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Abstract—A 500 kg/day biomass (palm shell) fed compartmented 

fluidized bed gasifier (CFBG) pilot plant for the purpose of 

synthesis gas production and power generation has been 

constructed in Curtin University of Technology, Sarawak 

Campus. The reactor ID is 66cm with 60:40 cross sectional area 

ratio for combustor and gasifier respectively. Each compartment 

consists of a pair of devices at the partitioning wall for internal 

solid circulation. The minimum and complete fluidization 

velocity (Umf and Ucf) experiments were first conducted using 

pure sand only as the bed material. This is important in order to 

check whether the fluidization behavior, particularly the bed 

pressure drop profile in CFBG is distinctive from those usually 

observed in the fluidized bed of cylindrical shape using common 

bed material. Besides that, the characteristic velocities obtained 

provide the operating parameters for the CFBG when the 

presence of other bed material is very small. Despite of the 

unique reactor feature, the bed pressure drop profiles are closely 

resemble to those observed in the laboratory scale cylindrical 

column. Proper fluidization is attainable in both compartments 

for all the sand sizes used. In the present work, Ucf >>>> Umf , in both 

compartment and this is observed in all the sand sizes used. The 

Umf and Ucf values are affected by the different particle size in the 

sand and bed geometry. The former leads to Ucf >>>> Umf  and Ucf/Umf 

ratio is approximately constant (except for smallest sand size) for 

gasifier and combustor respectively, while the latter leads to (Ucf, 

Umf) gasifier> (Ucf, Umf) combustor due to cumulative effects of the bed 

diameter and particle-to-bed diameter ratio. Based on these 

studies, the governing parameters can be minimized when 

utilizing larger sand size as bed material, hence avoiding physical 

modification on the vessel.   
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I.  INTRODUCTION 

Today, the world is in urgent need of alternative energy to 

reduce the dependency on fossil fuel and to overcome climate 

change. Bioenergy is receiving mass attention due to its 

renewable and abundance supply, climate friendly and 

sustainable. Biomass gasification is one of the promising 

technologies to produce bioenergy. In the area of biomass 

gasification, fluidized bed reactor is identified as the best 

means to handle diverse feedstock due to its effectiveness of 

heat and mass transfer between the gas and solid phases [1].  

Presently, most of the fluidized bed gasifiers require the 

used of pure oxygen instead of air to generate heat for 

gasification reaction. This is to eliminate nitrogen 

contamination/dilution in the product gases. On the other 

hand, almost all of these technologies employ fast circulating 

fluidized bed reactor system (resembling to fluid catalytic 

cracker) that necessitates the excessive utilization of gases 

and/or steam. This increases further the total energy demand 

as additional energy is needed to elevate the temperature of 

the fluidizing agents to the desired condition [2].  

Compartmented Fluidized Bed Gasifier (CFBG) is an 

internally circulating bubbling fluidized bed reactor system 

currently under intensive development following the 

construction of 500 kg/day biomass pilot plant. CFBG is a 

compact reactor system that consists of two compartments, i.e. 

combustor and gasifier, each with a pair of internal device for 

internal solid circulation. Air is used in the combustor to 

generate heat for the steam gasification reaction. The heated 

bed materials from the combustor acts as heat carrier is 

circulated internally to the gasifier and vice versa while the 

combustion and gasification product gases from the respective 

compartments are strictly separated. The bubbling fluidization 

in CFBG would mean a much lower utilization of fluidizing 

air and steam in the compartments, hence requiring 

significantly less energy demand. These coupling benefits of 

indirectly heated and bubbling fluidization make CFBG a 

viable alternative for biomass gasification.  

CFBG has distinctive geometrical features due to the 

compartmentalization and the presence of internal solid 

circulating devices. It is therefore necessary to check whether 

the fluidization behavior, particularly the bed pressure drop 

profile in CFBG is distinctive from those usually observed in 

the fluidized bed of cylindrical shape using common bed 

material only, i.e. sand. If comparable, it then permits the used 

of this profile to determine the characteristic velocities i.e. the 

minimum and complete fluidization velocity (Umf and Ucf). 

Earlier works emphasized on the fluidization quality, a ratio of 

experimental to theoretical bed pressure drop in CFBG using 

various bed materials. Interested readers are encouraged to 

refer [3]-[4].  

