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Spatiotemporal Video Segmentation
Based on Graphical Models

Yang Wang, Member, IEEE, Kia-Fock Loe, Tele Tan, and Jian-Kang Wu

Abstract—This paper proposes a probabilistic framework
for spatiotemporal segmentation of video sequences. Motion
information, boundary information from intensity segmentation,
and spatial connectivity of segmentation are unified in the video
segmentation process by means of graphical models. A Bayesian
network is presented to model interactions among the motion
vector field, the intensity segmentation field, and the video seg-
mentation field. The notion of the Markov random field is used to
encourage the formation of continuous regions. Given consecutive
frames, the conditional joint probability density of the three fields
is maximized in an iterative way. To effectively utilize boundary
information from the intensity segmentation, distance transforma-
tion is employed in local objective functions. Experimental results
show that the method is robust and generates spatiotemporally
coherent segmentation results. Moreover, the proposed video seg-
mentation approach can be viewed as the compromise of previous
motion based approaches and region merging approaches.

Index Terms—Bayesian network, graphical model, motion
segmentation, Markov random field (MRF), region merging,
spatiotemporal segmentation.

I. INTRODUCTION

OBUST video segmentation is very important to appli-
cation areas such as human-computer interaction, object-
based video compression, and multiobject tracking. To differen-
tiate independently moving objects composing the scene, one of
the key issues in the design of these vision systems is the strategy
to extract and couple temporal (or motion) information and spa-
tial (or intensity) information in the segmentation process.
Motion information is one fundamental element used for seg-
mentation of video sequences. A moving object is character-
ized by coherent motion over its support region. The scene can
be segmented into a set of regions, such that pixel movements
within each region are consistent with a motion model (or a
parametric transformation) [25]. Examples of motion models
are the translational model (two parameters), the affine model
(six parameters), and the perspective model (eight parameters).
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Furthermore, spatial constraints could be imposed on the seg-
mented region where the motion is assumed to be smooth or
follow a parametric transformation. In the work of [4], [20],
and [24], the motion information and segmentation are simul-
taneously estimated. Moreover, layered approaches have been
proposed to represent multiple moving objects in the scene with
a collection of layers [12], [13], [22]. Typically, the expectation
maximization (EM) algorithm is employed to learn the multiple
layers in the image sequence.

On the other hand, intensity segmentation provides important
hints of object boundaries. Methods that combine intensity seg-
mentation with motion information have been proposed [16],
[18], [23]. A set of regions with small intensity variation is given
by intensity (over)segmentation of the current frame. Usually, a
region adjacency graph or a partition tree can be used to repre-
sent the regions in the scene [10], [19]. Objects are then formed
by merging together regions with coherent motion. The region
merging approaches have two disadvantages. First, the inten-
sity segmentation remains unchanged so that motion informa-
tion has no influence upon the spatial information during the
entire process. Second, even an oversegmentation sometimes
cannot keep all the object edges, and the boundary informa-
tion lost in the initial intensity segmentation cannot be recov-
ered later. Since spatial information and temporal information
should interact throughout the segmentation process [6], to uti-
lize only motion information or fix intensity segmentation will
degrade the performance of video segmentation. From this point
of view, it is relatively comprehensive to simultaneously esti-
mate the motion vector field, the intensity segmentation field,
and the object (or video) segmentation field.

Fortunately, graphical models provide a natural tool for han-
dling uncertainty and complexity through a general formalism
for compact representation of joint probability distribution [14].
In particular, Bayesian networks and Markov random fields are
playing an increasingly important role in the design and analysis
of machine intelligent systems [8] including image and video
processing [7], [15].

In this paper, we present a probabilistic framework in which
spatial information and temporal information act on each other
during the video segmentation process. A Bayesian network is
proposed to model the interactions among the motion vector
field, the intensity segmentation field, and the video segmen-
tation field. The notion of the Markov random field (MRF) is
employed to boost spatial connectivity of segmented regions.
A three-frame approach is adopted to deal with occlusions. The
segmentation criterion is the maximum a posteriori (MAP)
estimate of the three fields given consecutive video frames.
To perform the optimization, we propose a procedure that min-
imizes the corresponding objective functions in an iterative
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way. Distance transformation is employed in local optimization
to effectively couple the boundary information from intensity
segmentation. Experiments show that our technique is robust
and generates spatiotemporally consistent segmentation results.
Theoretically, the proposed video segmentation approach can
be viewed as the compromise of motion based approaches and
region merging approaches.

