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Blind Identification of FIR MIMO Channels by
Decorrelating Subchannels

Yingbo Hua Fellow, IEEE Senjian An, and Yong Xiang

Abstract—We study blind identification and equalization of " G ( ) —>
finite impulse response (FIR) and multi-input and multi-output \Z) L,
(MIMO) channels driven by colored signals. We first show a
sufficient condition for an FIR MIMO channel to be identifiable
up to a scaling and permutation using the second-order statistics —> H( ) > > G —»
of the channel output. This condition is that the channel matrix is —> Z 2(2) —>
irreducible (but not necessarily column-reduced), and the input
signals are mutually uncorrelated and of distinct power spectra.
We also show that this condition is necessary in the sense that
no single part of the condition can be further weakened without G3(z) —>

another part being strengthened. While the above condition is a —>

strong result that sets a fundamental limit of blind identification, ) ) o

there does not yet exist a working algorithm under that condition. Fig- 1. lllustration of BIDSH(=) denotes the channel matrix i.e., the MIMO
In the second part of this paper, we show that a method called FIR channel transfer function matrix). The output signals of e@cliz) are

. . e . . made mutually decorrelated. Each;(z) may have more input than output,
blind identification via decorrelating subchannels (BIDS) can depending on the dimension Bf(z). BIDS-1 extracts out the input signals of

uniquely identify an FIR MIMO channel if &) the channel matrix g (.) from the output signals & =). BIDS-2 reconstructel( =) from G (z)
is nonsingular (almost everywhere) and column-wise coprime and and then estimates the input signalsbe ).

(b) the input signals are mutually uncorrelated and of sufficiently

diverse power spectra. The BIDS method requires a weaker | . . . L
condition on the channel matrix than that required by most driven by white signals as studied in [7], [18], and [19]. In the

existing methods for the same problem. latter case, the higher order statistics (HOS) have to be ex-
Index Terms—Adaptive signal processing, blind system identi- ploited_to resolve the ambiguity of a unitary matrix th"?‘t (_:annot
fication, blind channel deconvolution, colored sources, decorrela- Otherwise be resolved using the second-order statistics. The
tion, MIMO channels, sensor array processing. previously developed methods for the same problem that we
consider here are primarily the subspace algorithm [8] and the
matrix pencil (MP) algorithm [9]. These two algorithms require
the channel matrix to be irreducible and column reduced. This
DENTIFICATION and equalization of finite impulse assumption is a barrier to many other methods. A recent work
response (FIR) and multi-input and multi-output (MIMO)in [27] also requires the same condition and in addition a known
channels channels driven by unknown colored signals are a fimput power spectra. Another recent work in [28] requires the
damental problem encountered in a wide range of applicatiossannel matrix to have unit diagonal elements at all frequen-
which include speech enhancement using microphone arragies. The algorithms shown in [13] and [14] also assume the
wireless and mobile communications, video surveillance, asHannel matrix to have unit diagonal elements. In this paper, we
brain signal analysis. This paper focues on the important cggesent a method called blind identification via decorrelating
where very little about the channel input is known. The FIBubchannels (BIDS). The BIDS method (see Fig. 1) is based
single-input multi-output (SIMO) channels studied in [1]-[3]on a set of decorrelators that decorrelate the output signals of
[18], and [19] and the instantaneous MIMO channels studigdbchannels. The BIDS method requires a channel condition
in [4], [5], [18], and [19] are some extreme cases of the FIReaker than “irreducible and column-reduced.” Some prior
MIMO channels. The FIR MIMO channels driven by coloredievelopments of the BIDS method are available in [10]-[12].
signals are also in contrast to the FIR/IIR MIMO channels In Section Il, we address some of the algebraic properties of
the second-order statistics of the channel output to establish a
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method first partition the original channel into a set of subchaand the power spectral matricBgx(z) and Sww(z) of x(n)
nels and then construct a set of decorrelators that decorrelateghdw (n), respectively, are similarly defined. It is natural to as-
output signals of each of the subchannels. The decorrelatorssume) > |(Rxx(7))i ;| < oo such that all power spectra
then exploited in two different fashions, leading to the BIDS-tonsidered here exist. Then, it requires only a standard proce-
and BIDS-2 algorithms. To estimate the channel matrix, thture [21] to show that
BIDS-2 algorithm allows the channel matrix to have certain
zeros (i.e., nonirreducible). This remarkable property makes Syy(2) = H(2)Sxx(2)H(z™)7 + Suw(2). (3c)
the BIDS method more robust to noise than other methods like
the subspace method and the matrix pencil method.

In Section IV, we compare the performance of the BIDg
method with that of the above two methods.

Note that the power spectral mati$x, (z) contains all the
OS information of the channel output. We say that an FIR
MIMO channel is identifiable using the SOSpfn) if Sy (2)
impliesH(z), Sxx(z), andSww (z) uniquely, up to some simple
scaling and permutation.

