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Abstract A semianalytical ocean color inversion algorithm was developed for improving retrievals of
inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light
reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding
effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of
IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowl-
edge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was
incorporated into the NASA Ocean Biology Processing Group’s L2GEN code and tested in waters of the
Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua
time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm,
a,(443), the particulate backscattering coefficient at 443 nm, b,,(443), and the diffuse attenuation coeffi-
cient at 488 nm, K;(488), were compared with values derived using the Generalized Inherent Optical Prop-
erties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear,
optically shallow waters SWIM-derived values of a,(443), b,,(443), and K4(443) were realistically lower than
values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the
benthic reflectance correction was performing as expected. However, in more optically complex waters,
SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations.
Whilst a comprehensive study of the SWIM algorithm’s behavior was conducted, further work is needed
to validate the algorithm using in situ data.

1. Introduction

Over the past three decades, ocean color remote sensing has provided remarkable insight into physical,
biological, and biogeochemical processes within the world’s oceans. Spaceborne ocean color sensors,
such as NASA’s Moderate Resolution Imaging Spectroradiometer onboard Aqua (MODIS Aqua), provide
synoptic-scale, spectral radiometric measurements of the ocean’s color that can be directly related to
the relative concentrations of optically active constituents within the water column. Hence, a series of
empirical and physics-based algorithms have been developed that relate sensor-observed, spectral
water-leaving radiometric measurements to marine components, such as phytoplankton and suspended
particulate matter (SPM), to give quantitative estimates of their abundance/concentration. Much effort
has focused on the development and continual improvement of ocean color algorithms for deep, oce-
anic waters for which the optically dominant constituent is typically phytoplankton. Such oceanic algo-
rithms have been highly refined through use of decades-long dedicated in situ validation measurements
collected by optical moorings and from ships-of-opportunity in accordance with strict data quality con-
trol and assurance protocols [Mueller et al., 2003]. As such, these algorithms are generally considered
robust and have met original mission objectives for oceanic chlorophyll-a concentration (CHL)

retrievals and spectral remote sensing reflectance (R,s) accuracies to within =35% and *5%,
respectively [McClain, 2009].
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Presently, two challenges are being actively addressed in order to extend ocean color applications to
coastal regions: (i) optically complex waters and (ii) optically shallow waters. In optically complex waters,
the optical properties of the water column are typically influenced by nonalgal particulate matter, colored
dissolved organic matter, and phytoplankton [/OCCG, 2000], and unlike oceanic waters, the nonalgal constit-
uents do not necessarily covary with respect to phytoplankton abundance. Regarding optically shallow
waters, these can be characterized as zones in which light reflected from the seafloor influences the water-
leaving radiance signal [Lee et al., 1998] thereby confounding contemporary ocean color algorithms devel-
oped for optically deep waters [Cannizzaro and Carder, 2006; Qin et al., 2007; Zhao et al., 2013] (see Appen-
dix A for further discussion). Whilst a range of ocean color algorithms have been developed and proven
effective within optically complex waters [Doerffer and Schiller, 2007; Lee et al., 2002; Smyth et al., 2006; Wer-
dell et al., 2013a], only a few approaches for optically shallow waters have been published [Barnes et al.,
2014, 2013; Brando et al., 2012] with none in operation that explicitly use pre-existing water column depth
and benthic albedo data sets to improve IOP retrievals.

A variety of shallow water inversion algorithms have been developed with much past research focused on
the simultaneous retrieval of water column depth and benthic characterization [Bierwirth et al., 1993; Dier-
ssen et al., 2003; Louchard et al., 2003; Lyzenga, 1978; Philpot, 1989; Stumpf et al., 2003; Werdell and Roesler,
2003]. Many recent approaches such as the Hyperspectral Optimization Process Exemplar (HOPE), a semian-
alytical inversion algorithm developed by Lee et al. [1998], and the Comprehensive Reflectance Inversion
based on Spectrum matching and Table Look up (CRISTAL), a spectral matching look-up-table algorithm
developed by Mobley et al. [2005], have been developed for simultaneous retrieval of bathymetry, benthic
types, and IOPs. The HOPE algorithm and its variants (e.g., Goodman and Ustin, [2007]; ALUT—Hedley et al.
[2009]; BRUCE—Klonowski et al. [2007]; SAMBUCA—Wettle and Brando [2006]) and CRISTAL have shown par-
ticular merit when applied to hyperspectral imagery (contiguous spectral bands, resolution ~5 nm) [Brando
et al.,, 2009; Dekker et al., 2011; Fearns et al., 2011; Garcia et al., 2014a; Goodman and Ustin, 2007; Hedley et al.,
2009; Klonowski et al., 2007; Lee et al., 1999; Lesser and Mobley, 2007]. However, these previous studies were
designed primarily to demonstrate bathymetric retrieval and benthic classification capabilities for shallow
waters, typically less than 10 m depth, with little emphasis on the derived IOP values and downstream geo-
physical products such as CHL, SPM, and water clarity measures.

Although hyperspectral sensors have previously been used for remote sensing optically shallow waters,
such activities are usually targeted one-off surveys with narrow spatial coverage (in the order of 10—

100 km?) typically collected from airborne platforms. Conversely, most current spaceborne ocean color
sensors are multispectral—with MODIS having seven spectral bands (~10 nm width) in the visible
domain—and have near-daily repeat capture times with broad spatial swaths (in the order of 10° km?).
Whilst hyperspectral data preserve a great deal of radiometric information, a modeling study by Lee and
Carder [2002] showed that the spectral resolution of the ocean color sensors: the Sea-viewing Wide Field-
of-view Sensor (SeaWiFS), the Medium Resolution Imaging Spectrometer (MERIS), and MODIS were suffi-
cient to produce reliable IOP and water column depth retrievals. Furthermore, a case study in Great Baha-
mas Bank showed that trustworthy bathymetry could be retrieved using the HOPE algorithm when
applied to MERIS imagery [Lee et al., 2010]. Unfortunately, both MERIS and SeaWiFS have ceased operat-
ing, thus MODIS Aqua was selected for the development and implementation of a HOPE-based algorithm
for optically shallow waters.

Here we present an approach for remote sensing optically shallow waters based on the HOPE semianalytical
inversion algorithm. Our approach, named the Shallow Water Inversion Model (SWIM), explicitly includes
bathymetry and benthic albedo maps as auxiliary data sets. We have selected the Great Barrier Reef (GBR)
as the test region for algorithm development and evaluation as the bathymetry, and the benthic properties
of this shallow shelf region are well characterized. Within this paper, we: (i) detail the structure of the SWIM
algorithm, (ii) present a brief overview of algorithm performance based on radiative transfer modeling, (iii)
demonstrate how the inclusion of depth and benthic albedo influences IOP retrievals in a MODIS Aqua test
scene, (iv) using the full MODIS Aqua archive, compare SWIM-derived IOPs to those derived using the Gen-
eralized IOP (GIOP) [Werdell et al., 2013a] and Quasi-Analytical Algorithm (QAA) [Lee et al., 2002] optically
deep ocean color algorithms, and (v) discuss the relative performance and limitations of the SWIM algo-
rithm. Unfortunately, in situ IOP data for the GBR could not be sourced at the time of writing this paper. As
such, in situ validation of SWIM’s accuracy is beyond the scope of this research.
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2. Methods and Data

2.1. Test Region: The Great Barrier
Reef

The GBR, shown in Figure 1, is located
along the north-east coast of Australia
and is the largest coral reef ecosystem
in the world, extending ~2300 km
from 9°S to 24°S. The GBR comprises
approximately 3000 individual coral
reefs, 600 continental islands, is desig-
nated as a UNESCO World Heritage
Area, and is encompassed by Austral-
ia’s largest marine park, a region span-
ning 344,400 km?>. Recently, concerns
about the ecosystem health of the
GBR, linked to declining water quality
[Brodie et al., 2012], led to the estab-
lishment of government-funded pro-
grams such as the Reef Water Quality
Protection Plan (RWQPP; http://www.
reefplan.qld.gov.au/) and the Reef Res-
cue Water Quality Monitoring Program
(http://www.nrm.gov.au/funding/reef-

; rescue/). The aim of these programs is
142°E 144°E 146°E 148°E 150°E 152°E to halt and reverse the decline in the

. ) o quality of water flowing into the GBR,
Figure 1. Map of the Great Barrier Reef region. Light gray features offshore out- R L.
line the coral reef matrix. The red boxes labeled “Ll,” “DW,” and “MS” represent the supported by continual monitoring of
“Lizard Island,” “Deep Water,” and “Mid-Shelf’ regions examined in time series water quality conditions in the region.

analysis. Transects were examined within the LI region. Because of its synoptic—scale spatial

coverage and near-daily over-pass fre-
quency, ocean color remote sensing has become an integral part of monitoring and reporting spatiotempo-
ral trends in water quality for the GBR region [Brando et al., 2011; Devlin et al., 2012; Devlin and Schaffelke,
2009; Fabricius et al., 2014; Schroeder et al., 2012; Weeks et al., 2012].

2.2, Semianalytical Inversion Algorithm

Semianalytical ocean color inversion algorithms, SAAs, are designed to retrieve IOPs from sensor-observed
above-water remote sensing reflectances, R,s. Spectral-matching-type SAAs comprise three components: (i)
a forward reflectance model, (ii) spectral IOP models, and (iii) an inverse solution (matching) method. The
forward model analytically approximates the remote sensing reflectance, RT°Y, which is then compared
using some similarity metric (e.g., Chi-squared, Euclidean distance) to the sensor-observed spectra, R?sbs. The
magnitude of the spectral IOPs in the forward model are then iteratively adjusted by an inverse solution
method (e.g., an optimization algorithm) that attempts to match RT°¢ with R, The spectral matching algo-
rithm stops once R™°Y is deemed to best represent R°, at which point the set of IOPs used to compute the

rs rs !

optimal RT°? are returned as the solution.

2.2.1. Forward Reflectance Models

Typically, optically deep SAAs are based on a robust relationship between the subsurface remote sensing
reflectance, r,5(4), the total absorption, a(4), and total backscattering, b,(/), coefficients developed by Gordon
et al. [1988]

2 i

where the coefficients g, and g, vary with solar and sensor-viewing geometries, in-water scattering
phase functions, bidirectional reflectance effects, and sea surface conditions [Gordon et al., 1988;
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Morel et al., 2002]. To convert modeled subsurface remote sensing reflectance to above-water remote sens-
ing reflectance values, the following relationship is used,
l—*rmod

mod 5y 15> (4) -
Rrs ()“) 1 7{['210(1 (/{) (Sr )7 (2)

where { =0.5and I' = 1.5 [Lee et al., 1998, 1999].