Our method is mostly related to the work of Chang et al. [4]
and Patras et al. [18]. Both approaches simultaneously estimate
the motion vector field and the video segmentation field using
a MAP-MREF algorithm. The method proposed by Chang et al.
adopts a two-frame approach and does not use the constraint
from the intensity segmentation field during the video segmen-
tation process. Although the algorithm has successfully identi-
fied multiple moving objects in the scene, the object boundaries
are inaccurate in their experimental results. The method of Pa-
tras et al. employs an initial intensity segmentation and adopts
a three-frame approach to deal with occlusions. However, the
method retains the disadvantages of region merging approaches.
The temporal information could not act on the spatial informa-
tion, and the boundary information neglected by the initial in-
tensity segmentation field could no longer be recovered by the
motion vector field.

In order to overcome these problems, our algorithm simulta-
neously estimates the three fields to form spatiotemporally co-
herent results. The interrelationships among the three fields and
successive video frames are described by a Bayesian network
model, in which spatial information and temporal information
interact on each other. In our approach, regions in the intensity
segmentation can either be merged or split according to the mo-
tion information. Hence, boundary information lost in the inten-
sity segmentation field can be recovered by the motion vector
field.

The rest of the paper is arranged as follows. Section II
presents the formulation of our approach. Section III proposes
the optimization scheme. Section IV discusses the experimental
results. Then, our technique is concluded in Section V.

II. METHOD
A. Model Representation

For an image sequence, it is assumed that the intensity of a
pixel remains constant along its motion trajectory. Ignoring both
illumination variations and object occlusions, it may be stated
as

Yr(X) = yr—1(x — dp(x)) (D

where y(x) is the pixel intensity within the kth video frame at
site x, with £ € N, x € X, and X is the spatial domain of each
video frame. dg(x) is the motion vector from frame k — 1 to
frame k. The entire motion vector field is expressed compactly
as dy,.

Since the video data are corrupted in the image acquisition
process, an observation model is required for the sequence.
Assume that independent and identically distributed (i.i.d.)
Gaussian noise corrupts each point; thus, the observation model
for the kth frame becomes

gr(x) = yx(x) + ni(x) (2
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where gy, (x) is the observed image intensity at site x, and n(x)
is the independent zero-mean additive noise with variance 2.
In our paper, video segmentation refers to grouping pixels that
belong to independently moving objects in the scene. To deal
with occlusions, we assume that each site x in the current frame
gr. cannot be occluded in both the previous frame g;_; and the
next frame g1. Thus, a three-frame method is adopted for ob-
ject segmentation. Given consecutive frames of the observed
video sequence, gi—_1, gk, and gr41, we wish to estimate the
joint conditional probability distribution of the motion vector
field dy, the intensity segmentation field s, and the object (or
video) segmentation field z;. Using the Bayes’ rule, we know

p(dk, Sks 2k | Gk> Gle—1+ Gh+1)
_ p(dk; Sk, 2k, Gk Gk—1, Ght1)
PGk, Gk—1, Gr41)

3

where p(dg, Sk, 2k | 9k» Gk—1, gk+1) 18 the posterior probability
density function (pdf) of the three fields, and the denominator
on the right side is constant with respect to the unknowns.

The interrelationships among dy, Sk, 2k, gk, Gk—1, Jk+1 are
modeled in the following aspects. First, motion estimation es-
tablishes the pixel correspondence among the three consecu-
tive frames. Given the current frame and motion vector field,
pixels in the previous frame and the next frame should follow
the constant intensity assumption in (1). Second, the intensity
segmentation field provides a set of regions with relatively small
intensity variation in the current frame. Third, in order to iden-
tify independently moving objects in the scene, these regions
are encouraged to group into segments with coherent motion.
Fourth, if multiple motion models coexist within one region,
the region may split into several segments. These four interrela-
tionships are modeled, respectively, by the Bayesian networks
in Fig. 1(a)—(d). Combining these four relationships, our video
segmentation model can be represented by the Bayesian net-
work in Fig. 1(e). Thus, according to the motion vector field,
regions in the intensity segmentation field can either merge or
split to form spatiotemporally coherent segments. Moreover,
spatial connectivity should be encouraged during the video seg-
mentation process.