We consider the following FIR MIMO channel: Without a further constraint ofl(z) and/orx(n), an FIR

Ly MIMO channel is still not identifiable, but for many applica-
y(n) = H(n)*x(n)+w(n) = Z H())x(n —1)+w(n) (1) tions, we can assume that the elements in the input ve¢tor

=0 are mutually uncorrelated, i.68(z) is a diagonal matrix, and
the noise elements iw(n) are also mutually uncorrelated and
of equal power spectra, i.68w(z) = p(z)p(z~1)I, where
p(z) is a rational function. Furthermore, we assume that there
are more output signals than input signals, ilex I (more sen-
sors than sources). In this capé;)p(z~1) is identifiable from

%,fy(z). Note that ifz is on the unit circle, thep(z)p(z71) is
real valued and is the least eigenvalu&gj (z). If p(2)p(z71)

Il. SOME FUNDAMENTAL LIMITS

wherex denotes linear convolutiosyn) is the vector off input
signalsy(n) is the vector of/ output signalsH(») is the.J x T
matrix sequence of the channel impulse responkgsis the
maximum length of the finite impulse responses, ard) is a
noise vector uncorrelated with(n). In this paper, all parame-
ters in (1) are assumed to be real valued. A convenient form

(D)is is given for allz on the unit circle, thep(z)p(z~1) at anyz is
y(n) = H.(2) [x(n)] + w(n) (2) givenviaanalytic continuation. In other words, with)p(z~")

L . . available on the unit circle, we can obtain the autocorrelation

whereH.(z) = >, H(l)z~" is the channel matrix, and of the noise via an inverse Fourier transform and consequently

H.(z) [x(n)] denotes the operation & (z) on x(n). Note gbtainp(z)p(z 1) by taking theZ-transform of the autocorre-

that there is a one-to-one relationship between the polynomiglion. A more general statement is given next.

matrix H. (z) and the sequendd(n). The goal is to estimate  Theorem 1:An FIR MIMO system is identifiable (i.e.,

x(n) and/orH.. (z) usingy (n). In the sequal, we will usBI(z) s () implies H(z) uniquely up to a column-wise scaling

to representl.. (z) for convenience. and column-wise permutation) if we have the folowing.
Without any further constraint, the FIR MIMO system is am- Al) H(z) is irreducible

biguous to any unimodular polynomial matiX(z) (the in- A2) S,.(2) is diagonal and of distinct diagonal (polyno-
verse of which is a polynomial matrix as well), i.e., mial o rational) functions

y(n) = H(z) [x(n)] + w(n) = H'(2) [x'(n)] + w(n) A3)  Sww(2) = p(z)p(z~ )T and.J > I _
whereH'(z) = H()T()~, andx'(n) = T(z)[x(n)]. An Furthermore, if any of the above subconditions A1-A3 is weak-

i : . . ened independently, the FIR MIMO system is not identifiable.
additional constraint must be available to reduce the amblgmty.Remark. An irreducible H(z) is a polynomial matrix that

We assume that the data sequese) is long enough so that ¢ | rank for every except forz = 0. GivenJ > I, H(z)
the second-order statistics (SOS)@f) can be exploited\We  ig 5 5 matrix. If all rows ofH(z) are chosen randomly with

write the autocorrelation dRyy () of y(n) as a given maximum degre&](z) is irreducible with probability

N-1 one.
Ry, (7)= Nlim N Z y(n)yT(n —7) (3a) Proof: The sufficiency of Theorem 1 follows from the
T o above discussion of(z)p(z~") and a proof given in [15]. The
and the autocorrelatioR (1) of x(n) is defined in the same Necessity of Theorem 1 is shown next.
way. The power spectral matri,, (z) of y(n) is defined a%s 1) Necessity of A1:We show here two counter exampfes.
- Example 1: This example shows that there can be a max-
- - imum-phase channel matrix and a minimum-phase channel
SYY(Z)_T;OO Ryy(7)z (30) matrix such that both yield the same output power spectral

1A unimodular polynomial matrix is a polynomial matrix of constant deter-

minant.
2Higher order statistics would require even a I_or!ger sequence to ensure therhe counter examples were discovered through a tediouaghdcproce-
same level of accuracy as the second-order statistics. dure. Although the counter examples are sufficient and rigorous for the purpose

3Strictly speaking, the power spectral matrix corresponds to the case wheiiere, a theory that governs the existence of such counter examples has yet to be
is on the unit circle. developed.
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matrix Syy(z) even ifthe input signals have distinct powerspectral diversity of the input signals and consequently requires

spectra. Let a weaker condition on the channel matrix.
[ 2) (271 +2
Sxx(2) = (z+ )((')Z +2) (1) [1l. BLIND IDENTIFICATION VIA
- DECORRELATING SUBCHANNELS
—64 4271437 .
H(z) = | -32 421 +23 A. Decorrelating Subchannels
| —16 4z71 4+ 16 In the sequel, we will ignore the noise term for convenience.
(12 132271 461 The effect of white noise can be mitigated in a conventional
ﬂ(z) =4 6821431 fashion as mentioned later. We now write
—1
L0 3627+ 16 y(n) = H(z)[x(n)]. 4)

whereH(z) has a zere-4/9, andH(z) has a zere-9/4. Azero LetS; be al x J selection matrix. The BIDS algorithms first
of a polynomial matrix is a value of at which the matrix does form subchannel output vectors as follows:
not have a full rankH(z) is a minimum-phase matrix, aid(z) ()2S. ®)
is a maximum-phase matrix. One can verify that yi(n)=8iy(n)
5 ST 1y T -1 wherei = 1,2,...,M, and M=J!/((J — I)!I!), which is
H(2)Sxx(2)H" (277) = H(2)Sxx(2)H (z77). the total number of subchannels. For eacthe BIDS method
Example 2: This examplé shows that there can be two dif_searphes for a decorrelatG¥;(z) such that the power spectral
ferent minimum-phase channel matrices such that both yield fR&triX Su,u, (2) of
same output power spectral matfiy, (z), evenifthe input sig- w;(n)=Gi(2)yi(n) (6)
nals have distinct power spectra. Let

is diagonal. LeiG;(z) = ,L:GO G;(l)z=1. Then, we can write
H(») —H 2:71+5 327147
_ yi(n —1
S(2) = [2<Z+3>32 ' +3) g} ui(n) = [Gi(0) Gi(1) - Gi(Lg)] :
A 2,724 14271 +22 2271 +4 yi(n = Lg)
H(z) =Ho(2) -1 : - : .
27 +4 1 or simply u;(n) = G;¥:(n). The autocorrelation matrix of
. 1 0 u;(n) can be computed (estimated) as
S(z) = -1
0 (Z+2)(Z —|—2) 1 N—1
» _ T
whereH,(z) is any irreducible matrix. It is easy to verify that Ruu, (1) = N > wi(n)uf (n - 7).
n=0