2.2.2. Spectral IOP Models
The bulk IOPs—a(4) and b,(1)—used in the SAA are each expressed as the sum of the absorption and back-
scattering coefficients of optically active constituent matter in the water column

a(2)=ay(A)+as(2)+ag(Z) (m™), 3)
bp(2)=bpw () +bpp(2) (M), @)

where the subscripts, w, ¢, p, and dg represent water itself, phytoplankton, particulate matter, and col-
ored dissolved and detrital matter, respectively. The spectral values of a,(1) and by,,(4) are known and
treated as constants [Pope and Fry, 1997; Zhang et al., 2009] whilst the spectral shapes of ag4(1) and by, (/)
can be modeled using exponential and power law functions, respectively [Bricaud et al., 1981; Carder
etal., 1999], as

agg(7)=Ge "4 (m71), (5)

b =X (2) ), ©

where G and X are scaling factors, each corresponding to the magnitudes of a4,(443) and b,,(443). The
exponential slope coefficient for au,(/), S, and the power law coefficient of b,,(4), 7, are typically set within
the ranges of 0.01-0.025 and 0.0-2.0, respectively, based on accepted literature values [Carder et al., 1999;
Roesler et al., 1989]. The spectral shape of a,(4) used within an SAA is often normalized to 1.0 at 443 nm.
The normalized phytoplankton absorption coefficient, a;(l), can be a single fixed spectral shape [Maritor-
ena et al., 2002] or modeled using basis vectors [Bricaud et al., 1998; Ciotti and Bricaud, 2006; Lee et al.,
1998]. The resulting parameterization of a,(4) within an SAA thus takes the form

ag(2)=Paj(7) (m™), 7)

where P is a scaling factor corresponding to the magnitude of a,(443).

2.2.3. Solution Method

A spectral matching solution method commonly employed by SAA algorithms is a nonlinear least squares
optimization routine such as the Levenberg-Marquardt, L-M, algorithm [Moré, 1977]. In order to retrieve
IOPs for a sensor-observed pixel, the L-M routine minimizes a cost function, err, which compares how similar
R () is relative to RT°Y(2)

err=1/ 3" [RZ(2) R (), (8)
where RT°d(2) is a function of three free parameters
R (1) =f(P,G,X) (st ). 9)

The scalar parameters P, G, and X representing the magnitude of the IOPs are iteratively varied until the
desired convergence criteria is met (i.e., err, equation (8), is minimized below a prescribed threshold). Using
hyperspectral data, Garcia et al. [2014b] found an err threshold in the order of 1 X 10> was suitable. For
SWIM, the L-M err threshold was set to 1 X 10, This value was selected by testing MODIS Aqua inversions
over a range of err thresholds (results not shown). We note that setting err too large may cause L-M conver-
gence to local minima, whereas setting err too small may cause the preset number of iterations to be
exceeded. Once convergence occurs, L-M stops and values of P, G, and X are returned as the “best fit” IOP
solution. If the convergence criterion is not met, or the preset maximum number of L-M iterations of 1000 is
exceeded, a product failure solution flag (PRODFAIL) is returned.
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Figure 2. Flowchart diagram of the SWIM algorithm. Blue shaded data indicate MODIS Aqua sensor data while orange shaded data identify
auxiliary data required by the SWIM algorithm.

The L-M algorithm requires an initial “best guess” of the IOP parameters P, G, and X. Past implementations
of the HOPE algorithm have used both scene-wide fixed initial guesses [Lee et al., 2001] and pixel-wise vari-
able initial guesses based on empirical relationships with R,; [Dekker et al., 2011; Lee et al., 1999]. Within the
SWIM algorithm, scene-wide fixed initial guesses of 0.2, 0.01, and 0.001 m~ " were used for P, G, and X,
respectively. These initialization values are similar to those used previously when applying the HOPE algo-
rithm and its variants [Garcia et al., 2014a; Klonowski et al., 2007] and are similar to initial guesses used in
the default parameterization of GIOP [Werdell et al., 2013al. It has been established that initial guess used in
the L-M optimization can affect the retrieved I0Ps, particularly if the starting guess is next to a local solution
space minima [Garcia et al., 2014b]. Garcia et al. [2014b] demonstrated that Latin Hypercube Sampling (LHS)
of the solution space aided in finding a set of best guess parameters that reduced the occurrence of local
solution minima. However, the LHS method of Garcia et al. [2014b] was not in mature form at the time of
writing this paper and thus was not considered for use within the SWIM algorithm.

2.3. Shallow Water Inversion Model (SWIM)

The SWIM algorithm has the same structure as a typical SAA described in section 2.2 but differs in the for-
ward reflectance model used. This section provides a description of the SWIM SAA, which uses a shallow
water reflectance model to account for the combined effects of water column depth and benthic albedo
(reflectance). GBR-specific bathymetric and benthic albedo data sets were used as forward reflectance
model inputs. A nearest-neighbor resampling scheme was implemented to extract corresponding bathyme-
try and benthic albedo data for a given MODIS Aqua pixel. A schematic flowchart of the SWIM algorithm is
shown in Figure 2.

2.3.1. Shallow Water Reflectance Model

For optically shallow waters, forward reflectance models relating IOPs and r,(4) have been developed using
quasi-single scattering theory [Lyzenga, 1978; Maritorena et al., 1994; Philpot, 1987]. These were further
refined by Lee et al. [1998] to explicitly incorporate IOPs and both solar and sensor geometries,

) ) /. ) -
res(2) =~ 1P (2)—r® (2)exp{ - [kd(ﬂ)+k§(i)}H}+¥exp{— [ka(2)+KE()HY  (sr7), (10)
where H is the water column depth, p(/) is the benthic albedo (reflectance) coefficient, r? () is the remote

sensing reflectance of optically deep water (as in equation (1)), k4(4) is the downwelling diffuse attenuation
coefficient, k§ (%) is the upwelling diffuse attenuation for radiance scattered from the water column, and
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KkB(7) is the upwelling diffuse attenuation coefficient for radiance reflected off the benthos [Lee et al.,
1998]. The diffuse attenuation coefficients are functions of the IOPs and solar and sensor geometries and
are expressed according to Lee et al. [1998, 1999] as

ka(2)= C’;(jb)s (m™), (11)
KE( )471 03 K(A)E;zgi4-K(i)] (m1), (12)
()= 1.04k(2)[1+5.41(1))*° (m). (13)

cos0),

where 0; is subsurface solar zenith angle, 0, is the subsurface-viewing angle from nadir, and k(7) is
expressed as

k(2)=a(2)+by(2) (m7"). (14)

Thus, using equation (10), the Lee et al. [1998, 1999] shallow water forward model computes RT°4 (1) as a
function of seven scalar parameters,

RTY(2)=F(P,G,X,R,H,05,0,) (s "), (15)

where the scalars P, G, X, and R are the magnitudes of a,(443), aq,(443), by,(443), and the benthic albedo
coefficient at 550 nm, p(550), and the parameter H corresponds to the water column depth. The parameters
fsand 6, are the subsurface solar zenith angle and the subsurface-viewing angle from nadir respectively,
both of which are treated as known values. The number of free variables in the forward model can be
reduced if known sensor/solar geometries, bathymetry, and benthic albedo data are used as inputs. The
shallow water forward model thus can take the form of equation (9) and becomes a function of only three
unknown IOP parameters: P, G, and X.

Within this study, we have parameterized the spectral IOPs within the shallow water forward model as fol-
lows: the spectral slope of ay,(4), S = 0.017, and the power exponent of b;,(4), 7 =1.0. The values of y and
S were selected based on previous research in the GBR test region [Blondeau-Patissier et al., 2009; Brando
et al., 2009, 2012]. A region-specific a’;(/l) was used with further details given in Appendix B.

2.3.2. Bathymetry Data

Bathymetric data used for testing SWIM in the GBR were extracted from a spatially consistent, gridded digi-
tal elevation model data set (vertical datum: MSL; horizontal datum: WGS-84), 3D-GBR [Beaman, 2010]. The
3D-GBR data set is a composite of nearly 9.5 X 10 xyz data points sourced from multibeam and single-
beam acoustic soundings, Royal Australian Navy airborne Light Detecting and Ranging (LiDAR) data, Shuttle
Radar Topographic Mission (SRTM) data, and coastline data [Beaman, 2010]. The resulting 3D-GBR data set
has a pixel resolution of 100 m X 100 m, and was deemed to resolve bathymetric features with sufficient
horizontal and vertical detail for use as a SWIM algorithm input. Figure 3 shows the 3D-GBR digital elevation
map of the GBR region and demonstrates both the extent of shallow shelf waters (less than 30 m) and also
the large offshore reef matrix on the outer continental shelf. The 3D-GBR data set was downloaded from
the Great Barrier Reef online e-atlas website (http://eatlas.org.au/data/uuid/200aba6b-6fb6-443e-b84b-
86b0bbdb53ac).

2.3.3. Benthic Albedo Map

Marine benthic communities in the GBR are complex and spatially varied. As such, it was a challenge con-
structing a data set suitable for characterizing the benthic albedo of the entire region. A pragmatic
approach to the problem was to begin simply with just two benthic classes: “light” and “dark,” each with
their own benthic albedo spectrum, p,(4) and pp(4), respectively. The net benthic albedo per-pixel, ppei(4),
was then calculated via a linear mixing model

Pret(A)=cLp (A)+copp(2) (16)

where ¢, and ¢p are the relative proportion of light and dark benthic classes for a given pixel. Whilst not
within the scope of this paper, it should be noted that further improvements to the benthic reflectance
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Figure 3. The 3D-GBR [Beaman, 2010] 100 X 100 m bathymetry map of the Great
Barrier Reef region (below mean sea level). The subset shown demonstrates how
well fine-scale features are resolved by the data set. Note that brown is land and

white denotes regions that are deeper than 100 m.

class map are envisioned and it is
mathematically feasible to include
more than two classes in the SWIM
algorithm.

In order to map the relative propor-
tions of light and dark substrates, a
comprehensive seabed biodiversity
habitat data set compiled by the Com-
monwealth Scientific and Industrial
Research Organization, CSIRO, was
used [Pitcher et al., 2007]. The data set
comprises approximately 1500 indi-
vidual data points, spanning an area
of 210,000 km?. At each sampling
location, the bottom was character-
ized using data collected by a variety
of instruments including: a digital
acoustic sounder, baited remote
underwater video stations (BRUVS), an
epibenthic sled and trawl, and towed
video and digital cameras. Data were
collected on numerous research
cruises over a cumulative period of
approximately 10 months resulting in
almost 100,000 photographs, 1150
BRUVS videos, over 600 km of towed
video, and 140 GB of digital echo-
grams [Pitcher et al., 20071.