The conditional independence relationships implied by the
Bayesian network allow us to compactly represent the joint dis-
tribution. Using the chain rule [11], the joint probability density
can be factorized as the product of the conditional distribution
of each element in the Bayesian network given its parents

(i, Sks 2k, Gk Jh—15 Gh41) = P(Gk—1, 9k+1 | 9r» dic)
x p(gk | sk)p(si)p(dr | 26)p(zk | s1:)- (4)

Hence, the MAP estimate of the three fields becomes

max  p(dg, Sk, 2k | gk, Jk—1, Gk+1)
di,sk,zk)

arg max p(dk;3k72kvgk7gk717gk+1)
(di,sk,2k)

arg max  p(gr—1,Jk+1 | 9k di)

(dk,Sk,2k

(ak7 gk'/ 276) = arg

X p(gk | sk)p(sk)p(di | zx)p(2k | 56).  (S)
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Fig. 1. Bayesian network model for video segmentation.

B. Spatiotemporal Constraints

The conditional probability density p(gx—1,9x+1 | 9k, dk)
shows how well the motion estimation fits the consecutive
frames. Assuming that the probability is completely specified
by the random field of the displaced frame difference (DFD)
[21], the video observation model can be employed to compute
P(9k—1, gr+1 | di, gr). We can define the backward DFD e? (x)
and forward DFD e£ (x) at site x as

ek (%) = gr(x) = ge—1(x — di(x))

= ng(x) — ng—1(x — dp(x)) (6a)
el (x) = gr(x) - gk+1(X + di(x))
= ng(x) — ngp41(x + di(x)). (6b)

The vector (e} (x), ei(x)) is denoted as ey (x). With the i.i.d.

Gaussian noise assumption, we know that ey (x) is of zero
mean bivariate normal distribution. The correlation coefficient
of ¢} (x) and e] (x) is

Cov [e’,;(x), ei(x)} o2 1
p= 202 2"
\/Var [eh(x)] Var [ei(x)] "

Assuming conditional independence among spatially distinct
observations, the probability density can be factorized as

P(gr—1, 9r+1 | g, di)

~ [T plor-1(x = de(x)), girr (x + di(x)) | 9r(x))

xEX

~ [T p (chix), ef(x))

xEX

1 1X]
= ——— exp | —
(2m/|z;e|> p[
1 d
X exp [—FZU,@ (d

n xeX
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U214 (dw(x))
= (eh(x))” = 2peb(x)ef (%) + (f (%)

where X, is the covariance matrix for each site x, and the cor-
relation coefficient p has been computed in (7).

The term p(gy | si.) shows how well the intensity segmenta-
tion fits the scene. Assuming Gaussian distribution for each seg-
mented region in the current frame, the conditional probability
density could be factorized as

(8b)

P(gr | sx)

= [ plor(x

xeX

- 1 1X|
= \/%Un exp |—

)| sx(x))

3 g (20 - o)

xeX "

1
x exp l_ﬁ Usz's<sk<x>>] %)
N xeX
U2 % (51(x)) = (91:(%) = Hs x))? (9b)

where s;(x) = [ assigns site x to region [, y1; is the intensity
mean of region [/, and 072’ is the variance for each region.

The pdf p(sy) represents the prior probability of the inten-
sity segmentation. To encourage the formation of continuous re-
gions, we model the density p(sy) by a Markov random field [9].
That is, if Ny is the neighborhood of a pixel at x, then the con-
ditional distribution of a single variable at site x depends only
on the variables within its neighborhood Ny. According to the
Hammersley-Clifford theorem, the density is given by a Gibbs
distribution with the following form:

ZVS Sk

ceC

p(sk) o< exp X)|x € ¢) (10)

where C is the set of all cliques ¢ and V7 is the clique potential
function. A clique is a set of pixels that are neighbors of each
other, and the potential function V. depends only on the points
within clique c.