H(z) has a zere-1/2, H(z) has a zere-1/3, and furthermore
o a 5 EquivalentlyRy,u, (1) = GiRy.y,(1)GT, whereRy . (1) i
H(Z)SXX(Z)HT (2—1) _ H(Z)SXX(Z)HT (2—1) quivalently i Z(’T') V. (T) ;s whereRlg, ¢, (7‘) IS

the autocorrelation matrix of;(n), i.e., we have the equation

where bothH(z) andH(z) are minimum-phase. at the bottom of the next page, with
Necessity of A2:If Sxx(z) has some identical diag- . 1 =t

onal functions (disregarding scaling), then the corre- Ryy(T):NZY(n)yT(n_T)-

sponding columns ofH(z) are ambiguous by a uni- n=0

tary rotation Q (in addition to column-wise scaling If the noise is spatially and temporally white, then
and permutation), i.e., there is a unita such that Ry,(7) = Rss(7) + 6(7)0”1, wheres(n) = H(z)[x(n)],
H(2)Sx(2)H(z"1)T =  H(2)QS,,()QTH(>~1)7, ando? is the noise variance. Given thEk(z) is a tall matrix,
where H(z) is a column-wise scaled version &i(z), and o? is the smallest eigenvalue @, (0). Hence, the noise
Sxx(z) is a corresponding diagonal-wise scaled version epntribution can be asymptotically removed froRyy (7).
Sxx(2). Several variations for estimating’ from a set of the smallest

Necessity of A3:If Syw(2) is not necessarily diagonal andeigenvalues ofRyy (0) are possible. However, we will not
is completely unknown, it is clearly not distinguishable from thaddress this issue further here. The least eigenvalue will be
other unknown compone(z)S, (2)H” (z71). used to estimate? in our simulation.

The sufficiency and “necessity/bf the conditions A1-A3 of The cost function for constructing the decorrelator can be de-
Theorem 1 are now established. It sets a fundamental limit Baed as the mean squared values of the off diagonal elements
the blind identifiability of FIR MIMO channels. However, thusOf Ru,u, () over a sufficient range of, i.e.,
far there exists no working algorithm under the condition. In the 1 L, A )
next section, we show the method of BIDS, which exploits the £, = LIT-T) SN (ngRyiyi (T)gi,j)

Yy

. . . =0 j#k
SThis example unfortunately counters a previously reported result shown in =057

[10] and [23]. wherey; ; is defined by
6The necessity implied here should not be confused with other possible mean- -
ings of the same term. G; = [gi,l gi2 gi,l] .
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The cost functionE; is a nonquadratic function d&; in the Definition of Diversity: Given two polynomials, we say that

strict sense, but it is quadratic with respect to each (individuahe distinction of one polynomial from the other is the number
row of G,. This leads to a simple algorithm to minimiZg, of distinctzeros of the first polynomial that are not shared by
which consists of a sequence of the following sweeps until cotite second polynomial. The diversity of two polynomials is de-
vergence. During each sweep, the rowddhfare updated se- fined to be the larger distinction of the two polynomials. The

quentially. When updated, each row @f minimizesE; with
all other rows fixed. To avoid trivial solutio[ls, each row@f
is constrained to yield a constant diagonaRuf,, (0), i.e.,

gg:kRS’iS’i (O)gi,k =1.

This minimization with respect to each row @¥; is a standard

diversity of two diagonal functions of a power spectral matrix
is defined to be half the diversity of the two functions. The di-
versity of a power spectral matrix is defined to be the minimum
diversity between any two diagonal functions of the matrix. The
diversity of Sxx(z) will be denoted by di¥S,x(z)). If Sxx(2)
is rational, we first writeSyxx(z) = (1/q(2)q(z71))S"(2),

linear-quadratic problem, but the overall minimization with rewhereq(z)q(z ') is the least common multiple of the denomi-

spect to the whole matri&; may converge to a local minimum.

Therefore, in practice, several initial values @y are required
to ensure that the global minimum &% is achieved with a high
likelihood. If there is some prior estimate Hf(z), it should be
used to initializeG;.

nators of the diagonal elementsyf, (z), andS),, (z) is a poly-
nomial power spectral matrix. We then define By« (z)) =
div (S (2)).

The notion of diversity is a key for the study of the identifia-
bility conditions of the BIDS method as shown below.

A related idea shown in [22] was recently brought to our at- Theorem 2: Let C(z) be a nonsingular (i.e., full rank almost
tention, but the work shown there was incomplete and was reserywhere)l x I polynomial matrix. The diagonalization of
continued since then (according to its authors). Theorem 3@{2)Sxx(2)C(2~1)T implies the diagonalization of'(z) up
[22] is incorrect, a counter result of which is Theorem 2, whicto a row permutation if

will be shown later in this paper.