In order to develop the two-class
benthic type map, all habitat types

were first qualitatively categorized as either “light” or “dark” (see Table 1). This was conducted by exam-
ining photographic and written descriptions of each habitat type. Typically, habitat types deemed as
“light” were dominated by sand, whereas those classified as “dark” had denser proportions of nonsand
vegetative material such as algae, coral, seagrass, and Halimeda. Second, at each data point, the relative
proportion of light-to-dark substrate was calculated resulting in two maps: (i) proportion of light sub-
strates and (ii) proportion of dark substrates. Third, both maps were spatially interpolated using ArcGIS

Table 1. Partitioning of CSIRO Great Barrier Reef Biodiver-
sity Benthic Habitat Types as Described by Pitcher et al.
[2007] Into Dark and Light Categories

Dark Habitat Types

Light Habitat Types

Alcyonarians dense
Whip Garden Dense
Gorgonian Garden Dense
Sponge Garden Dense
Hard Coral Garden Dense
Live Reef Corals

Flora

Algae

Halimeda

Caulerpa

Seagrass

No biohabitat

Bioturbated

Alcyonarians sparse
Alcyonarians medium
Whip garden sparse

Whip garden medium
Gorgonian garden sparse
Gorgonian garden medium
Sponge garden sparse
Sponge garden medium
Hard coral garden sparse
Hard coral garden medium
Bivalve shell beds

Squid eggs

Tube Polychaete beds

geospatial software [ESRI, 2011] to a raster grid using
an inverse weighted interpolation tool. The resultant
light and dark maps were produced with pixel resolu-
tions of 100 X 100 m, projected to the WGS-84
datum, to be spatially consistent with the 3D-GBR
bathymetry grid. Finally, an albedo spectrum was
constructed for each benthic type (i.e., light and
dark). This was done by assigning the most appropri-
ate benthic albedo spectrum from a precompiled
spectral reflectance library [Leiper et al., 2011; Roelf-
sema and Phinn, 2012] to each biodiversity type listed
in Table 1. The multiple albedo spectra assigned to
each class (Table 1) were then averaged together
resulting in two separate (“dark” and “light”) albedo
spectra as shown in Figure 4. The resultant benthic
albedo map is available online from PANGEA® earth
and environmental science data publishing service
[Reichstetter et al., 2014].
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2.3.4. Constrained L-M Solution Method

In this study, we used levmar, a C-based version of the L-M, optimization routine [Lourakis, 2003], to perform
nonlinear least squares curve fitting. Further, the magnitude of the IOP parameters (P, G, and X) in the L-M
routine were constrained using upper and lower bounds following Garcia et al. [2014a],

—0.05a,,(443) <P <50 (m"), (17)
—0.05a,/(443) <G <50 (m™"), (18)
—0.05b,,(443) < X <50 (m™ "), (19)

where the lower bounds are —5% of the absorption or backscattering coefficient of pure water. These
bounds were based on the range of IOP retrievals considered valid by Werdell et al. [2013a] in a study of
deep water ocean color algorithm parameterization. A comprehensive discussion of using constrained L-M
optimization with a shallow water inversion algorithms can be found in Garcia et al. [2014b]. Note, PROD-
FAIL flags were not assigned to L-M solutions that settled on lower or upper boundaries. However, any such
values were identified and excluded during post-processing.

2.4. Algorithm Evaluation

The SWIM algorithm was added to the NASA Ocean Biology Processing Group L2GEN satellite data process-
ing code (packaged as part of the SeaWiFS Data Analysis System (SeaDAS); http://oceancolor.gsfc.nasa.gov).
This enabled efficient comparison of SWIM-derived data products with those from the GIOP and QAA algo-
rithms. Unfortunately, quantitative matchup validation analysis using in situ IOP measurements was not
possible due to a lack of sufficient available data for the GBR region. As such, we have conducted a brief
study using radiative transfer modeling to ascertain the expected quality of SWIM, GIOP, and QAA retrievals
in optically shallow waters. Further comparisons between SWIM and GIOP/QAA were conducted using three
test regions and the entire MODIS Aqua time series. It should be noted that the time series analyses did not
provide an absolute assessment of the SWIM algorithm’s retrieval accuracy, they did however facilitate
quantitative relative comparisons between SWIM and GIOP/QAA using a temporally rich data set.

2.4.1. Radiative Transfer Modeling

A brief theoretical study was conducted based on Hydrolight-Ecolight 5.1 (HE5) [Mobley and Sundman,
2008] radiative transfer code using a set of known IOPs to simulate R, corresponding to the spectral bands
of MODIS Aqua. Using the resultant IOP/R,, data set, the retrieval skill of SWIM, GIOP, and QAA was tested.
Our modeling approach closely followed that of IOCCG Report 5 [[OCCG, 2006] and used the report’s synthe-
sized IOP data set (http://www.ioccg.org/groups/OCAG_data.html). Only the first 250 IOP combinations
from the IOCCG's synthesized data set were used, corresponding to a CHL concentration range of 0.03-
1.0 mg m 3, a range deemed typical for the GBR. An optically deep scenario was first modeled using HE5
followed by four optically shallow scenarios modeled with geometric depths of 5, 10, 15, and 20 m and
using the “dark” benthic albedo spectra presented in section 2.3.3 to represent the seafloor. Details of HE5
parameterization can be found in supporting information Table ts01.

From the simulated R, spectra, the absorption and backscattering coefficients at 443 nm and diffuse
attenuation coefficients at 488 nm, K,(488), (as detailed in Table 2) were derived using SWIM, GIOP, and
QAA and compared with the exact values. Inversion and analysis of HE5 data was conducted using imple-
mentations of SWIM, GIOP, and QAA written in the Python programming language. We chose to exclude
both pure water absorption and backscattering coefficients (which were constant across all inversion algo-
rithms) from IOP retrieval comparisons. Specifically, we considered the particulate backscatter coefficient at
443 nm, by,(443), and total nonwater absorption coefficient at 443 nm, a,(443), where

a:(443)=a,(443)+age(443) (m"). (20)

Note that K,(488) was computed from derived total absorption and backscattering coefficients at 488 nm,
a(488) and b,(488), respectively, using the model developed by Lee et al. [2005]

Ky4(488)=moa(488)+m, (1 —mze*mﬂ(“”)) by(488) (m), 1)

where, mg =1+ 0.005 05, m; = 4.18, m, = 0.52, and m3 = 10.8.
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Figure 4. The “light” substrate-type percentage cover map. Regions dominated by “light” substrate types include river mouths, the mid-shelf and most of the coastal zone, which are
likely to be sediment dominated. Darker regions are those having substrate types such as seagrass, coral, algae, and Halimeda. The irradiance reflectance (albedo) of the “light” and
“dark” substrate types is presented in the top right.
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2.4.2. MODIS Aqua Processing and

Table 2. Optical Parameters of Interest Derived Using the SWIM, GIOP, and .
Analysis

QAA Algorithms ;
Level-2 Products Szl Ui For this study, all MODIS Aqua Level-1A

) ) . - files that included any part of the GBR
Total nonwater absorption coefficient at 443 nm a,(443) m . K N R o
Backscattering coefficient of particulate matter at 443 nm  bp,(443) m ' spatial domain {10°5-15°S, 142°E-
Diffuse attenuation coefficient at 488 nm using Lee’s K4488) m™' 155°E} were identified for batch process-

ol izl e I ety ALY ing. The Level-1A time series spanned

Here the total nonwater absorption coefficient at 443 nm, a,(443), refers to June 2002 to September 2013, as per the
the sum of the absprption coefficients of phytoplankton, a,(443), and colored 2013.0 MODIS Aqua Reprocessing data
dissolved and detrital matter, aq,(443). .

set. All MODIS Aqua data had at-nadir

pixel resolutions of 1 km X 1 km.
Approximately 7300 high-quality MODIS Aqua scenes remained after quality assurance screened out scenes
with 80% or more cloud and/or sunglint contaminated pixels. These remaining scenes were processed from
Level-1A to Level-2 using L2GEN and its standard atmospheric correction scheme [Ahmad et al., 2010; Bailey
et al., 2010], an approach which has been identified as robust for optically complex waters such as those of
Chesapeake Bay, USA [Werdell et al., 2010]. We acknowledge that the standard L2GEN atmospheric correc-
tion has not formally been tested over optically shallow waters. This warrants further analysis beyond the
scope of this paper. However, it was expected that any biases in R, introduced by suboptimal atmospheric
correction procedure would be propagated as a systematic error of equal magnitude to all three inversion
algorithms (GIOP, QAA, and SWIM). The L2 products derived using L2GEN were a,(443), b,,(443), and
K,(488).

Following batch processing, Level-2 product statistics for each test region were extracted, including the
mean, standard deviation, and number of valid pixels. Any pixels located partially or fully within a test
region were excluded from analysis if they possessed one or more of L2GEN’s default Level-2 quality control
flags detailed in Table 3. For monthly calculations, means and standard deviations were weighted by the
number of valid pixels in order to reduce biases due to missing data.

2.4.3. Single Test Scene: Northern GBR

A small geographic subset of a single MODIS Aqua image was selected for initial evaluation and demonstra-
tion of the SWIM algorithm. The test scene was captured on 22 May 2009, a day with minimal cloud cover
and limited influence of smoke/dust. Cross-shelf east-west (E-W) and south-north (S-N) transects were used
to examine how a,(443), b,,(443) and K,(488) retrievals varied with depth and benthic brightness, using
SWIM, GIOP, and QAA. The selected test scene lies in the northern GBR and extends from Cape Melville
southward to Cape Flattery {14.14°S-15.35°S, 144.36°E-146.05°E} (located in the vicinity of the “LI" region in
Figure 1).

2.4.4. Time Series Test Regions

Three test regions were selected in order to compare SWIM, QAA, and GIOP under different water column,
bathymetric, and benthic substrate conditions. We refer to these three subregions of the GBR as: “Deep
Water” (DW), Lizard Island” (LI), and “Mid-Shelf” (MS), respectively. Specifically, the latitude and longitude
ranges of the DW, LI, and MS were {18.5°5-19.038°S, 150.0°E-150.5°E}, {14.36°5-14.72°S, 145.04°E-
145.32°E}, and {18.78°5-19.17°S, 147.17°E-147.67°E}, respectively (see Figure 1). The DW region was
selected to examine how closely SWIM converged toward optically deep solutions in oceanic waters where
the geometric depth exceeds the optical depth. The LI region was selected to gauge the relative perform-
ance of SWIM in very clear waters with bright benthos. The MS region was selected to determine how well
SWIM performed in deeper mid-shelf waters that are often optically complex and are influenced by sus-
pended sediment events. The bathymetry and benthos of the three test regions are summarized in Table 4.

3. Results and Discussion

3.1. Radiative Transfer Study

3.1.1. Retrieval Results

Radiative transfer modeling provided an accurate set of IOP/R,; data thereby facilitating direct quantitative
assessment of SWIM, GIOP, and QAA in optically shallow waters. Plots of algorithm-derived a,(443), b,,(443)
and K;4(488) compared to actual values are shown in Figure 5. The accompanying regression statistics are
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extensive, and as such are detailed in supporting
information Tables ts02-ts04. A summary of the
mean percent biases (MPB) for each set of retriev-

Table 3. Level-2 Flags Used for Determining Pixels to be Excluded
From Analysis

Flag Name Description

ATMEAIL Atmospheric correction failure als is given in Tab'le 5. When cons'lderlng the opti-
CLDICE Probable cloud or ice contamination cally deep scenario (first row of Figure 5), we
HIGLINT High sun glint observed that SWIM, GIOP, and QAA perform sim-
HILT Observed radiance is very high or saturated . -

HISATZEN High sensor view zenith angle |Iarly at retrieving a,(443), b,,(443), and K,(488)
LAND Pixel is over land evidenced by R? values >0.97 and mean ratios
LOWLW Very low water-leaving radiance close to 1.0. Notably, retrievals of by,(443) were
MAXAERITER Aerosol iterations exceeded maximum number slightly overestimated by all three algorithms at
STRAYLIGHT Straylight contamination is likely ghtly y 9

low values (<0.0015 m ™). We infer these imper-
fect by,,(443) retrievals in very clear waters may
be due to temperature-salinity effects on pure water scattering and/or due to Raman scattering not being
accounted for in all three inversion algorithms [Werdell et al., 2013b; Westberry et al., 2013].