Spatial constraint can be imposed by the following two-pixel
clique potential:

Ve (sk(x), sk (y))
X U;,y(sk(x)7 3k(Y))
1
= oz L~ (sk(x) = sx(¥))] (11)
% = ylI?
where
1, ifz=0
6(z) = {0, otherwise

is the Kronecker delta function and || - || denotes the Euclidean

distance. Thus, two neighboring pixels are more likely to be-
long to the same class than to different classes. The constraint
becomes stronger with the decrease of the distance between the
neighboring sites.

The term p(dy | zx) is the conditional probability density
of the motion vector field given the video segmentation field.
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To boost spatial connectivity, it is modeled by a Gibbs distribu-
tion with the following potential function

VAE(di(x), di(y) | )

X Uf,;'/z(dk(x)vdk(Y): 2k(%), 21(Y))
1

= WW:«(X) = 21(y)lldr(x) = di(¥)II*.(12)
The pairwise smoothness constraint of the motion vectors is im-
posed only when the two neighboring points share the same
video segmentation label. It encourages one region to split into
several segments when different motion models coexist. Hence,
U217 can viewed as the region splitting force.

xy g P g

The last term p(zy | sx) represents the posterior probability
density of the video segmentation field when the intensity seg-
mentation field is given. The density is modeled by a Gibbs dis-
tribution with the following potential function:

VAR (21(x), 2 (y) | s1)
X Ui,‘ys(zk(xmk(w 56(x), sx(¥y))

L1 6 — 2 (y))]

=yl
oyt or00) = sk = (a0 = 21y
(13)

The first term on the right side encourages the spatial connec-
tivity of video segmentation, while the second term encourages
two neighboring pixels to share the same video segmentation
label when they are within one region of the intensity segmen-
tation field. Therefore, U,flf encourages intensity segmentation
regions to group altogether and can be viewed as the region
merging force. The parameter « controls the strength of the con-
straint imposed by the intensity segmentation.

The interactions in the Bayesian network are modeled by the
above spatiotemporal constraints. Combining these pdf terms,
the MAP estimation criterion becomes

(dg. Sk, 2c)
=arg min

U9ldiq,
(dk,Sk,2k) );( x ( k(X))

+A ) Ul (si(x))

+do D> Uy (sk(x),sk(y))
{x,y}eC

+ds > URL(de(x),di(y), zr(x), zr(y))
{x,y}eC

+ A4 Z U;,‘ys(zk(x)vzk(Y)vSk(x)vsk(y)) (14)

{x,y}eC
where the parameters A1, A2, A3, and A4 control the contribution

of individual terms.

C. Notes on the Bayesian Network Model

In our model, the video segmentation is influenced by both
spatial information and temporal information. It should be noted
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Fig. 2. Simplified Bayesian network model for video segmentation.

that the direction of the links in the Bayesian network model
does not mean that the influence between the cause and conse-
quence is only one way.

The current video frame could be thought as the cause of the
next frame. For an image sequence, both the original sequence
and the one in the reverse sequence order are understandable
from the viewpoint of segmentation (in the reversed sequence,
object appearances and occlusion relationships are the same as
those in the original sequence, while motion models are reversed
for all the objects in the scene). Thus, the current frame could
also be viewed as the cause of the previous frame (in the reversed
sequence). In our model, g;, is the cause of both the next frame
gr+1 and the previous frame gj_.

The motion vector field establishes the correspondence be-
tween the current frame and its two neighboring frames. When
frame g1 and frame g, are separated (as shown in Fig. 2),
the interrelationship seems clearer at the first glance. However,
from the structure of the Bayesian network, we know that, in
this case

P(gk—1, Gr+1 | g&, di)
= p(gk—1| gk, dr)p(gr+1 | gr, dr)
= [ pleh(x))plef(x))

xeX

X exp

_% (eb(x))” + (e;;(x))?] . (15)

" xeX

Compared with (8), the correlation coefficient of €% (x) and
ei(x) is zero in (15). The Bayesian network in Fig. 2 neglects
the interaction between the forward DFD and the backward
DFD. Therefore, the Bayesian network model in Fig. 2 is just a
simplification of the original model.

