µ).

Then, S(·) is continuous on Λ.

Corollary 3.2 Let X = Rn, Y = Rp and C = Rp
+. Let gi : B × Λ → Rn, i = 1, · · · , p

and ψ : B × Λ → Rp be mappings. Let F (x, y, µ) = (〈g1(x, µ), y − x〉, · · · , 〈gp(x, µ), y −
x〉) + ψ(y, µ)− ψ(x, µ). Suppose that the following conditions are satisfied:

(i) A is continuous with nonempty compact values on Λ;

(ii) ψ and gi, i = 1, · · · , p are continuous on B × Λ;

(iii) gi(·, µ), i = 1, · · · , p are strictly monotone on A(µ) for any given µ ∈ Λ, i.e., for all

x, y ∈ A(µ) and x 6= y, 〈gi(x, µ)− gi(y, µ), x− y〉 > 0, i = 1, · · · , p;

(iv) For each µ ∈ Λ, ψ(·, µ) is Rp
+-convex on A(µ).

Then, S(·) is continuous on Λ.
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