SWIM retrievals of a,(443) and K,(488) at 20, 15, and 10 m were good, evidenced by R* values > 0.93, regres-
sion slopes ranging from 0.87 to 0.99, and mean percent biases (MPB) ranging from 0 to 7% (see Table 5).
However, the mean percent difference (MPD) gradually increased with decreasing water column depth
from approximately 10% at 20 m to 22% at 10 m. SWIM retrievals of b,,(443) were reasonably good for
water column depths of 20 and 15 m with corresponding R? of 0.91 and 0.80, regression slopes of 0.82 and
0.73, and mean ratios of 1.0 and 1.0, respectively. SWIM-derived b,,(443) values at 10 and 5 m became
biased high particularly when b,,,(443) < 0.003 m~', and the corresponding regression statistics indicated
these retrievals were not of highest quality evidenced by R? values of 0.53 and 0.44, regression slopes of
0.55 and 0.39, MPB of 5 and 28%, and MPD of 47 and 87%, respectively. At water column depths of 5 m,
SWIM-derived values of a,(443) and K,(488) tended to be biased slightly high for clearer waters (i.e., where,
a,(443) < 0.04 m~ " and K,(488) < 0.07 m~ ). Nonetheless, the regression statistics of SWIM-derived a,(443)
and K,(488) at 5 m indicated reasonable retrieval skill with R? values of 0.91 and 0.89, mean slopes of 0.77
and 0.74, MPB of 16 and 16%, and MPD of 38% and 30%, respectively.

GIOP and QAA retrievals of a,(443) and K,(488) at 20, 15, 10, and 5 m had R? values ranging between 0.73
and 0.97 and slopes ranging between 0.25 and 0.85. Notably, a distinct increase in positive bias was
observed as the water column depth decreased (see both Figure 5 and Table 5). Specifically, at depths of
20,15, 10, and 5 m, the MPBs of GIOP/QAA-derived a,(443) and K;(488) were approximately 25, 40, 80, and
200%, respectively. GIOP and QAA retrievals of b,,(443) at depths of 20, 15, and 10 m, had R? values ranging
between 0.49 and 0.85, and regression slopes ranging between 0.14 and 0.53. MPB values of retrieved
byp(443) were approximately 38, 67, and 240% at depths of 20, 15, and 10 m, respectively. At a water col-
umn depth of 5 m, both GIOP and QAA retrievals of by,(443) were poor, evidenced by low R* (<0.35), flat-
tened mean slopes (<0.05), MPBs in excess of 300%, and large MPD values (>650%).

3.1.2. Interpretation of Results

The results from the HE5-based theoretical study indicated that SWIM, GIOP, and QAA performed compara-
tively well for optically deep waters, retrieving a,(443), b,,(443), and K4(488) with good precision and mini-
mal bias. For the optically shallow scenarios, SWIM performed well relative to GIOP and QAA when
retrieving a,(443) and K4(488). The regression statistics also showed SWIM retrievals of b,,(443) were better
than GIOP and QAA at depths of 20 and 15 m. However, at depths less than 10 m, the regression statistics
alone suggest that SWIM-derived b,,,(443) were biased high. However, we note that biases in SWIM-
retrieved b,,(443) occurred mainly at low backscattering values (<0.003 m~") and overall SWIM retrievals of
byp(443) at 10 and 5 m were still improved relative to those of GIOP and QAA. Distinct positive biases in

Table 4. Bathymetry and Benthic Characteristics of the Four Regions Selected for Testing SWIM

Mean Light/
Mean Dark Benthic
Test Region Depth (m) Proportions (%) Mean p(550) Benthic Description
Deep Water (DW) 1700 — — —
Lizard Island (LI) 18 48/52 0.206 Mix of sand, abundant seagrass, and corals
Mid-shelf (MS) 44 49/51 0.208 Sparse seagrass and coarse sediments
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Figure 5. Comparison plots of algorithm-derived parameters (SWIM: red, GIOP: blue, and QAA: green) and actual values from the synthesized data set. From left-to-right, the three col-
umns represent the optical parameters: a(443), by,,(443), and K,(488). Rows from top-to-bottom correspond to decreasing water column depth.
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retrieved values were noted for GIOP and QAA for
all optically shallow scenarios, with relative biases
Mean Percent Bias (%) in derived b,,,(443) being consistently larger than
those for a,(443) and K4(488). An important out-
come from this analysis was an understanding of

Table 5. Mean Percent Bias in Algorithm Retrievals Oversimulated
Optically Shallow Waters®

Depth (m) a(443) byp(443) K4(488)

SWIM Opticaz"g deep (2) g _44 algorithm biases in optically shallow waters. Such
15 0 0 4 information was deemed necessary for the inter-
10 6 5 7 pretation of MODIS Aqua time series retrievals.
5 16 28 16
GIOP Optically deep 2 11 2 To interpret the consistent overestimation of IOPs
2 2 * 2 in shallow waters made by GIOP and QAA, it is
15 39 67 4 . .
10 2 242 83 useful to consider the structure of each algorithm.
5 107 374 213 Whilst the mathematical solution method and
QAA Optically deep 14 15 4 internal IOP parameterization of GIOP and QAA
20 25 38 25 . . . .
15 2 67 2 differ, the same semianalytical model for optically
10 85 241 83 deep water [Gordon et al., 1988] forms the basis
2 7y H 22 of both algorithms [Lee et al., 2002; Werdell et al.,
®Mean percent bias calculated from mean ratios detailed in 2013al. Thus, for GIOP and QAA, the magnitude
supporting information Tables ts02-ts04. and spectral shape of r,(2) is essentially depend-

ent upon a ratio of b,(1)-to-a(2). Therefore, for
optically shallow waters where benthic reflectance contributes to r,(4), mathematically GIOP and QAA
would likely interpret this effect as increased by,(4) accompanied by increased a,(4). When examining
results of the radiative transfer study, the hypothesized overestimation of b,,,(443) and a«(443) by GIOP and
QAA in optically shallow waters was clearly evident. As a consequence of GIOP and QAA overestimating
a(4) and by,(4), subsequent calculations of K4(488) using the IOP-centered approach of Lee et al. [2005]
were also overestimated.

3.2. Test Scene: Northern Great Barrier Reef

3.2.1. Retrieval Results

The true color image denoted as “RGB” in Figure 6 provides a good indication of the spatial complexity that
occurs within waters of the GBR. Waters adjacent to the coast and on the mid-shelf appear “greenish” and
turbid. Further eastward, the water appears to become “bluer” toward the continental shelf edge where dis-
tinct barrier coral reef structures can be seen. Beyond the continental shelf edge (depth > 1000 m), the
water appears darker blue. A comprehensive description of the benthic composition and sedimentology in
this region can be found in “bioregions” maps (http://www.gbrmpa.gov.au/__data/assets/pdf_file/0004/
25906/gbrmpa_bioregions_2001_06.pdf) developed by the Great Barrier Reef Marine Park Authority’s Rep-
resentative Areas Program (http://www.gbrmpa.gov.au/zoning-permits-and-plans/rap/research-and-plan-
ning), with further detail reported by both Matthews et al. [2007] and Pitcher et al. [2007]. In the northern
GBR test region (Figure 6), the nearshore zone adjacent to the coastline is characterized by low nutrients
and minimal river outflow with a benthos comprising sand with low carbonate, and very dense seagrass
and coastal coral reefs often occurring in places. The mid-shelf benthos tends to be muddy with dense sea-
grass beds, and has a number of small, vegetated islands with fringing coral reefs. The outer-shelf edge is
characterized by carbonate sand, medium densities of seagrass and sponges, and large barrier reef struc-
tures that are separated by deep channels.

Subplots in the first row of Figure 6, denoted as “depth” and “p(550),” show bathymetric and benthic albedo
features. A band of water less than 10 m in depth occurs adjacent to the coastline, and a broad region
approximately 15 m in depth occurs toward the center of the scene. A wide region of brightest benthic
albedo, p(550) = 0.27, occurs in the southern third of the scene, whereas the albedo becomes less toward
the central/upper part of the scene where p(550) ranges between 0.15 and 0.2. Note, some interpolation
artifacts are present in the benthic p(550) plot, apparent as circular spatial patches. When examining retriev-
als of a,(443), b,,(443), and K,(488) in Figure 6, SWIM-derived parameters appear lower in nearshore

shallow waters (<15 m) relative to those of GIOP and QAA. Furthermore, in deep offshore waters where
bottom reflectance is negligible, retrievals of a(443), b,,(443), and K,(488) by SWIM appear very similar to
those of GIOP/QAA. Note, increasing water clarity in the offshore direction was expected [Blondeau-Patissier
et al., 2009].

MCKINNA ET AL.

©2015. American Geophysical Union. All Rights Reserved. 1753


http://www.gbrmpa.gov.au/__data/assets/pdf_file/0004/25906/gbrmpa_bioregions_2001_06.pdf
http://www.gbrmpa.gov.au/__data/assets/pdf_file/0004/25906/gbrmpa_bioregions_2001_06.pdf
http://www.gbrmpa.gov.au/zoning-permits-and-plans/rap/research-and-planning
http://www.gbrmpa.gov.au/zoning-permits-and-plans/rap/research-and-planning

@AGU Journal of Geophysical Research: Oceans 10.1002/2014JC010224

p(550)

a,(443

‘r
Yo
A

0.10
0.07[m"]
0.04
0.01

0.0135
0.0105
0.0075 [m™]
0.0045
0.0015

0.18
0.14
0.10 M1
0.06

0.02

Figure 6. Subset of a MODIS Aqua image swath captured over the northern Great Barrier Reef on 22 May 2009. The top row shows: (i) a RGB true color image in the top left-hand corner
with east-west (E-W) and south-north (S-N) transects indicated as red lines, (i) the water column depth, and (iii) the benthic albedo at 550 nm. The second row shows from left to right
values of a,(443) derived using (i) SWIM, (i) GIOP, and (iii) QAA. The third row shows from left to right values of by,(443) derived using (i) SWIM, (i) GIOP, and (iii) QAA. The bottom row
shows from left to right values of K4(488) derived using (i) SWIM, (ii) GIOP, and (iii) QAA.