In addition, it follows that the characteristic velocities 

obtained in this condition provide the operating parameters for 

the CFBG when the presence of other bed material (e.g. 

biomass, char etc.) is very small or negligible. Meanwhile, the 
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effect of bed diameter, particle diameter and particle-to-bed 

diameter ratio on the characteristic velocities are also 

presented. Besides that, comparison between experimental 

characteristic velocities with correlations prediction is also 

included.  

II. EXPERIMENTAL 

A. Apparatus 

A schematic of the experimental setup is illustrated in Fig. 
1. The cold flow model as shown in Fig. 2 has a 0.66 ID and is 
divided into 2 compartments i.e. combustor and gasifier by a 
vertical wall in 2:1 cross-sectional area ratio [4]. A pair of 
devices known as v-valve and riser is available in each 
compartment for internal solid circulation between the 
respective beds. In the present studies, only the respective beds 
were subjected to air for fluidization. The flow rates were 
regulated using rotameters (measure up to 2600 liter per 
minute) to maintain the bubbling mode of fluidization. Pressure 
drops were measured using water manometers at 3 different 

locations for total pressure drop (∆Pt), across distributor (∆Pd) 

and bed (∆Pb) respectively. It has been confirmed that the bed 
pressure drop (used to determine the characteristic velocities) is 
equal to the difference of total and across distributor pressure 
drop in all experiments.   

 
Fig. 1. Experimental setup - 1: compressor; 2: dryer; 3: pressure regulator; 4: 

rotameter; 5: plenum; 6: perforated distributor; 7: combustor; 8: gasifier; 9: 

manometer [4]. 

 

 

Fig. 2. Isometric view of CFBG [4].  

The effective diameters, De computed based on (1) were 
found to be 25.7 and 41.3 cm for gasifier and combustor 
respectively. The presence of v-valve and riser in both 
compartments has been addressed when considering the 
effective bed diameter. 

channelsflowofperimeterwettedmean

bedthroughchannelsflowofarea sectionalcrossmean
4

e
D ×=

(1) 

B. Material 

In considering the typical bed aspect ratio of 1-2, the 
experiments were carried out in both of the compartments at 
0.4 m static bed height

1
. Large amount of bed material is used, 

i.e. at 77 and 101 kg respectively. 4 different types of sand 
sizes with density of 2,700 kg/m3 are selected as the inert 
materials from a nearby quarry. Table I shows the particle size 
distribution and mean particle diameter. Mean particle 
diameter, dp for sand is computed based on  

                                          dp = 1/Σ(xi/dpi)                              (2) 

where xi is the weight fraction in the size interval, dpi based on 
the screen analysis.  

TABLE I.  PARTICLE SIZE DISTRIBUTION AND MEAN DIAMETER 

Sieved size 

(µµµµm) 

Size interval, 

dpi (µµµµm) 

Mean particle diameter, dp (µµµµm) 

196 272 341 395 

Weight fraction, xi  

425-600 512.5 0.0023 0.0010 0.0746 0.5105 

300-425 362.5 0.0085 0.5373 0.8084 0.4027 

212-300 256.0 0.5924 0.3174 0.0960 0.0666 

150-212 181.0 0.3236 0.1241 0.0129 0.0132 

0-150 75.0 0.0732 0.0202 0.0081 0.0071 

C. Procedure 

The two commonly used methods for multi-component 
system in determining the Umf and Ucf, i.e. via fast and slow 
defluidization are adopted for sand of distributed sizes [5]-[6]. 
Both methods are based on the bed pressure drop profiles and 
differing only in terms of rate of defluidization.    

On Umf determination using fast defluidization method, the 

mixture is initially fluidized vigorously (>Umf) to maximize 
particles mixing and to ensure constant bed pressure drop is 
established, in order to form the constant fluidized bed line. 
Thereafter, the bed is defluidized rapidly, at bed pressure drop 
values below fluidized state (<Umf), such that the mixtures 
uniformity remains unchanged (since particles rearrangements 
are avoided). This is used to form the fixed bed line. The Umf 
is then determined from the intersection point between the 
fixed bed and constant fluidized bed lines. The underlying 
reason in fast defluidization procedure is to maximize bed 
homogeneity when determining the Umf value. This is to 
establish “a wholly mixed bed” condition analogically to 
being a “monodisperse bed” [5].  