In (13), when the parameter o becomes zero, the constraint
from the intensity segmentation disappears so that our method
degenerates into a motion based approach. Meanwhile, when
a becomes infinity, boundaries in the video segmentation field
must come from the intensity segmentation field, and our
technique turns into a region merging approach. Therefore, the
proposed method can be viewed as the compromise of previous
motion based approaches and region merging approaches.
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III. MAP ESTIMATION
A. Iterative Estimation

Obviously, there is no simple method of directly minimizing
(14) with respect to all unknowns. We propose an optimization
strategy iterating over the following two steps.

First, we update dj and sj, given the estimate of the video
segmentation field z;. From the structure of the proposed
Bayesian network, we can see that d; and sj are conditionally
independent when the video segmentation field z; and the
three successive frames are given. The joint estimation can
be factorized as

(dk, %) = arg max_p(dg, sk | grs Gk—1, Grr1, k)
(dk,s)

= (arg Il(liaXp(dk | 9ks k-1 Jk+1; ék)
k

arg max p(sk |.qk72k)> : (16)
Using the chain rule, the MAP estimate becomes
dj, = arg maXP(dk | gks Gk—1, Gk+1, Zk)
= argmaxp(gk 1, 9k+1 | 9k, di)p(de | 21)  (17a)
f1 = axg macp(se | gi. )
= argmaxp( | se)p(sk)p(Zk | sk)- (17b)

Second, we update zj, given the estimate of the motion field dy
and the intensity segmentation field s,

Z, = arg IgaXp(Zk | Ghs Gk—15 Ghr1, i, 81
k
= arg max p(zy | di, ék)

= argmaxp(dy | z)p(zr | 31)- (18)
In our work, the 24-point neighborhood system (the fifth-order
neighbor system, see Fig. 3) is used, and potentials are defined
only on two-point cliques. Using the terms in (14), the Bayesian
MAP estimates in (17) and (18) can be obtained by minimizing
the following objective functions:

Fi(dy) =" |U219(di(x))
xeX
+ ,\3 Z Ud‘ x), dr(¥), 26(x), 21 (y))
Y (19a)
F(se) = D | UL (1)
xeX
+ %)\2 3 Ugy(su(x), su(y))

YENx

1
+ 5 D UL (Br(x), 20(y), 51(x), s1(y))
YENx
(19b)
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Fig. 3. Fifth-order neighborhood system.

F*(z) = Z )\3 Z Us) x), di(y), 2 (%), 2 (y))

xeX YENx
+ )\4 Z Uz| x), 21(¥ ), 8k(x), 81(¥))
yEN

(19¢)

where Ny is the neighborhood of the pixel at x.

B. Local Optimization

In general, the objective functions are nonconvex and do not
have a unique minimum. The iterated conditional modes (ICM)
algorithm is used to arrive at a suboptimal estimate of each ob-
jective function [2]. The ICM algorithm employs the greedy
strategy in iterative minimization. Given the observed data and
other estimated labels, the segmentation label is sequentially up-
dated by locally minimizing the objective function at each site.

To effectively employ boundary hints from the spatial infor-
mation in local optimization, distance transformation [3] is per-
formed on the intensity segmentation field. Each pixel x in the
distance transformed image has a value dx (s ) representing the
distance between the pixel and the nearest boundary pixel in
sk. Here, a boundary pixel x has at least one point y within its
neighborhood where sy (y) is not the same as s (x). The term
UzL® in (19¢) is replaced by

UL (20(%), 21(y), 3(%), 3(y))

1
= W[l — 02k (%) — zk(y))]
ab(dx(8r) — dy(8k))
[Ix — yl?
X 6(8k(x) = 1 (y))[L = 6(zk(x) = 2x(y))]  (20)
where

2, ifz<0

H(x) = {17 ifz=0

0, otherwise.

The term 6 helps to give a penalty on the pixel closer to the
boundary in the intensity segmentation field if the two neigh-
boring pixels within an intensity segmentation region do not
share the same video segmentation label. It should be noted that
U’ l * does not destroy the symmetry of the two-pixel clique

potentlal in MRF. U’ ‘; is associated with the objective func-
tion (19¢) and the optimization algorithm. The optimization al-
gorithm updates the label by locally minimizing the objective
function at each site. A two-point potential is accounted on both

sites. U’ I * is equivalent to Usx, |y for the objective function be-
z|s

cause the total penalty for the entire field is the same. Uy y’ is
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symmetric and it complies with the definition of MRF. The dif-
ference between them occurs in the local minimization of the
optimization process. We prefer the form of (20) since, in our
experiments, the boundary information is more accurately esti-
mated by giving the entire penalty to the site near the boundary
instead of evenly allocating the penalty for both sites in local
optimization (see Section IV).
Similarly, in (19b), U,’f,!ys could be replaced by

U2\ (30(x), 2y ) k(%) 5:(y))
_ af(dy () — dy ()
Ix — yII?
X 8(s1(x) — sk (y))[L = 6(2(%) — 2())].