East-west (E-W) and south-north (S-N) transects, shown as red lines in the “RGB” subplot (Figure 6), each
span 62 image pixels, which is approximately a 62 km length. The water column depth along the E-W and
S-N transects ranges from 11.6 to 46.0 and 3.3 to 27.9 m respectively, shown as the dotted black lines in Fig-
ure 7. The depth of both cross-shelf transects increases smoothly from the nearshore to mid-shelf waters
until the outer coral reef matrix is reached. The S-N transect’s depth profile crosses a coral reef at
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Figure 7. Comparison of a,(443), b,,(443), and K,(488) derived using SWIM (red), GIOP (blue), and QAA (green) as cross-shelf water column depth (dotted black) and benthic albedo at
550 nm (dashed black) varies. The location of the (left) east-west (E-W) transect and (right) south-north (S-N) transect are shown in Figure 6. Missing values in the S-N transect were due
to straylight contamination that was masked out.

approximately pixel number 40, at which point the depth sharply decreases from 25 to 3 m, then increases
to 28 m again after pixel 48. Upon reaching the outer coral reef matrix, undulating bathymetric features
become pronounced. Water column depth, p(550) and retrieved values of a(443) and b,,(443) along the E-
W and S-N transects are shown in Figure 7 (left and right), respectively. Whilst differences exist in the mag-
nitudes of a,(443), b,,(443), and K;(488) derived using the three different algorithms, a general cross-shelf
trend of increasing water clarity is evident in both the E-W and S-N transect plots (Figure 7) as gradual
decreases in all IOP values. It should be noted that for the S-N transect, Level-2 quality control flags (see
Table 3) were triggered between pixel numbers 34 and 44 resulting in this portion of the transect being
masked out (see Figure 7, right). On closer inspection of the level-2 quality flags, we determined that prod-
uct failures (PRODFAIL) and straylight (STRAYLIGHT) occurred at the edge of a coral reef structure where the
water column depth rapidly decreased to become shallower than 5 m. At depths less than 5 m, we
hypothesize that straylight from inter-tidal reef crests, sand cays, and wave breaks may contaminate the
water-leaving signal within a MODIS Aqua 1 km X 1 km pixel. We thus recommend that SWIM product
retrievals in waters shallower than 5 m should be excluded. Further discussion of SWIM product failure is
given in Appendix C.

For both the E-W and S-N transects, the SWIM-derived a,(443), values were consistently lower than those
derived using GIOP/QAA when the water column depth is shallower than 30 m. However, as the transect pro-
gresses toward the edge of the shelf and the water column depth exceeds 30 m, SWIM-derived values of
a,(443), converge to be of similar magnitude to those derived from GIOP/QAA. These results are consistent
with those of the radiative transfer modeling study. Differences between IOPs derived by SWIM and those of
GIOP/QAA monotonically decrease with increasing water column depth; this is demonstrated in Figure 8. How-
ever, Figure 8 shows that for the E-W and S-N transects, SWIM-derived a,(443), values remain approximately
0.005 m~ ' smaller than GIOP and QAA-derived values once the water column exceeds 25 m. The results also
show that SWIM-derived values of by,(443) remain lower than GIOP and QAA-derived values throughout the E-
W and S-N transects. Further, once the water column depth exceeds 25-30 m, SWIM-derived values of b,,(443)
converge toward GIOP and QAA-derived but remain approximately 0.001-0.003 m ™' lower.

For the results shown in Figure 7, K,(488) values were derived using the IOP-centered approach of Lee et al.
[2005] using a,(488) and b,,,(488) derived by either SWIM, GIOP, or QAA. As with a,(443) and b,,(443), SWIM-
derived K,(488) values for both the E-W and S-N transects were smaller than those derived by GIOP and
QAA when the water column is less than 25 m deep. The difference between GIOP and SWIM and QAA and
SWIM-derived values of K;(488) monotonically decreases toward zero as water column depth increases (Fig-
ure 8). This behavior is expected as any biases in the retrieved bulk IOPs will propagate through to derived
K,4(488) values.
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Figure 8. Differences (A) between a,(443), b,,(443), and K4(488) products derived using: (i) GIOP (blue) and (ii) QAA (green) and those same products derived using SWIM. These differen-
ces are plotted against water column depth. Black “plus” symbols show how p(550) varies with depth. The data were extracted along the (left) east-west (E-W) and (right) south-north

(S-N) transects in Figure 6.

3.2.2. Effect of Depth and Benthic Albedo

Transect plots in Figure 7 demonstrate that cross-shelf differences exist between SWIM-derived products
and those of GIOP and QAA, which exhibit a prominent dependence on water column depth, with lesser
dependence on benthic albedo. Figure 8 further demonstrates differences between GIOP/QAA and SWIM
varying with depth. Notably, Figure 8 shows that along-transect differences in IOPs were highly correlated
with depth and less dependent on benthic brightness. It is clear that after the water column depth exceeds
30 m, SWIM provides retrievals very similar to those of GIOP and QAA. Hence, we infer that under the opti-
cal conditions of that day (22 May 2009), the influences of both water column depth and benthic reflec-
tance upon the water-leaving signal were diminished, thus the water became quasi-optically deep once the
depth exceeded 30 m. The transect results also agree with the general trends of previous modeling studies
[Hochberg et al., 2003; Maritorena et al., 1994] where it was demonstrated that the influence of benthic
reflectance upon the net r,4(1) signal monotonically decreases and tends to zero after approximately 10—
20 m. However, in the modeling by Hochberg et al. [2003], a brown coral albedo was used (p(550) = 0.10)
which is typically darker than the benthic reflectance across the test region shown in Figure 6.

It should be clearly noted that the effect of benthic reflectance on r,(/) is a function of both the optical
depth and the brightness of the benthos. That is to say, very clear shallow waters with a bright sandy bot-
tom will influence r,5(1) more so than turbid waters of the same depth with the same sandy bottom. Hence,
the “optically deep” limit of 30 m identified in the transect analysis (Figure 8) should not be treated as a
“rule of thumb” depth limit at which benthic reflectance effects in the GBR become negligible. Whilst previ-
ous studies [Hedley et al., 2012; Hochberg et al., 2003] have utilized radiative transfer modeling to study and
quantify this effect in optically shallow waters, they have focused primarily on detectability limits for classifi-
cation of benthic types. Thus, for ocean color applications, further examination regarding the influence that
differing water column depths, benthic types, and IOPs have upon r,(4) and ultimately algorithmically-
derived IOPs is warranted.

3.3. Time Series Data

The time series analysis allowed for a thorough comparison of the SWIM algorithm’s behavior relative to
GIOP and QAA. Monthly averaged time series plots of a,(443), by,(443), and K4(488) values derived using
SWIM (red), GIOP (blue), and QAA (green) for the DW, LI, and MS regions are shown in Figures 9, 10, and 11
(left), respectively. Figures 9-11 (right) show the relative differences between a,(443), b,,(443), and K,(488)
values derived using GIOP (blue) and SWIM, and QAA (green) and SWIM for the DW, LI, and NS regions. To
quantitatively summarize these plots, monthly data for the DW, LI, and NS regions were condensed into
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ences between a,(443), b,,(443), and K;(488) values derived using GIOP (blue) and QAA (green) and values derived using SWIM.

seasonal statistics which can be found in supporting information Tables ts05-ts07, respectively. In addition,
Taylor [Taylor, 2001] and Target [Jolliff et al., 2009] summary plots were produced using monthly binned
data in order to better understand pattern statistics and biases of GIOP/QAA relative to SWIM across all four
test regions (see Figure 12).

3.3.1. Deep Water Region

The Figure 9 (left) shows that for the DW region, SWIM-derived a,(443), by,(443), and K,(488) were very simi-
lar to those derived by GIOP and QAA. The relative difference plot (Figure 9, right) indicates that the
monthly GIOP and QAA-derived a,(443) were on average no more than 10% larger than SWIM values. GIOP
and QAA-derived b,,(443) values were on average approximately 9% and 4% larger than SWIM values,
respectively. When considering K4(488) values, GIOP values were on average only about 1-2% larger than
SWIM-derived values. Interestingly, between the years 2003-2008 QAA values were approximately 1-5%
less than SWIM-derived K,(488) values.

The Taylor diagrams (top row in Figure 12, DW results displayed as circles) confirmed that GIOP/QAA-derived
a,(443) values were very similar in both temporal phase and variability compared to those derived by SWIM,
evidenced by high correlations (=0.99) and normalized standard deviations close to 1.0. The Taylor plots also
showed GIOP-derived K,(488) values were very similar to SWIM values, supporting time series observations.
QAA-derived b,,(443) and K,(488) were less similar to those of SWIM, evidenced by lower correlations (~0.85
and 0.95) and normalized standard deviations slightly higher than 1.0. The Target plots (bottom row of Figure
12) demonstrated that for the DW region, both GIOP and QAA-derived a,(443), by,,(443) and K;(488) were in
good agreement with those of SWIM, evidenced by normalized biases and unbiased root mean squared dif-
ferences (URMSD) that were less than 1.0. Based on Jolliff et al. [2009], we considered Target plot data points
that fell outside a radius of 1.0 from the origin (depicted as black circles, bottom row of Figure 12) as points
that did not suitably agree with SWIM. We hence refer to the area encompassed by a circle of radius = 1.0
about the origin in a Target plot as the “performance marker region.”

As the water column depth, H, increases, the influence of shallow substrate reflectance components (sec-
ond and third terms in equation (10)) in the shallow water model decrease relative to the contribution of
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the deep water reflectance (first term in equation (10)). Therefore, in the Deep Water (DW) region where the
water column depth far exceeds the optical depth, SWIM mathematically transitions into an optically deep
SAA of similar structure to that of GIOP. Initially, it was expected that SWIM-derived IOP values would con-
verge very closely toward those of GIOP/QAA, yet analysis of the time series revealed that GIOP and QAA
retrievals of IOPs were on average about 5-10% larger than those of SWIM (*10% level is represented by
dotted lines in Figure 9). However, these relative differences in a,(443) and b,,(443) equate to small absolute
values in the order of 0.001 and 0.0001 m ™", respectively, and are consistent with results of the radiative
transfer study. In addition, the time series analysis showed that SWIM-derived K4(488) values were very
similar to those of GIOP/QAA. These results were also consistent with the radiative transfer modeling case
study (section 3.1) which indicated that SWIM, GIOP, and QAA have good precision and negligible bias in
optically deep water. A more concerning observation, however, was that the number of valid pixels derived
by SWIM were approximately 25% less per annum than those of GIOP/QAA (supporting information Tables
ts05-ts07). This result suggested that SWIM converged to a solution on average 25% less of the time than
GIOP/QAA.

The radiative transfer modeling study using synthesized IOP data showed GIOP and QAA-derived IOPs had
slightly positive mean biases relative to actual values, whereas SWIM results had slightly smaller mean
biases (Table 5). Analysis of the time series show that relative to SWIM, GIOP, and QAA-derived values for
the DW region had slightly positive bias, typically less than 10%. In the DW region, we expected SWIM,
GIOP, and QAA to be very similar and we hypothesize that the small relative differences observed are likely
due to differences in each algorithm'’s internal IOP parameterization. In order to assist visual interpretation
of the relative difference plots, horizontal dotted lines at =10% were included (Figures 9-11, right). Relative
differences greater than this 10% threshold were deemed likely to be significant. In addition, the Taylor and
Target plots (Figure 12) were used as a supplementary method for discerning significant differences.
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Relative differences in retrieved IOPs for the DW region seemed greatest from 2003 to 2008. Most notice-
ably, QAA-derived K,(488) values were approximately 2-5% less than those of SWIM for 2003-2008. How-
ever, these differences became minimal from 2008 to 2013 (Figure 9). We postulate that during 2003-2008,
differences in derived values were due to different IOP spectral shape parameterizations within SWIM, GIOP,
and QAA. For example, within default parameterization of GIOP, the spectral slope coefficients of ag4(2), S, is
0.018 whereas for SWIM, S was set to 0.017. For the QAA, a band ratio approach is used to parameterize S.
Further, the power law coefficient for by,(4), 7, used in SWIM is 1.0 whilst for GIOP and QAA a band ratio
approach is implemented to estimate ). Also, within SWIM, aj;(i) was parameterized by using a single
region-specific normalized spectral shape. However, for GIOP, the default spectral shape of a,(4) can vary
pixel-by-pixel using spectral data from Bricaud et al. [1998] combined with a forward estimate of CHL con-
centration derived using the OC3 band ratio algorithm [O'Reilly et al., 1998]. Finally, the QAA approach,
unlike SWIM and GIOP, does not use a spectral model for a,(4). Instead, QAA calculates a,(4) in its final
processing step by subtracting a,,(4) and aq4(4) from the derived value of a(4).