 In slow defluidization, a method used to determine Ucf, the 
approach is to allow gradual changes from fluidized bed 
condition to fixed bed state. Ucf is determined from the point 
when the bed pressure drop is constant [5]-[6]. The latter 
method is not subjected to initial fixed bed arrangement and 
defluidization rate [7].  

Indeed, only when the operating superficial velocity 
greater than Ucf value is employed in this work to ensure all 
the mixture components are completely fluidized. 
Nonetheless, both the Umf and Ucf are closely related to the 

1 Experiments using static bed height of 0.3 – 0.5m performed in both compartments confirmed the same 

results. 
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mixing/segregation state of wide size distribution powder as 
described here. In addition, these also allow comparative 
studies to be carried out on the various published correlations.                                                                                                                                                                                                  

III. RESULTS AND DISCUSSIONS 

The typical bed pressure drop profile is shown in Fig. 3, 

obtained from quartz sand of 395µm in the gasifier. It 
demonstrates that: 

(1) the bed pressure drop reaches identical steady state 

value at fluidized condition in both methods 

(2) the existence of the Umf and Ucf values 

Similar bed pressure drop profile is obtained in the 
combustor and for all other sand sizes in both compartments. 
Hence, it is confirmed that the bed pressure drop profile 
obtained from CFBG is very similar to those from a 
cylindrical column of laboratory scale. Beside, the 
methodology used to determine the Umf and Ucf values can be 
implemented for the present system despite of the unique 
geometrical features of CFBG.  

 

Figure 3. Typical sand bed pressure drop profile for Umf and Ucf 

A. Effect of Particle Diameter  

The Umf and Ucf values for both compartments with various 
sand sizes are presented in Table II. It can be seen that both 
Umf and Ucf values increases with the increases in sand sizes. In 

the present work, Ucf > Umf , in both compartment and this is 
observed in all the sand sizes used. This is due to the different 
particle sizes in the sand (refer to Table I for sand size 
distribution in the present system). Similar trends were also 
reported in the extensive studies by M. Pilar Aznar et al. [8], 
obtained from columns with diameters of 14 and 30cm.  

TABLE II.  Umf AND Ucf VALUES WITH VARIOUS SAND SIZES  

Compartment Gasifier Combustor 

Mean particle 

size, dp(µµµµm) 
Umf (m/s) Ucf (m/s) Umf (m/s) Ucf (m/s) 

196 0.032 0.042 0.021 0.030 

272 0.077 0.087 0.053 0.064 

341 0.102 0.117 0.073 0.085 

395 0.105 0.121 0.083 0.100 

 
 According to Gauthier et al. [9], who conducted the 

experiments in a cylindrical column of laboratory scale, 
whether in narrow range or Gaussian distribution, Ucf/Umf = 1. 

In fact, Ucf > Umf for other types of distribution. Consequently, 
the general expectation where Umf = Ucf for single component 
system, a condition sometime used to validate binary mixtures 
correlations at the minimum end (where the second 
component does not present or x2 = 0 wt%) is questionable; 
instead it should be conditional, i.e. depending on the particle 
size distribution [10]. 

Generally, the Ucf/Umf ratio provides an indication on the 
mixing/segregation state of the bed material [5]. As shown in 

Fig. 4, except for the finest sand (196µm), the Ucf/Umf ratio is 
approximately 1.15 for the gasifier and combustor. Hence, the 
Ucf/Umf ratio is nearly independent of the mean particle 
diameter, a conclusion that was also reported in [9]. On the 
other hand, it can be said that the three larger particles have 
better mixing characteristic as compared to finest sand  (with 
Ucf/Umf = 1.4). It is known that in wide size distribution powder, 
the present of finer particle with those larger ones in greater 
portion improves the bed fluidity. In some cases, the addition 
of fine particle is necessary to obtain smooth bed operation 
[11].  

 
               Figure 4. Ucf/Umf ratio for various sand sizes.  

B. Effect of Bed Diameter 

Fig. 5 shows that both the Umf and Ucf values in both 
compartments at various sand size. It can be seen that both the 
Umf and Ucf values in the gasifier are always larger than those 
in the combustor. Gasifier is smaller than combustor of about 
61% in effective diameter and 78% in cross-sectional area. 
Some specific studies in [12] on the effect of bed diameter on 
Umf have demonstrated that the characteristic velocity 
increases with the decrease of bed diameter. 