Compared to (13), (21) ignores the first term in (13) since it is
constant when the video segmentation field is given.

Thus, we obtain the actual local objective functions that are
sequentially optimized at each site

ey

Fa(dy) = U“d(dk( )
£ 2% 3 VR (), dely), (), ()
vers (22a)
F3(s1) = MUZ* (sx(x))
3k ZN U3y (51(%), 5x()
F o Y UL G, ), si(),su(y)
et (22b)
FZ(z) = —/\3 S udl ), di(y), z1(x), z1(¥))
YENx
+ 2k ZN U/ (), 21 y), 6(), 61(3))-

(22¢)

C. Initialization and Parameters

The intensity segmentation field is initialized using a gen-
eralized K-means clustering algorithm to include the spatial
constraint. Each intensity segment is characterized by a constant
intensity, and the spatial constraint is imposed by two-point
clique potential, which actually is a simplification of the adap-
tive clustering algorithm proposed by Papps [17]. The motion
vector field is initialized by the MAP estimation with pairwise
smoothness constraint [21]. Given the initial motion estima-
tion, Wang and Adelson [25] have proposed a procedure for
initialization of the video segmentation field. The current frame
is divided into small blocks and an affine transformation can
be estimated for the motion of each block. A set of motion
models is estimated by adaptively clustering the affine param-
eters. Then, video segmentation labels are assigned in a way
that minimizes the motion distortion. In our work, the video
segmentation field is initialized by combining this procedure
with pairwise spatial constraint on the assignment of regions.
For the parameter selection, the idea proposed by Chang et
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al. is employed [4]. After the initialization of the three fields,
the parameters Aq, A2, A3, and A4 are determined by equal-
izing the contributions of the potentials in objective functions.
First, A3 is computed by balancing the two potentials in (19a).
Then, A4 can be calculated by balancing the two potentials in
(19¢). Finally, A1 and A5 are determined by balancing the three
potentials in (19b). Details can be found in the references.
The parameter « in (13) controls the constraint imposed
by the intensity segmentation field. The more comprehensive
information of object boundaries is kept in the intensity seg-
mentation, the higher penalty (larger «) should be paid when the
object edge in the video segmentation field does not come from
the intensity segmentation field. The parameter « is manually
determined for individual sequence. In our experiments, the
parameter is empirically set as 0.5 < « < 2 to achieve robust
video segmentation. The neighborhood size also influences
the strength of spatiotemporal constraints. The segmentation
results will be too noisy or over smoothed if the neighborhood
size is excessively small or large. Compared to the 8-pixel
(3x3) neighborhood and the 48-pixel (7x7) neighborhood, the
24-pixel (5% 5) neighborhood obtains better video segmentation
results in our practice. During the optimization process, the
Euclidean distance is approximated by the Chamfer distance to
simplify the computation of distance transformation [3].