It has been demonstrated that use of different S and y values and a single fixed a*(b(/l) shape can indeed
affect derived IOPs [Werdell et al., 2013a]. The ability to dynamically vary these parameters within an inver-
sion algorithm may be advantageous for environments such as the GBR where the optical properties of the
water column are complex both temporally and spatially. Within GIOP and QAA, spectral IOP models are
dynamically varied using band ratio empirical models thereby allowing the algorithms to adapt to subtle
changes in optical water types [Lee et al., 2002; Werdell et al., 2013a]. However, in optically shallow regions,
the use of band ratio algorithms may be hampered by variations in benthic reflectance, which may lead to
erroneous product retrievals. As an alternative to a band ratio approach, Brando et al. [2012] demonstrated
a method in which region-specific IOP spectral shapes can be adaptively varied within a semianalytical
inversion algorithm based on the optical water types being observed.

3.3.2. Lizard Island Region

The time series plots (Figure 10) for the LI region indicated the relative difference between GIOP and QAA-
derived a,(443), by,(443) and K,(488) values and those of SWIM mostly exceeded 10%. The Taylor plots (Fig-
ure 12) showed that GIOP-derived a,(443), b,,(443), and K,(488) values relative to SWIM had high correla-
tions (0.8-0.95) and normalized standard deviations ranging between 1.15 and 1.5, whereas QAA relative to
SWIM had high correlations (~0.95) and normalized standard deviations of 1.6-1.7. These results indicated
both GIOP and QAA were temporally in phase with SWIM but had slightly higher variability. From examining
the Target plots (Figure 12), we noted that QAA and GIOP had normalized biases greater than 1.0, and thus
fell outside the performance marker region. We therefore conclude that for the LI region, GIOP and QAA
typically overestimated a,(443), b,,(443), and K,(488) values relative to SWIM, a finding that agrees with the
transect plots of the same region discussed earlier (section 3.2) and the radiative transfer modeling study.

We note that for the LI region, whilst the number of valid pixels for SWIM was less than GIOP/QAA, the rela-
tive number was higher for LI than the other two test regions. Specifically, SWIM has 5-6 % fewer valid pix-
els that GIOP/QAA during the winter/spring, 15% fewer during summer/autumn, and annually 8% fewer.
These results indicate that the SWIM algorithm tended to converge to a solution more often for LI than the
other two regions. We hypothesize that this is either because: (i) the spectral IOP models within SWIM are
well suited to this region, and/or (ii) the LI region is not subject to frequent river flood plume events for
extended periods that disperse sediment plumes and/or highly attenuating water [Petus et al., 2014] that
may cause product failure.

These results indicate that GIOP and QAA-derived values of a,(443), b,,(443), and K,(488) were indeed larger
than those derived by SWIM but were temporally in phase with good correlation. This result was expected
and is attributed to the optically shallow nature of the LI region. In particular, we expected benthic albedo
effects to be compensated for within the optically deep models by overestimating b,,,(443) as demon-
strated within the radiative transfer modeling study. Interestingly, GIOP retrievals were found to be more
similar to SWIM than QAA retrievals. This was not surprising considering both GIOP and SWIM have similar
forward-inverse optimization-style structures, whereas QAA solves for IOPs algebraically using a series of
semiempirical relationships. In particular, QAA is initialized using a band-ratio method to estimate total
absorption, a(lo), at a reference wavelength, Ao, [Lee et al., 2002]. For MODIS, QAA typically sets o to 547
nm—a spectral region which is most influenced by benthic albedo [Barnes et al., 2013]. Thus, any contami-
nation from benthic albedo that occurs at 547 nm is likely propagated through the QAA to the resultant
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IOPs. These findings support work by Barnes et al. [2013] in which the QAA was adapted by setting /4 to
667 nm, a region deemed less susceptible to benthic albedo contamination. The result of shifting 4o
resulted in improved K4(488) retrievals when using the Lee et al. [2005] IOP-centered approach.

3.3.3. Mid-Shelf Region

For the MS region, GIOP and QAA-derived a,(443), b,,(443) and K,(488) were consistently within 10% of val-
ues derived using SWIM (Figure 11) except for annual periodic events, evident as sharp spikes in the time
series, that occurred in the summer/autumn between 2007 and 2012. During these annual events, GIOP
and QAA-derived values were between 50 and 400% larger than those of SWIM. Because of the average
water column depth of the MS region (44 m), we initially infer that the benthic effect here is small and
hence SWIM should perform in a similar manner to GIOP and QAA.

The Taylor plots in Figure 12 demonstrate that relative to SWIM, GIOP-derived a,(443), by,,(443), and K,(488)
values had high variability and low correlation coefficients of approximately 0.65. Relative to SWIM, QAA-
derived a,(443), bp,(443) and K,(488) values had high variability and correlation coefficients of 0.90, 0.81,
and 0.90, respectively. This suggests that for the MS region, GIOP and QAA-derived values had higher vari-
ability and were less temporally in phase with SWIM-derived values. Further, using the Target plots, we
were able to discern that the normalized biases and uRMSD for GIOP relative to SWIM were in excess of 1.0
for a,(443), b,,(443) and K4(488) with all data points lying outside the performance marker region. The Tar-
get plots also indicate that QAA-derived a,(443) and K,(488) were different from SWIM, however, QAA-
derived b,,(443) values fell just inside the performance marker region. Based on the relative difference plots
and the Taylor and Target diagrams, we could infer that GIOP and QAA-retrieved values were mostly differ-
ent from SWIM values for the MS location. However, these results should be interpreted with caution, partic-
ularly because SWIM had distinctly less valid pixels than GIOP and QAA during summer/autumn (supporting
information Table ts07), an effect that is not clear from interpreting the Taylor and Target plots alone.

We concede it is a challenge applying ocean color remote sensing algorithms in the MS region as it is mod-
erately shallow, optically complex, and is subject to abrupt changes in optical regimes driven by events
such as river flood plumes [Devlin et al., 2012], wind-driven sediment suspension events [Orpin and Ridd,
2012] and intrusions of clear oceanic water [Choukroun et al.,, 2010]. We assumed the QAA algorithm might
perform relatively well under such variable conditions [Qin et al., 2007] and noted that GIOP agreed well
with the QAA throughout the MS time series. We also note that SWIM-derived values were mostly within
10% of GIOP and QAA except through 2007-2012 for which large spikes in GIOP/QAA-derived IOPs
occurred during the austral summer/autumn. During these events, GIOP and QAA-derived values were up
to 400% larger than those of SWIM. However, during summer/autumn, SWIM retrieved on average 23% less
valid pixels than GIOP or QAA. These observations suggest that the default parameterization of SWIM was
unable to retrieve IOPs with the same dynamic capability as GIOP and QAA particularly during turbid, opti-
cally complex conditions for which the impact of substrate reflectance would be reduced. As this is a com-
parative study, we cannot conclusively comment on the whether SWIM was more or less accurate than
GIOP/QAA for the MS region. However, we infer that the spectral IOP models within SWIM are presently not
robust during turbid, optically complex events resulting in product failure and hence less valid pixels rela-
tive to GIOP/QAA.

3.3.4. Seasonal Variability

Interpretation of seasonal variability in the LI and MS regions indicated that clearest optical conditions occur
each austral spring (September, October, November) with the least clear conditions occurring in the Austral
summer/autumn (December to May). This is consistent with Weeks et al. [2012] who used a regionally tuned
water clarity algorithm to determine that clearest waters in the central and southern GBR occur during Sep-
tember due to strong intrusions onto the GBR shelf of clear oligotrophic waters from the Coral Sea. Weeks
et al. [2012] also reported that least clear optical conditions occur during the Austral Wet Season (summer-
autumn), during which high rainfall events cause riverine discharge of terrestrial nutrients and sediments
that flow onto the GBR shelf [Brodie et al., 2012; Devlin et al., 2012].

An annual wet season/monsoon signal was observed within the LI and MS time series plots (Figures 10 and
11) as distinct spikes occurring during the austral summer-autumn. These quasi-annual spikes in IOPs coin-
cide with high rainfall events that occurred during the annual monsoon season, resulting in high river flow
events that discharge buoyant freshwater plumes [Devlin et al., 2012; Schroeder et al., 2012]. For the MS
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region, spikes in the IOP time series relate particularly well with the monthly discharge data (river discharge
data available from Queensland State Government: http://watermonitoring.derm.qld.gov.au/host.htm) from
the nearby Burdekin River (results not shown), which is in agreement with previous studies of flood plume
extent and duration [Fabricius et al., 2014; Petus et al., 2014; Schroeder et al., 2012]. Such freshwater plumes
can deliver sediment laden water, elevated CDOM, and nutrients that can lead to increased phytoplankton
growth. Thus, we conclude that during highly turbid events such as river flood plumes, SWIM is less able to
converge to a solution, resulting in fewer valid pixels, and average monthly IOP retrievals that were biased
low relative to GIOP and QAA.

3.4. Shallow Water Retrieval Overview

Within the time series comparisons, we did not expect nor did we observe, SWIM-retrieved values to be
temporally out of phase with GIOP/QAA-derived values in the optically shallow test region, LI. This was evi-
denced by good correlations in the Taylor plots (Figure 12). We did however observe that GIOP/QAA retriev-
als were biased high relative to SWIM, supporting established concerns that benthic reflectance in optically
shallow waters leads to overestimations of IOPs by GIOP/QAA. Specifically for the LI region, mean annual
GIOP-derived values relative to those of SWIM were biased high by 13% for a,(443), 31% for b,,(443), and
17% for K,(488). Similarly for the LI region, mean annual QAA-derived values were biased high relative to
those of SWIM by 25% for a,(443), 56% for b,,(443), and 38% for K,(488). Encouragingly, the relative differ-
ences observed between GIOP/QAA and SWIM in the MODIS Aqua time series for the LI region are in agree-
ment with those determined from radiative transfer modeling (section 3.1). Thus, we can stipulate with
greater confidence that the differences observed between SWIM and GIOP/QAA for the LI region were due
to water column depth and benthic albedo effects. Overall, the results from both radiative transfer model-
ing and MODIS Aqua time series analysis indicate that the SWIM algorithm is performing as expected.