B. Conditions for Decorrelation Implying Separation

We now go back to (6) and discuss the conditions under which

a decorrelation ofi;(n) leads to a separation af»). We can
rewrite (6) au;(n) = G;(2)yi(n) = G;(2)H;(z)x(n), where
H;(z) = S;H(z). We show next that with a proper choic
of ded G;(z)), the productG;(z)H;(z) is diagonalizable by

Lemma 1: Provided dedG;(z)) > (I —1)deg(H;(2)),
there exists &;(z) such thaiG;(z)H;(z) is diagonal.

Proof: It is easy to verify that under the condition of the
lemma, the number of linear and scalar equations corresponding

to all off-diagonal polynomial elements &, (z)H;(z) is no
larger than the total number of the scalar parametefs;ifx)

minusI. The extra degreé of freedom here corresponds to the,

number of nonzero rows d&&;(z). Hence, there exists@;(z)
(with all nonzero rows) such th&;(z)H;(z) is diagonal.

If G;(2)H;(2) is diagonal, then each element af(n)
corresponds to a distinct element of the input sigréh)

(S

div (Sxx(z)) > (I — 1)deg(C(z)) . (7)
Proof: See Appendix A.

Remark: The necessity of an alternative condition

div(Sxx(z)) > deg(C(z)) [as opposed to (7)] was

discussed and established in [10], but the sufficiency of

div(Sxx(z)) > deg(C(z)) has not been proved or disproved.
Corollary 1: Provided thats;(z)H;(z) is nonsingular and

(I —1)deg (Hi(z)) <deg(Gi(z))
<diV Sxx(2))

) deg (HLi(2))

(8)
there exist$z;(z) such thaS,,, (z) is diagonal, and the diago-
nalization ofS.,, ., (#) also implies thaG;(z)H,(z) is diagonal
p to a row permutation.

Proof: The proof follows from Lemma 1 and Theorem 2.

Note thatG;(z)H;(z) is nonsingular if and only i8,,., (z)

is nonsingular (sincB,x (z) is nonsingular). The nonsingularity
condition on

and, henceG;(z) is said to be a “signal separator.” It is
such separator&;(z) that will be further exploited by the
BIDS method. However, a decorrelator is not necessarily a

separator unless a diversity condition 8p.(z) is satisfied. can be ensured in the BIDS method with the constraint.
This condition will be detailed later after we introduce the

gg:kR}_’i}_’i (O)gi;k =1

definition of spectral diversity.

7An error in the previous report [23] was later discovered.

. RYiYi (T) Ry;yi T+ 1) R Ryiyi (T + LG)
A Ry.y. (r—1) Ry.y. (7) Ry.y. (1+Lg—1)
R)_'73_'7 (T) - . : .
Ryy.(1—Le) Ryy.(r1—Le+1) Ry.y.(7)
and
Ry.y.(7) :SLRyy(T)Sz‘T
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C. Sorting Out Subchannel Decorrelators
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We see that the matr[l?liéi(z) for any: is equal to the cor-

Assuming that the condition of Corollary 1 is met, wd®SPonding ideal decorrelat@;(z) up to a (unknown) per-

can now find such &5;(z) by diagonalizingS,,,,,(z) that

G, (z)H;(z) is diagonal up to an unknown row permutation;

The row permutations in the comput€;(z) for different

are generally different. In this subsection, we show how to fin

these permutations needed to sort Gytz).

mutation matrix independent af Therefore, thejth row of
Pliéi(z) for all 4 is associated with a distinct input signal
(common for alk) or, equivalently, a distinct column &(z).

¢ Without loss of generality, we can nextigndpe in (16) and
assume thak; (z) is available such thak; (2)H; (2)=C;(z) =

In this section, we us€; (=) to denote the ideal decorrelatordiagonal.

such thatG;(z)H;(z) is exactly diagonal. A permuted version

of Gi(z) is given byG;(z) = P;G;(z), whereP; is an un-

D. Properties of Subchannel Decorrelators

known permutation matrix. Consider the cross spectral matrix Ve now show some properties of the subchannel matrices and

betweenu; andu;:

Suyu, (%)
= Ga(2)H (2) ()= )T Gy (=)
—P{ G (2)H1 (2)Sax (2)H (™) Gi(™) P,
=P7G1(2)S1S,y(2)S] G;(2~ )T P;

:PTSUNT(Z)PZ' 9

where Sy, u,(2) = G1(2)81Syy(2)STGi(z~")T, which is

subchannel decorrelators. These will be useful for establishing
the BIDS algorithms. LeH;(z),i =1, 2,..., M be all of the
I x I square submatrices #1(z). Assuming thaiH(z) has a
full column rank for almost alt, we have Lemmas 2-5.

Lemma 2: Each (nonzero) row df(z) must be a row of an
I x I square submatriM;(z) that is nonsingular (i.e., with full
rank for almost alk).

Proof: We know thatH(z) must have at least onex I

square submatrifl;(z) that is nonsingular. Now, choose any
row r(z) from the rest of the rows dfl(z). r(z) must belong to

computable from given data. Note that the (ideal) cross spectita span of (< I) rows ofH;(z) for almost allz. Substituting
matrix S, u, () is diagonal, given that .« () is diagonal. The r(z) for any of thesd{ rows, we form another nonsingular sub-

time-domain expression of (9) is

Ruu (1) = P{Ruluq- (T)P; (10)
whereR.,, 4, (7) is ideal and diagonal, and
0.5
Ruin (1) = [ S (PN (11a)
-0.5
Sui(2) = Y Rupu ()27 (11b)

matrix.