IV. EXPERIMENTS AND DISCUSSION

The results tested on the “flower garden” sequence and the
“table tennis” sequence are shown in Figs. 4 and 5. We assume
that there are four objects in the video segmentation field. The
motion vector field, intensity segmentation field, and the video
segmentation field are recovered using the proposed technique
for both sequences. The spatial connectivity is clearly exhib-
ited in the estimation results. From the motion vector fields
shown in Figs. 4(b) and 5(b), we can see that motion occlu-
sions are successfully overcome. The results of the four-level
intensity segmentation are depicted in Figs. 4(c) and 5(c), where
an area with constant intensity represents an intensity segment.
Figs. 4(d) and 5(d) are the corresponding distance transformed
images. Darker gray levels are used to represent the pixels with
smaller distance values. In Figs. 4(e)—(h) and 5(e)—(h), we rep-
resent the video segmentation results obtained by our approach.
In the “flower garden” sequence, the edge information is pre-
served well in the intensity segmentation field [see Fig. 4(c)].
The algorithm is capable of distinguishing the different objects
in the scene by successfully grouping the small regions that are
spatiotemporally coherent. While in the “table tennis” sequence,
the boundary information lost in the intensity segmentation field
[boundary information may be lost even in an oversegmentation,
e.g., the boundary between the body and the left arm is lost in
Fig. 5(c)] is recovered according to the information from the
motion vector field. However, boundaries are detected more ac-
curately when both spatial and temporal features are matched
[e.g., the tree in Fig. 4(h) and the body in Fig. 5(f)]. The seg-
mentation algorithm is robust even at the largely homogeneous
areas [e.g., the sky in Fig. 4(e) and table in Fig. 5(e)], where
there is little motion information.
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(e)

Fig. 4.
Video segmentation results.

(b)

4

Fig. 5.
(e)—(h) Video segmentation results.

(b)

(a) Three-level intensity segmentation field for the frame of the “flower garden” sequence. (b)-(e) Video segmentation results.

Fig. 6.

Figs. 6 and 7 show the video segmentation results with
three-level and six-level intensity segmentation for the “flower
garden” sequence and the “table tennis” sequence, respectively.
Comparing with the video segmentation results shown in
Figs. 4 and 5, it can be seen that our method is robust to achieve
spatiotemporally coherent results without strong requirement
of intensity segmentation. Fig. 8 shows part of the video seg-
mentation results using (13) in local objective functions instead
of (20) for the two sequences. Comparing with the segmented
results in Figs. 4 and 5, it can be known that the utilization
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(h)

(a) One frame of the “flower garden” sequence. (b) Motion vector field. (c) Four-level intensity segmentation field. (d) Distance transformed image. (e)—(h)

(d

@ (h)

(a) One frame of the “table tennis” sequence. (b) Motion vector field. (c) Four-level intensity segmentation field. (d) Distance transformed image.

(d) (e)

of distance transformation in local optimization substantially
improves the boundary accuracy of video segmentation.

Figs. 9-10 show the video segmentation results for the two
sequences by simultaneous motion estimation and segmenta-
tion [4], and Fig. 11 shows the corresponding Bayesian net-
work model for the motion based method. The method adopts
a two-frame approach and does not utilize the constraint from
the intensity segmentation field. Compared with Figs. 4-5, both
the motion based approach and our approach have successfully
identified multiple moving objects composing the scene, but ob-
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(b)

Fig. 7.

(c) (d)

(a) Six-level intensity segmentation field for the frame of the “table tennis” sequence. (b)—(e) Video segmentation results.
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(a) (b)

Fig. 8.
sequence.

(a) (b)

Fig. 9.

Fig. 10.

k-1

Fig. 11. Bayesian network model for simultaneous motion estimation and
segmentation.

ject boundaries are estimated more accurately by the proposed
method.

The video segmentation results are also quantitatively evalu-
ated by comparing to manually segmented ground-truth images
(see Fig. 12). Table I shows error rates of the results by the

(©)

Video segmentation results without using distance transformation in local optimization for (a) the “flower garden” sequence and (b), (c) the “table tennis”

(©) @

(a)—(d) Video segmentation results by simultaneous motion estimation and segmentation for the “flower garden” sequence.

(a) (b) (©

(@

(a)—(d) Video segmentation results by simultaneous motion estimation and segmentation for the “table tennis” sequence.

proposed method with three-level, four-level, and six-level in-
tensity segmentation for the two sequences. Table II shows
error rates of the results by the proposed method with and
without using distance transformation in local optimization.
Moreover, Table III compares the error rates of the results
by the proposed method and the motion based method. For
Tables II-III, the four-level intensity segmentation is used in
the proposed method. The quantitative evaluation also indi-
cates that the proposed method effectively improves the video
segmentation accuracy.

To test the robustness of the algorithm, Figs. 13—14 show the
video segmentation results by the proposed method for another
frame of the “flower garden” sequence and the “table tennis”
sequence, respectively. Figs. 15—-16 show the video segmentation
results by the proposed method for the “coastguard” sequence
and the “sign” sequence, respectively. In Figs. 13-16, it is
assumed that there are three objects in the scene. The motion
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Fig. 13.