Whilst we have demonstrated the feasibility of implementing an optically shallow ocean color inversion
algorithm using radiative transfer modeling and ocean color time series data, it is difficult to comment fur-
ther on the absolute accuracy of the SWIM algorithm without available in situ IOP matchup data. At the
time of writing this paper, in situ IOP data collected in the GBR by the Australian Commonwealth Scientific
and Industrial Research Organization (CSIRO) between 2002 and 2005 [Blondeau-Patissier et al., 2009] were
in the process of being loaded onto the publicly accessible Integrated Marine Observing System (IMOS)
Australian Ocean Data Network (AODN) portal (http://imos.aodn.org.au/imos123/). Once available, essential
validation of SWIM-derived IOPs can be performed and published in the literature. Consequently, for this
research, we were limited to performing radiative transfer modeling and relative comparisons between
algorithms using the MODIS Aqua time series data. Another potential source of in situ IOP validation data
for the Great Barrier Reef region is the IMOS Lucinda Jetty Coastal Observatory (LJCO), commissioned on 28
October 2009 (http://imos.org.au/ljco.html). The LJCO IOP data are currently in the process of being distrib-
uted and should be available through the IMOS AODN in the near future.

In lieu of in situ IOP matchup data, we are still able to anecdotally comment on whether the magnitude of
SWIM-derived IOPs are realistic based upon IOP summaries published by Blondeau-Patissier et al. [2009],
hereby referred to as BP2009. To facilitate a crude comparison, we have made a broad assumption that the
optical regimes of the LI region are analogous to “Reef Waters” sampled by BP009. Similarly, we assume the
MS region analogous to the BP2009’s “Townsville” region. Sampling of the “Townsville” and “Reef Waters”
regions by BP2009 occurred during the Australian Dry Season. Consequently, we chose to compare average
SWIM-derived a,(443) and b,,,(443) values for the Austral spring with those of BP2009. Note, BP2009
reported only the measured ranges of b,,(555). In order to estimate measured values of by,(443), for com-
parison with SWIM, we have scaled values of b,,(555) using power law functions (equation (6)). The power
law functions were parameterized with y = 1.701 and y = 0.655 as reported by BP2009 for the “Reef Waters”
and “Townsville” regions, respectively.

The comparison (results not shown) indicated that spring-averaged IOPs derived by SWIM fell within the
range of IOPs measured in the “Dry Season” by BP2009. This comparison gives us a rudimentary indication
that SWIM is deriving IOPs within a realistic range for the GBR; however, we concede that spring-averaged
GIOP and QAA-derived IOPs also fall within the range measured by BP2009. However, our radiative transfer
modeling gives us confidence that SWIM-derived IOPs would be more realistic than those of GIOP and QAA
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in optically shallow waters. Nonetheless, we reiterate the need for comprehensive validation of the SWIM
algorithm once in situ data become available through the IMOS AODN.

3.5. Product Failure

Our study of the three test regions indicated that SWIM consistently had fewer valid pixels than GIOP and
QAA. On closer investigation, we conclude that for certain pixels SWIM was unable to converge to a solu-
tion (i.e., reduce the cost function below the predefined threshold) within the maximum number of pre-
defined L-M iterations; an outcome which seemed to occur more often during turbid, optically complex
events and often adjacent to cloud edges (results not shown). By this reasoning, one might expect that
the number of valid SWIM-derived pixels for the DW region (nonoptically complex waters) should have
been of similar magnitude to those of GIOP and QAA, not 25% less. We therefore cannot attribute product
failure solely to turbidity plumes or cloud edges. We hypothesize that that the consistently reduced num-
ber of valid SWIM-derived pixels may also be due to: (i) the spectral IOP models used within SWIM being
fixed in shape, (ii) the convergence criteria and/or the boundary constraints used in the L-M routine being
overly strict, or, (iii) variability in water column depth due to tidal cycles not being parameterized

within SWIM.

In Appendix C, we briefly demonstrate the effect of varying the spectral slope of a44(/), S, and the power
exponent of by,(4), 7, on the number of product failures in a test scene of the far northern Great Barrier
Reef. These results indicate that varying S and y can indeed increase the number of valid pixels by up to
20% (Table C1) and thus lends merit to the concept of dynamically varying IOP spectral models rather
than leaving them fixed. As mentioned previously, both GIOP and QAA have the ability to vary the spec-
tral shapes of internal IOP models, thus we suggest GIOP and QAA are likely to give more valid retrievals
than SWIM. However, this does not necessarily guarantee the correctness of I0Ps retrieved by GIOP and
QAA. More specifically, both GIOP and QAA dynamically adjust internal IOP spectral shapes using band
ratio algorithms. Such band ratio relationships are likely to be confounded by benthic reflectance in opti-
cally shallow waters, and propagate through the algorithm leading to potentially erroneous IOP
retrievals.

It should be noted that within this study, we have not included tidal cycle offsets to the absolute water col-
umn depth used by SWIM. This is certainly likely to have consequences in nearshore and other very shallow
regions (<10 m) of the GBR where the magnitude of the tidal range is typically 2-3 m, but can be as much
as 8-10 m for regions in the southern GBR, such as Broad Sound. We therefore conclude that SWIM’s pres-
ent inability to characterize tidal offsets, which may be of similar magnitude to the water column depth,
might also be a cause of product failure in the shallow nearshore zone where PRODFAIL flags were
observed (results not shown). A feasible approach to remedy this would be to integrate a tide predictive
model into the SWIM algorithm. One suitable method may be the Oregon State University’s Tidal Predictive
Software (OTPS) [Egbert and Erofeeva, 2002], which is able to calculate region-scale tidal solutions with com-
putational efficiencies that may be suitable for pixel-by-pixel retrievals.

4, Concluding Remarks

We have described and demonstrated a semianalytical inversion algorithm for optically shallow ocean color
applications: the Shallow Water Inversion Model (SWIM). SWIM has the potential to improve ocean color
retrievals of IOPs and subsequent downstream |IOP-centered products such as CHL, SPM, the diffuse attenu-
ation coefficient of photosynthetically active radiation (K,(PAR)), and the euphotic zone depth (Z,,). Thus,
new and highly significant ocean color time series data may be provided by SWIM that will lead to
improved understanding of trends and variability of water quality in sensitive shallow water ecosystems
such as seagrass meadows and coral reefs.

By examining the MODIS Aqua time series, we determined that the current SWIM algorithm'’s default IOP
model parameterizations were sufficient for clear coral reef waters of the GBR region. However, during tur-
bid, optically complex events SWIM had difficulty converging to a solution, evidenced by a reduced number
of valid pixels relative to GIOP and QAA. This suggests that the fixed spectral IOP shapes used within SWIM
are not robust for optically complex mid-shelf and nearshore waters. We propose this limitation can be
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remedied by allowing the spectral IOP model shapes to dynamically vary on a pixel-by-pixel basis, however,
further research is required to develop a mechanism for doing so. For optically deep waters, algorithms
such as the GIOP and QAA rely on empirical band ratio relationships, an approach which may be con-
founded in optically shallow waters. Alternatively, the adaptive approach of Brando et al. [2012] may be
used whereby optical water type classifications are implemented in order to parameterize spectral IOP mod-
els within an inversion algorithm.

Within this evaluation of the SWIM algorithm, we have used a two-class benthic albedo map, derived using
comprehensive benthic survey data. We concede that using only two spectral albedo types (i.e., “light” and
“dark”) is unlikely to capture sufficient variability of benthic spectral albedos within the GBR region. As such,
work in the form of radiative transfer modeling and in situ field sampling is currently underway to deter-
mine the optimal number of benthic classes necessary for the benthic spectral albedo data used in SWIM.
Special consideration must be given to both the spectral and spatial resolution of the ocean color sensor
being used. Here we have demonstrated SWIM'’s capabilities using multispectral MODIS Aqua imagery.
However, application of SWIM to existing sensors with higher spectral resolutions such as the Hyperspectral
Imager for the Coastal Ocean (HICO), or those being prepared/planned for launch such as the Ocean and
Land Color Instrument (OLCI) aboard ESA’s Sentinel-3 mission, and the Ocean Color Imager (OCl) aboard
NASA'’s Pre-Aerosol, Clouds and ocean Ecosystem mission (PACE) [NASA, 2012], may necessitate the inclu-
sion of more benthic classes within SWIM.

Another interesting aspect not considered in this research is the effect that benthic slope has upon SWIM.
Within SWIM we assume that for each MODIS pixel the seafloor is a homogenously flat Lambertian surface.
However, within a 1 km X 1 km pixel, a degree of depth variability and seafloor slope is almost certain.
Mobley and Sundman [2003] showed that a sloping seafloor can have an effect on water-leaving radiances
and it may be possible to correct for a sloping seafloor to a certain extent by adjusting the solar incidence
geometry. Investigating both the effect of a sloping seafloor on SWIM-derived products and a subsequent
correction scheme is an interesting avenue of future work. If necessary, implementation of a geometric cor-
rection scheme seems plausible considering the seafloor slope could be calculated using the 100 m X

100 m resolution 3D-GBR bathymetry data set.

Finally, SWIM has been developed within the versatile SeaDAS L2GEN processing framework which allows
the algorithm to be applied not only to MODIS Aqua but also to other ocean color imagery captured by
past, present and soon-to-be launched sensors including: SeaWiFS, MERIS, HICO, OLCI, and the Visible
Infrared Imaging Radiometer Suite (VIIRS). In addition, future sensors, such as the proposed OCl aboard
NASA'’s planned PACE mission, with high spectral (~5 nm) resolutions and high signal-to-noise ratios
(~1000) would provide unprecedented quality data for use with SWIM for the purpose of monitoring
optically shallow regions. Further, the SWIM algorithm is structured within L2GEN such that it is portable
to regions beyond the GBR, such as the Florida Keys. Currently, in lieu of user supplied bathymetry and
albedo data sets, the SWIM algorithm within L2GEN defaults to ETOPO-1 global bathymetry [Amante and
Eakins, 2009] and uses a scene-wide sand albedo spectrum. This may produce suboptimal IOP retrievals
and as such, a product warning flag (PRODWARN) is appended to such retrievals. Ideally, an end-user can
supply their own region-specific bathymetry and benthic albedo maps in netCDF format with the appro-
priate file attributes. We therefore believe SWIM will provide significant benefit for/to the GBR region and
elsewhere.

Appendix A

To briefly demonstrate the effect optically shallow water has on IOPs derived using an optically deep SAA,
we present a simple modeling exercise. Figure A1 shows subsurface remote sensing reflectances, r,s(1),
modeled using an optically deep semianalytical model

Table A1. Inherent Optical Properties of Two Exam- (equation (1), section 2.2.1) as blue lines denoted “DEEP-

ples Used in the Optically Shallow Modeling Exercise MOD.” Red lines denoted “SWIM-MOD” are ’rs(;v) values

(E)X’zt;:?le ”(‘:’](14,413)) a?rgn(ﬁ?) bé’;(ﬁf) modeled using the optically shallow semianalytical model
(equation (10), section 2.3.1). Values of r,s(1) were modeled

1 0.02 0.05 0.01 . . .