Lemma 3: All the submatricedH;(z) that are nonsingular
are “chained” together in the sense that every two nonsingular
submatrices share a common row either within the two subma-
trices or with another.

Proof: SupposeH;(z) and H;(z) are nonsingular and
that they do not have a common row. Then, we know that not
all rows of H;(z) belong to (for almost alk) the span of any
choserl — 1 rows ofH;(z). Then, for a row of; (=) that does
not belong to (for almost alt) the span of the choseh— 1
rows of H;(z), we can form another nonsingular submatrix
H,(2) that shares one row witH;(z) andI — 1 rows with

Note that the above definitions of the autocorrelation matric&i ().

are for the asymptotical case, i.&/, = oo, but the actual im-

plementations use a finit%. Define the operatoy as follows:

L al>e>0
n(x) = { 0, oaéhervf/ise (12)
(n(A))ij =n(Aij)- (13)

In the ideal situation where the decorrelation is perfeistzero.
Therefore, ideally, we have [from (10)]

R 2
Py <Z\Rului<r>\ ) =Pl (14)
or equivalently
0.5 ) 2
Pl'iﬁn </ Suluq'(e]%rf)‘ df> = PlP? (15)
—0.5

Lemma 4: If H,(z) is nonsingular, so is the corresponding

Gi(z).
Proof: If H;(z) is nonsingular, we know thaf;(z) is

such thaS,. v, (2) = G;(2)H;(2)Sxx(2)H; (27T G, (z71)T
is nonsingular diagonal, and hen€&;(z) is nonsingular.

We now letG;(z), 7 = 1,2,...,M’ (whereM > M' >
J) is all of the nonsingular decorrelators. Furthermore, we can
assume that each row 6;(z) is coprime. If it is not, one can
extract out the greatest common divisor (GCD) of each row of
G;(z) by following the method shown in [16] or [24]. We can
now define that foi = 1,2,..., M’

G7(Z)HL(Z)£CL(Z) B dlag{ C,,j,l(Z)

cj(z) =[er(2) c24(2)

cir(2) }

C,,j,Q(Z)
e (2)]"
Lemma 5: For any; =

zero ofH(z).
Proof: Supposerisazeroot;(z),i.e.,c;(a) = 0.Then,

1,2,...,1, any zero ofc;(z) is a

where|A|? is a matrix of A with all elements replaced by theirthe jth diagonal element of the diagonal mat@; (a)H;(«)

squared magnitudes. Then, we have

must be zero for all = 1,2,..., M’. Since none of the rows
of G,(«) for anyi is zero, thel rows of H;(«) must be lin-
early dependent for all = 1,2,...,M’. Now, by Lemma 4,
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H;(«) is singular for alli = 1,2,..., M. (Note that for any Step 7) Construct the vector sequence;(n) =
i=M'+1,...,M, H;(z) does not have full rank for any.) [u1;(n) waj(n) --- wuarj(n)]" for each input
Hence,H(«) has arank less thah i.e.,« is a zero ofH (z). signalj.
Corollary 2: If H(z) is irreducible, so is:(z) forall j = Step8) For eachj, apply a SIMO system technique
1,2,....,M". [18], [19] to estimatez;(n) based on the model
Proof: It follows from Lemma 5. v;i(n) = c;(z){z;(n)}, wherec;(z) is an unknown

FIR channel vector.
E. BIDS-1 Algorithm

We are now ready to present the BIDS-1 algorithm. Reczfll BIDS-2 Algorlthm' ] ) )
u;(n) = Gi(2)yi(n) = G;(2)H;(2)x(n). Define that fori = The BIDS-2 algorithm first estimates the channel matrix
1.2.. ..M H(z) from the decorrelator€z;(z) and then estimates the
Y input signals using the estimatdd(z). Recall that we can
obtain the row-wise coprime nonsingular matridg@g(z) for
T i =1,2,...,M" such thatG;(z)H;(z) for: = 1,2,..., M’

vi(n) =[u1j(n) uzi(n) - wun(n)]" . are diagonal. Furthermore, given the assumptionkh@t) has
full column rank for almost alk, we have Lemmas 2-4. We

It follows thatv;(n) = c;(z)x;(n), which is an FIR SIMO now define
system. IfH(z) is irreducible (and, hence, so i5(z)), one
can apply any of the SIMO system methods [1]-[3] to retrieve H;(z) =(h;1(z) hi2(2) -+ h;i(2))
zj(n) fromv;(n) for eachj. If H(z) is notirreducible, we can G, (z) =G;(z) without its pth row.
write c;(z) = €;(z)c;(z) where all zeros of;(z) belong to
the zeros off(z), and¢;(z) is coprime. The SIMO methods Then, we know that foi = 1,2,..., M"andp = 1,2,..., M
can then be used to retrievg z)z;(n) fromv;(n). The SIMO
system method shown [1] will be used in conjunction with the
BIDS-1 algorithm in the simulation. [H(z) is not irreducible,

¢;(z) isunknown, and hence;(z)z;(n) would be an unknown to Gi_p(z)fli.p(z) — 0 for eachi is Bi_p(z) — iy (2)fip(2),

distortion of the desired signal;(n). wheref; ,(z) is a scalar polynomial. From Lemma 3, we know

Once the input signals;(n) forall j = 1,2,...,J are es- . I v i o
. . T . thath; fori =1,2,..., M’ are “chained” together through
timated, one can then use both the input and output signals {0 p(2)fore ’ 9 g

estimateH(z). A least square fitting method would suffice. shared elements. Hence, the solutiorhpf(z) to