(b)

(a)

Fig. 12.

(b)

(a) Ground-truth video segmentation for the frame of the “flower

garden” sequence. (b) Ground-truth video segmentation for the frame of the

“table tennis” sequence.

TABLE 1

ERROR RATES OF THE VIDEO SEGMENTATION RESULTS BY THE
PROPOSED METHOD WITH THREE-LEVEL, FOUR-LEVEL,
AND SIX-LEVEL INTENSITY SEGMENTATION

flower garden table tennis
three-level 12.0% 4.9%
four-level 13.6% 4.6%
six-level 13.0% 4.8%
TABLE II

ERROR RATES OF THE VIDEO SEGMENTATION RESULTS BY THE
PROPOSED METHOD WITH AND WITHOUT USING DISTANCE
TRANSFORMATION IN LOCAL OPTIMIZATION

flower garden table tennis
without distance 14.9% 5.8%
transformation
with distance 13.6% 4.6%
transformation
TABLE III

ERROR RATES OF THE VIDEO SEGMENTATION RESULTS BY THE
PROPOSED METHOD AND THE MOTION BASED METHOD

flower garden

table tennis

motion based

15.7%

6.2%

proposed

13.6%

4.6%

vector field and the intensity segmentation field for the “sign”
sequence are also shown in Fig. 16. The experimental results
exhibit satisfactory spatiotemporal coherence.

The intensity segmentation constraint helps generate accurate
boundaries in spatiotemporally coherent areas. Since sometimes
one area of similar intensity may belong to different objects,
the intensity segmentation constraint is weakened when the
motion information within one intensity segmentation region
is incoherent. This is why boundaries lost in the intensity
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(d)

(a) Another frame of the “flower garden” sequence. (b)—(d) Video segmentation results.

segmentation can be recovered by the motion information in
our work. As a compromise, the boundary is not anticipated
to be accurate in the incoherent area because the intensity
segmentation constraint is weak there. Moreover, the inco-
herence of spatiotemporal information may be caused by the
boundary information loss in the intensity segmentation field
or the estimation error in the motion vector field. In the worst
case, our algorithm will fail in the area where the boundary is
lost in intensity segmentation, and the motion is erroneously
estimated at the same time [e.g., the segmentation error for the
part of the right hand in Fig. 16(e)]. Hence, our approach may
not consistently produce accurate edges in the entire video
segmentation field. However, the proposed approach has an
advantage in application areas where it is important to dis-
cover areas with different motions (such as in human-machine
interaction and video indexing). Therefore, the new approach
is complementary to region merging methods in this aspect.

V. CONCLUSION

In this paper, we have proposed a unified framework for video
segmentation based on graphical models. The spatiotemporal
consistency of segmentation is expressed in terms of interactions
among the motion field, the intensity segmentation field, and
the video segmentation field. The solution is obtained by the
MAP estimate, and an optimization procedure that iteratively
maximizes the conditional probability density of the three fields
is proposed. There are three main contributions within the paper.
The first is building a Bayesian network based framework that
combines both the spatial and temporal information in the
video segmentation process. The second is formulating the
spatiotemporal constraints by utilizing Markov random fields,
distance transformation, and multivariate normal distribution.
The third is the theoretical compromise of previous motion
based approaches and region merging approaches. The approach
deals with video segmentation from a relatively comprehensive
and general viewpoint and, thus, can be universally applied. Our
method exhibits good robustness and spatiotemporal coherence.

To simplify the computation, we do not consider the localiza-
tion properties in the sequences. More advanced segmentation
techniques that account for both local information and spa-
tiotemporal information could be adopted, but that requires
load reduction through efficient optimization schemes [5], [15].
This could be our future study. Moreover, adaptive methods for
automatic determination of the number of objects and strength
of the spatiotemporal constraints would be beneficial [1].
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Fig. 16.

(1

[2]
[3]
[4]

[3]
[6]

[71

(8]

(b)

Fig. 14.

(b)

Fig. 15.

O )

(a) One frame of the “sign” sequence. (b) Motion vector field. (c) Four-level intensity segmentation field. (d)—(f) Video segmentation results.
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