5 O a1 NS at four different depths using two optical examples sum-

marized in Table A1. The benthic albedo used in this

MCKINNA ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1764



@AGU Journal of Geophysical Research: Oceans

10.1002/2014JC010224

Example 1 actual values: a,(443)=0.02, a,(443)=0.05, a,(443)=0.07, b, (443)=0.01

0.030 frvvrpurrrprrrepirr e
-depth 15m @@ SWIM-MOD ]

0.00515 " (443)=0.0715

[ a, (443)=0.0786
[ by, (443)=0,0131

E ©-e DEEP-MOD 1 I e DEEP-MOD | I @@ DEEP-MOD | | ®-® DEEP-MOD |
0.025 e DEEP-FIT ] e—e DEEP-FIT e DEEP-FIT ®— DEEP-FIT
0.020F B - - - - - R
5 r ] i | L | I |
0.015[ -
= [ ] I ) I T I 1
0.010} B = - = - = -
[ DEEP-Fit IOPs: ] [ DEEP-Fit 10Ps: 1 " DEEP-Fit IOPs: 1 [ DEEP-Fit 10Ps: 1
F a,, (443)=0.0071 3 - a, (443)=0.0146 . - a, (443)=0.0177 1 ,(443)=0.0191 .

T T[T T T[T T T[T T[T T[T roTe

+ depth=20 m @@ SWIM-MOD |

T T T T T T

- depth=25 m @@ SWIM-MOD |

T T T T T [T T [T T[T T[T TTT

I depth=30 m &9 SWIM-MOD |

L a,‘, (443)=0.0512 J
. (443)=0.0703
i b,,,, (443)=0.0131 I

| &, (443)=0.0583 j a,,, (443)=0,0531 _
a, (443)=0.0729 ., (443)=0.0708
443)=0.0131 ) b”, (443)=0.0131 ]

st o P A i TR D e

0.0055 " (443)=0.105
Fa, ‘(443) 0.157
(443)=0.0264

0000 i A R T TR BV i, I AR NNENE AR RRERE ERERE ) s e byaaa byaaa boaaa 10
Example 2 actual values: a (443)=0.05, a,(443)=0.1, a,(443)=0.15, b, (443)=0.025

0.030 prrrrprrrrrrr e . A S A — B AR AR RRRRRRARS I ——

[ depth 15 m @& SWIM-MQOD ] L depth 20m @& SWIM-| MOD L depth 25 m @8 SWIM-MOD ] L depth 30 m @@ SWIM-MOD
N @@ DEEP-MOD 1 r @@ DEEP-MOD - b r @@ DEEP-MOD ] r @—® DEEP-MOD 1
0.025}+ @ DEEP-FIT - — o DEEP-FIT - - @ DEEP-FIT - - e DEEP-FIT -
0.020F 1 1 F 1 F ]
e C ] C ] C ] r ]
u L ] L N L ] L ]
0.015¢ ] C 7 5 ] C 3
= ] 1 ] 1
i r ] C ] C ] N ]
0.010 ] o 3 n . o 1
[ DEEP-Fit IOPs: ] [ DEEP-Fit IOPs: 1 [ DEEP-Fit 10Ps: ] r DEEP FIT 10Ps: 1
b a, (443)=0.052 1 F a, (443)=0.051 ] F a,, (443)=0.050 ] ., (443)=0.050 ]
] ] ] ]

Ca,,,(443)=0.100
Fa, {443)=0.151
[ by, (443)=0.0253

c e T e

Ca, (443)=0.100
F a,'(443)=0.150
[ by, (443)=00251

Coci i b o b b g

Ca,, (443)=0.100
: a."(443) 0.150
[ by, (443)=0.0250

Lo v oo oo b b

000301“|“h|||l||||luulnnl||nl|n

0 450 500 550 600 650 700 750 400 450 500 550 600 650 700 750 400 450 500 550 600 650 700 750 400 450 500 550 600 650 700 750

wavelength [nm]

wavelength [nm] wavelength [nm] wavelength [nm]

Figure A1. (top and bottom) The effect of depth (varying left-to-right) upon r,,(1) using two different optical scenarios. The red and blue lines denoted “DEEP-MOD” and “SWIM-MOD"
are r,(/) modeled using the Gordon et al. [1988] (equation (1)) and Lee et al. [1998] (equation (10)) semianalytical forward models, respectively. Values denoted as “DEEP-Fit IOPs” repre-
sent IOPs derived from the SWIM-MOD modeled r,(4) using an inversion algorithm similar to the GIOP algorithm. The black line denoted as “DEEP-FIT” is the r,4(4) reconstructed using
the Gordon et al. [1988] semianalytical forward model seeded with the DEEP-Fit IOP values.

exercise was constructed of 75% “light” and 25% “dark” substrates (see section 2.3.3). Next, the SWIM-MOD
rs(A) spectra were inverted using an optically deep semianalytical inversion algorithm (similar to GIOP algo-
rithm). These optically deep inverted results are listed in each subplot of Figure A1 as “DEEP-Fit IOPs.”
Finally, the DEEP-Fit IOPs were passed back to the optically deep forward model (equation (1)) to determine
how closely the reconstructed r,s(1), denoted “DEEP-FIT,” matched the original SWIM-MOD r,s(4) shallow
water spectra.

By examining the first optical example (top four plots of Figure A1), it is evident that the SWIM-MOD
rys(4) spectra are distinctly different from those of DEEP-MOD spectra until the water column reaches
30 m in depth. It is important to note that the DEEP-FIT reconstructed spectra tend to closely match
those of SWIM-MOD even when the derived IOPs (listed in Figure A1 as “DEEP-Fit IOPs”) are different to
those used to simulate SWIM-MOD. This illustrates how an optically deep SAA will converge to a solu-
tion (i.e., the modeled r,s(1) spectra match sensor-observed spectra well) whilst retrieving inaccurate
IOPs. Examining the second optical example which is slightly more attenuating than the first (bottom
plots of Figure A1), we see that SWIM-MOD and DEEP-MOD become extremely similar in shape and
magnitude once the water column depth reaches 20 m. In addition, the derived DEEP-Fit IOPs are simi-
lar to the true values even when the water column is 15 m deep. This illustrates that, even with the
same water column depth and underlying benthic reflectance, the water can be considered optically
deep if the water column is suitably attenuating. Thus, we have demonstrated that optically deep algo-
rithms can yield erroneous IOP retrievals in optically shallow waters, supporting the concept of a dedi-
cated optically shallow ocean color algorithm that uses a priori knowledge of water column depth and
the benthic albedo.
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Appendix B

Table B1. Normalized Phytoplankton Absorption Coefficient
Used Within the SWIM Algorithm

Wavelength 412 443 488 531 551 667 678

A region-specific spectral phytoplankton absorption
coefficient, a,(4), was used within the SWIM semiana-
a,(4) 0840 1.0 0689 0217 0.146 0292 0356 lytical inversion algorithm. Seawater samples collected
off Heron Reef {3.45°S, 51.95°E} in the southern GBR
were filtered, frozen, stored, and analyzed following the Ocean Optics Protocols [Mitchell et al., 2002]. Photo-
metric measurements were conducted using a Perkin-Elmer Lambda 35 Spectrophotometer with an inte-
grating sphere attachment following the quantitative filter technique [Mitchell, 1990; Mitchell et al., 2002].
Values of a,(4) were normalized to 1.0 at 443 nm and are presented below in Table B1.

Appendix C

Table C1. SWIM Product Failures Occurrence for a MODIS
Aqua Test Scene Captured on 22 May 2009 as the Coefficients The spectral absorption coefficient of colored dis-

Sand y are Varied solved and detrital matter, agy(2), and the particu-

Relative late backscattering coefficient, by, (4), can be
S y PRODFAIL Difference % X .
modeled using exponential and power law func-

0.010 0.5 37,361 413 . . . .
Qe 06 43,038 it tions, respectively [Bricaud et al., 1981; Carder et al.,
0.010 15 47,945° 558 1999]. Varying the exponential slope coefficient, S,
0.015 05 8387 15 used to model dgq(4) and the power law exponent,
001> 10 o463 2 7, used to model by, (1) within a semianalytical inver-
0.015 15 11,124 53 Vi bp y
0017 05 6920 -5 sion algorithm can influence retrieved inherent opti-
0.017 1.0 7285° — cal properties [Werdell et al., 2013a]. Within this
0.017 15 7859 8 .
O s o 7 research, we hypothesize that the fixed default val-
0.020 1.0 6144 —13 ues of $=0.017 and y = 1.0 used within the SWIM
0.020 1.5 6318 —13 algorithm may have contributed to higher product
0.025 0.5 5719¢ -22 - . . . .
s 06 S o failure relative to GIOP and QAA. To investigate this,
0.025 15 5833 —20 we varied S and y values within SWIM for a MODIS

al : . ) Aqua test scene of the far northern Great Barrier

argest increase in product failure.
bStandard SWIM parameterization. Reef captured on 22 May 2009 and recorded the
“Largest reduction in product failure. number of product failure flags (PRODFAILS) that

occurred. Each PRODFAIL flag indicated a pixel for
which the SWIM algorithm could not converge to a solution.

Table C1 shows that, relative to the default SWIM parameterization (i.e, S = 0.017, y = 1.0), the lowest num-
ber of SWIM product failures (5719) occurred when S = 0.025 and y = 0.5, and the largest number of prod-
uct failures (47,495) occurred when S = 0.010 and y = 1.5. Figure C1 shows where PRODFAIL pixels occur
using three S/y SWIM parameterizations: (a) default (S = 0.017, y = 1.0), (b) lowest product failure (S =
0.025, y = 0.5), and (c) highest product failure (S = 0.010, y = 1.5). The default parameterization (a) and the
lower product failure parameterization (b) exhibit little or no product failure across the continental shelf
and into deeper offshore waters apart from over very shallow coral reef structures. Notably, using a parame-
terization of S = 0.025 and y = 0.5, product failures appear to be slightly reduced in large north facing bays.
Conversely, the highest product failure parameterization (c) exhibits product failure across most of the shal-
low shelf waters of the test scene, yet yields slightly more valid retrievals in the nearshore region.

From this brief investigation, we conclude that the default parameterization of SWIM can converge to a
solution in relatively clear waters, however, it has difficulties in the nearshore region. Nearshore optically
complex waters of the Great Barrier Reef are often dominated by suspended sediments and colored dis-
solved organic matter, CDOM [Blondeau-Patissier et al., 2009]. For optically complex waters, previous
research has indicated that smaller values of S and y are more suitable for modeling highly absorbing/scat-
tering waters [Antoine et al., 2011; Blondeau-Patissier et al., 2009; Twardowski et al., 2004]. Thus, we conclude
that the SWIM algorithm’s parameterization requires refinement in order to reduce product failures in the
nearshore region. A band ratio approach similar to that implemented by the QAA [Lee et al., 2002] or the
adaptive technique of Brando et al. [2012] are approaches that, with further work, may improve SWIM'’s per-
formance in the nearshore; however, such approaches may be confounded in optically shallow waters
where the water-leaving radiance signal is influenced by benthic reflectance.
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Figure C1. MODIS Aqua scene of the northern Great Barrier Reef captured on 22 May 2009. SWIM algorithm product failures are red pixels,
land is brown. RGB: quasi-true color image, (a) standard SWIM parameterization with S = 0.017, y = 1.0, (b) SWIM parameterization for
which the least product failures occurred, S = 0.025, y = 0.5, and (c) SWIM parameterization for which the most product failures occurred,
$=0.010, y = 1.5. Product failures in Figure C1b are mostly reduced relative to Figure C1a in the nearshore zone. Note, product failures
consistently occur over coral reef structures for which the water column is shallow (<5 m).
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