The BIDS-1 algorithm not only shows some interesting in- ) h. - i = /
sights into the FIR MIMO channel but also has some useful Gip(2)hiplz) = Oforalli=1.2,... M (18)
features. In particular, the BIDS-1 algorithm suggests that omﬁerefl,;,p(z) has the same overlapping (or chained) pattern as
can obtain the input signals before the channel response is Bb; (z), is thenh, ,(z) = h; ,(2)f,(z), wheref,(z) is inde-
tained, and the relatively mature methods for SIMO systems ga@ndent of. In other words, (18) yields thgth column of the

wi(n) =[uii(n) wiz(n) - uir(n)]’

Gip(2)hi,(z) = 0. 17)

SinceG; ,(#) has the rank — 1 for almost allz, the solution

be readily applied here. channel matri¥(z) up to a common polynomial. This leads to
Summary of BIDS-1 Algorithm the following lemma.

Step 1) Computdyy(r) = (1/N)S - ly(n)yT(n—7)  Lemma 6:If H(z) is nonsingular (full column rank for al-
forT =0,1,2,..., Lr,whereL, issuchthal, < N mostallz) and column-wise coprime (each columnis a coprime
andRy, () = 0 for |7| > L,. Note thatR,, (r) = Vvector), then each column @(z) can be found uniquely (up
(R (_T))T to scaling) from (18).

vy ' Proof: With the column-wise coprimeness, the common

Step 2) Remove the noise contribution frd&y, (v) and then factor f, (=) in the solution of (18) can be removed by following
constructRy, g, () for each (square) subchannel the method in [16] or [24].

Step 3) Carry out the following minimization for each sub- Equation (18) can be made more explicit once all the non-
channel:: singularH;(z), or equivalently aliG;(z), are detected. For ex-

. ample, consider a channel matik z) of the dimension/ x T

. 1 T 5 2 with .J = T+1. LetH,(z) beH(z) withoutitsith row. If H;(z),
i LyI(I—1) Z Z (gi;kRyiyi (T)givi) foralli =1,2,...,.J, are nonsingular, then (18) can be written
7=0 j#k as
subject tog], Ry,5.,(0)g:x = 1. .
G,(2)h,(2) =0 (29)
Step 4) Construct the decorrelatds;(z) from GI = \ith
[gi1 82 --- gis]foreach subchannel G
Step 5) Compute the sorting mati; for each subchanneél Gl,p(z)/
Step 6) Multiply the decorrelator output vectar;(n) = () = 2,p(2)
P - .

G,(z)[yi(n)] by Py; (from left) for each subchannel :
7. GJ,p(Z)I
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whereG; ,(z)" is G; ,(z) with a zero column inserted beforethese conditions, (21), with any givenhas the unique solution
itsith column, andi(z)=(hy(2) ha(z) --- hy(z))isthe xu(n) in the absence of noise.
estimate ofH(z). A more general result is shown here.

To describe (19) in more detail, Iéty > max; deg(H;(z)) Lemma 7:1f W > ILy andH(z) is irreducible (but is
and Lg = max; deg(G;(z)), which must meet the condition not necessarily column-reduced or of equal column degrees),
of Corollary 1. Note that we do not need to know the exact déken in the absence of noise, th@V + Ly )I) x 1 solution
gree (but an upper bound) ®1(z). Then, we writeﬁp(z) = Xgu(n) to (21) with a fixedn contains the unique(n) (al-

S Er h,(i)z~F and G, (z) = Y25 h,(i)z i Then, the poly- thoughx.,,(n) is not necessarily unique in itself), i.e., the first
nomial matrix (19) can be reformulated into the numerical md-x 1 subvector(n) of x4, (n) is unique.
trix equation Proof: Itis known [7] that ifH(z) has the degreBy and
o the dimension/ x I(J > I) and is irreducible, then there is a
Gph, =0 (20) G(z) of degreeLs < ILy such thatG(z)H(z) = I, which
means thatG(z)[y(n)] = G(2)H(z)[x(n)] = x(n). It also
where means that foiV > ILy > Lg

) G()y@] =[GO) G(1) - G(La) +]ywu(n)

=x(n)

=
<
I

whereG(z) = ijo G(i)z~%. Hence,z(n) must be unique

givenyg.,(n).

G,(0) Lemma 7 implies that except f¢gW + Ly )I) — I vector

_ . ) samples of the vector sequencg:), all other vector samples

G, Gy (La) : - ) of x(n) can be obtained from the vector sequen¢e) if H(z)

Gp (Le) GP(O) is irreducible. When the number of available samples is large,
_ this number((W + Lg)I) — I can be negligible.

o Therefore, like the BIDS-1 algorithm, the BIDS-2 algorithm

G, (Lg) | yields the exact input signals in the absence of noi&#(if) is

irreducible and the subchannel decorrelation is ideal. However,

The qus} square solution to (20) is given by the least €ig&fjike the BIDS-1 algorithm, the BIDS-2 algorithm yields an
vector ofG;, G,,. Any common factor irh,, () can be removed, ggtimate off () that can reveal whether or nek(z) is irre-

and h_ence, the complete channel maﬂi&) can be estimated yihle. To do that, one can form a veclog (z) where each
even ifH(z) has zeros under the condition of Lemma 8. ejement is a determinant of dnx I square submatrix dfi(z).
To estimate the input signals, we can reformulate the d4ig; tne vectorh; (») contain all such polynomials. It follows
model (1) into a slide-window channel model as follows: that any zero ohy(z) is a zero ofH(z) and vice versa. One
can apply the method shown in [16] or [24] to find all zeros of