  

Figure 5. Umf and Ucf values for various sand sizes in gasifier and combustor  



                                                2nd CUTSE International Conference 2009 

EE_44 

4 

 

C. Effect of Particle-to-Bed Diameter Ratio 

Table III shows that these characteristic velocities ratio of 
gasifier-to-combustor are between 20 – 50%.  

TABLE III.  CHARACTERISTIC VELOCITIES RATIO  

Mean particle 

size, dp (µµµµm) Combustor
mf

Gasifier
mf

U

U
 

Combustor
cf

Gasifier
cf

U

U
 

196 1.52 1.40 

272 1.45 1.36 

341 1.40 1.38 

395 1.27 1.21 

  

However, these differences reduce with the increase in the 
mean sand diameter as shown in Fig. 6. 

 
Figure 6. Characteristic velocities ratio of gasifier-to-combustor 

The particle-to-bed-diameter relationship can be described 
by taking the dimensionless ratio of the Reynolds number for 
the particle and column (Rep and Rec) as shown in (3) and (4) 

                               
µ

ρ
=

p

p

vd
Re    (3) 

                               
µ

ρ
= e

c

vD
Re    (4) 

taking (3)/(4) 

                               
⋅

=
e

p

c

p

D

d

Re

Re
   (5) 

The particle-to-bed-diameter ratio is tabulated in Table IV. 
It can be seen that the particle-diameter-to-bed-diameter ratio 
in gasifier is always larger than the combustor.   

TABLE IV.  PARTICLE-TO-BED-DIAMETER RATIO 

Compartment Gasifier Combustor 

Mean particle 

size, dp (mm) 
dp/De (mm/m) 

0.196 0.76 0.47 

0.272 1.05 0.66 

0.341 1.33 0.83 

0.395 1.54 0.96 

 

 
Figure 7. Characteristic velocities vs. dimensionless diameter 

The characteristic velocity vs. particle-to-bed-diameter 
profiles are shown in Fig. 7. These relationships can be 

described as 












=

i,e

pi

D

d
fU

mf
and 













=

i,e

pi

D

d
fU

cf
 respectively 

where ‘i’ represents different column diameter. The system 
(whole CFBG) Umf and Ucf increases roughly in accordance to 
(dp/De)

 1.35
 and (dp/De)

1.18
 respectively. Similarly, J.F. Frantz 

[13] reported that Umf increases with the particle-to-bed 

diameter ratio according to (dp/De)
α
 where α>0.  

D. Umf and Ucf Values Comparison With Correlations  

Most of the characteristic velocity correlations for 
multicomponent system are based on binary mixtures 
(requiring input parameters of the two components only) [5]-
[6], thus are not used for the present wide size distributed 
powder. Instead, for the comparison of Umf, the notable Wen 
and Yu correlation [14], Thonglimp et al. [15] and Reina et al. 
[16] are selected. On the other hand, the Ucf values are 
compared with correlations from Gauthier et al. [9], Vaid and 
Gupta [17] and Mourad et al. [18].  

 

                   Figure 8. Umf comparison with selected correlations 

Fig. 8 shows the comparison of experimental Umf values with 

selected correlations. It can be seen that only Wen and Yu 

correlation yields the closest predictions for both 

compartments, providing nearly average values for the upper 

(gasifier) and lower (combustor) Umf values. On the other hand, 

Fig. 9 shows the comparison of experimental Ucf values with 

selected correlations.  All the correlations overestimate, 

although correlation [9] provides the closest prediction to the 

Ucf values.  
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Figure 9. Ucf comparison with selected correlations 

IV. CONCLUSION  

Based on the experiments carried out, it can be concluded 
that CFBG characteristic velocities are closely resemble to 
those reported in cylindrical fluidized bed of laboratory scale. 
The Umf and Ucf values are affected by the particle size 

distribution and bed geometry. The former leads to Ucf > Umf  

and Ucf/Umf ratio is approximately constant (except for 196µm) 
for gasifier and combustor respectively, while the latter leads 
to (Ucf, Umf) gasifier> (Ucf, Umf) combustor due to cumulative effects 
of the bed diameter and particle-to-bed diameter ratio. None of 
the selected correlations predicted well in both compartments 
as they do not include these effects.  Meanwhile, the 
governing parameters can be minimized when utilizing larger 
sand size as bed material, hence avoiding physical 
modification on the vessel.  
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