Yauw(n) = HawXaw () + Waw (1) (21) by (2). Furthermore, unlike the BIDS-1 algorithm, the estima-
where tion of H(z) by the BIDS-2 algorithm does not requil¥ z) to
be irreducible, and hence, the estimat@&Xit:) by the BIDS-2
y(n) algorithm is generally more accurate than that by the BIDS-1
y(n—1) algorithm.
Yeuw(n) = : Summary of BIDS-2 Algorithm
: Steps 1-6) Same as BIDS-1 algorithm.
y(in—W+1) _
H,, — Step 7) Foreach=1,2,..., M — 1, constructG,(z)
H(O) --- --- H(Ly) (and, henceG,) from G;(z),i = 1,..., M’.
H(O) --- --- H(Lg) Step 8) Foreach=1,2,.... M — 1, solveG,h, = 0
) in least squares fdt,, and henceh, (z).
H(0) o .-~ H(Lg) Step 9) Remove the GCD frofq,(z) for eachp to ob-
€ RWVIX(W+La)I tain the estimate of the th column ofH(z).
x(n) Step 10) For each, solvey.,(n) = HgwXsw(n) in
x(n —1) least squares fat,,(n), and hencex(n). Al-
Xow (1) = : : ternatively, follow a discussion shown below.
x(n—W _ Ly +1) The accuracy of Step 10 depends on the condition of the

generalized Sylvestor matrid,,,. This matrix does not nec-
Itis known [17], [20], [25] that the generalized Sylvestor maessarily have a full column rank evenHE(z) is irreducible. As
trix Hy,, has full column rank it¥’ > ILy andH(z) is irre- an alternative of Step 10, one can use the following approach
ducible, column-reduced, and of equal column degrees. Underestimatex(n) onceG;(z) andH;(z) are available. Without
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loss of generality, we can assume that the common factorwaiereQ,,, andz,,(n) are defined in the same wayHs,, and
each row ofG;(z) is removed. Then, we can assume thatx,,(n). Itis known [17], [20], [25] that i > ILg > Dq, (a
weaker condition is shown in [25]), then
deg(Gi(z)) =(I — 1)deg(H;(2))

and rg=rank(Qs,) = IW + Dq,

Gi(2)Hi(2) =det(H;(2)) L whereL, = degQ(z)) < degH(z)), andDy, is the sum of
It is then easy to show that for eagh= 1,2, ..., I, the SIMO the column degrees d&}(z). Note thatD, is independent of

system defined for BIDS-1 algorithm becomes W. Therefore, ifr is given for two or more values ¥, then
I can be found (via linear regression); can be estimated from
vj(n) =h(z){z;(n)} the distribution of the eigenvalues of the following covariance

where matrix:

det(H,(2)) I

det(H(z)) Ryy (0)=5 D Yaw(m)ysu(n)”

h(Z) = . . n=1
det(H.M/ () For largeN, we have
Note that this polynomial vectdi(z) is coprime if and only Ryy(0) = QsuwR22(0)QL, + Ryww(0)

if H(z) is irreducible. Therefore, the generalized Sylvestor _ _ i i

matrix of h(z) is of full column rank if and only ifEI(z) is Where R;;(0) and Rw.(0) are the covariance matrices of
irreducible. The inversion o ;(n) = h(z)|xz;(n)] is hence Zsw(n) and wy,(n), respectively. For largeV, if Ruww(0)
more robust than the previous approach of Step 10. Naméfy,Proportional to identity (i.e., white noise) arl,, (0) is

in Step 10, we can replace the MIMO slide-window moddionsingular, then theflrfstH e!genvalues oR,, (0) are strictly
Youw(n) = H,uX.w(n) by the SIMO slide-window model Igrger than the rest of its e_ngenvalu_es_, and_all_the rest o_f the
Vjaw(n) = Hy wwja(n) for j = 1,2,... T and compute eigenvalues are equal. Various statistical criteria are available

the input by to. estimatergy fro.m thg eigenvalues dRyy (0) [21], but we
) will not pursue this topic further here.
Xj75w(n) = (H;;,sth,Sw) H;;,swvj}sw(n)

IV. SIMULATION EXAMPLES
where

25(n) In this section, we present some examples to illustrate the

e 1 performance of the BIDS-1 and BIDS-2 algorithms. We also

X sw(N) = zj(n=1) . compare the BIDS algorithms with the matrix pencil algorithm
2i(n— W+ 1) developedin[9] and the subspace_ method de_veloped in[8],[25],

J and [26]. The subspace method yields an estimak&(af) up to
Another modification is that we can choosg(n — [) aconstant matrix factor #(z) is irreducible, column-reduced,

from x; ., (n) if the (I + 1)th row of the pseudoinverseand of equal column degrees. To retrieve the constant matrix
(Hf ,,Hn ) 'H] ,, has the minimum norm among all(up to a column-wise scaling and permutation), one needs to

h,sw

rows. This choice of input estimation has a further improvemensge additional methods. The methods shown in [5] and [6] are

of robustness against noise. good choices for incorporation into the subspace method for
blind identification of the FIR MIMO system driven by colored
G. Finding the Number of Input Signals signals.

We now discuss the issue of finding the number of input sig- The  performance measure considered hgre ' is the
nals. It is known that a nonsingular (full rank almost everynean-squared-error (MSE) of the channel estimation and
where) polynomial channel matrikd(z) can be decomposedthe MSE of the signal estimation, i.e., we have the equation at

into the following form [17]: the bottom of the next page, wheRes the total number of runs
(R = 600), N the total number of estimated samples of the
H(z) = Q(2)R(z) input as well as (approximately) the number of available output

samples,A,. is a diagonal matrix, an®,. is a permutation
matrix. H,.(I) ands,.(n) are the estimates df(/) ands(n),
respectively, at each run.

At each run, the input sequences and the noise sequences are
all randomly selected. The noise sequences are white Gaussian

where Q(z) is irreducible and column-reduced, al{z) is
a nonsingular square polynomial matrix. In fa®(z) is a
greatest common divisor (GCD) &(z). Then, the data model
(2) becomes

y(2) = Q(2)z(n) + w(n) and of variancer?. The signal-to-noise ratio (SNR) is defined
as
wherez(n) = R(z)x(n). Similar to (21), we can reformulate N
the above into a slide-window form: Ly ly(n)||* = Jo2

SNR= 10log,, —=!

Ysw(n) = QswZsw(n) + Waw(n) Jo?
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Fig. 2. MSE versus SNR of the BIDS-1 and BIDS-2 algorithms and two oth&iig. 3. MSE versus sample si2é of the BIDS-1 and BIDS-2 algorithms and
algorithms for randomly chosen channels. The “Direct” algorithm (nonblindyvo other algorithms for randomly chosen channels. SNRO dB.

uses the exact channel parameters to estimate the input sig=al10 000.
wherer = 0.96, 8, = 27/3, 6, = 7/3, andf; = /2. These

The 3x 1 input sequences are generated as follows: input signals are all autoregressive (AR) random processes and
1 1 have distinct power spectral centers.
x(n) = diag< ) , ) ] In the figures to be shown, the channel makxz) is chosen
pi(2)" p2(2)" p3(2) to have the dimensiorf x I = 4 x 3 and the degreéy = 1.

where each entry iry(n) is a randon selection of white noiseHigher degrees dfi(z) were also considered in our experiment,
but the number of local minima of the cost function used in

from N(0,1), and
Step 3 of the BIDS method increases significantly as the degree

pi(2) =1+ 2rcosfiz™ + 12272 of H(z) increases. The global minimum of the cost function is

R L ?
> mina, p, . HHT(Z)A”P” B H(I)HF
r=1 1=0

MSEchannel<dB) =10 1Ogl() Ly

RY.|HD)Z
=0

N—-1 . 2
[P Arx(n) = x(n)|p

n=0

R
> miny, p,
r=1

MSESigna1<dB) =10 logm

N-—-1 9
RS xn)l;
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Fig. 4. MSE versus SNR of the BIDS-1 and BIDS-2 algorithms and t
other algorithms for a fixed irreducible (but not column-reduced) chann
N = 10000. (Most MSEs of the SUB method are above 0 dB and, hence n%g
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gig. 5. MSE versus channel condition number of the BIDS-1 and BIDS-2
g}lgorithms and two other algorithms. SNR 20 dB. N = 10000. The
ondition number distribution of 600 randomly selected channels is shown in
ble I.

visible here.)

diffi_cult tofind for_ highe_r degrees dH(z) unless a good initial 30 dB). This is because that a randomly selected channel with
estimate oftl(z) is available. a fixed degree is almost surely irreducible and column-reduced,
Fig. 2 compares the MSEs versus SNR of the four algorithmgag hence, at high SNR, the SUB method enjoys an ideal data
BIDS-1, BIDS-2, MP (matrix pencil) and SUB (subspace)nodel, but at lower SNR, a weakly irreducible channel matrix
where all parameters dfi(z) were randomly chosen from goes not stand strong against noise. The BIDS algorithms re-
N(0,1) (i.e., Gaussian distribution of zero mean and uniyire a weaker condition on the channel matrix and, hence, per-
deviation) at each run. The channel estimation error is shoygtm better at lower SNR. The “direct” algorithm has a constant
in the upper part of the figure, and the signal estimation errorigse of the estimated input signals versus the sample size. This
shown in the lower part of the figure. The “direct” algorithms pecause the number of input samples increases in (one-to-one)
shown for signal estimation uses the exact channel parametgggnortion with the number of output samples.
The number of samples i§' = 10 000. Fig. 4 illustrates the MSEs versus SNR of the four algorithms
Fig. 3 compares the MSEs versus the sample size of the feuth N = 10000 and a fixed channel matrix of degree 1. This
algorithms. The channel parametersibfz) are the same as channel matrix is irreducible but not column reduced. In this
in Fig. 2. The SNR is 20 dB. The upper part is for the channghse, both the MP and SUB methods fail miserably, as expected.
estimation error, and the lower part is for the signal estimatigfote that most part of the MSEs (in decibels) of the SUB method
error. is higher than 0 dB and, hence, is outside the (vertical) range of
From Figs. 2 and 3, we see that the BIDS-2 algorithm is thise figure.
most robust in the low SNR region and that the SUB algorithm Fig. 5 shows the MSEs of the four methods as a function
yields the highest accuracy in the higher SNR region (abowé the channel condition number. This number is defined to
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TABLE |
DISTRIBUTION OF THE CONDITION NUMBERS OF600 RANDOMLY SELECTED CHANNEL MATRICES, WHERE C' DENOTES ARANGE OF CONDITION NUMBERS, AND
D DENOTES THENUMBER OF CHANNELS WITHIN A GIVEN RANGE OF CONDITION NUMBERS. EACH MSE VALUE SHOWN IN FIG. 5WAS AN AVERAGE OF
MSES GRRESPONDING TO THEABOVE RANGES OF CONDITION NUMBERS

C ('91 '8) ('81 '7) ('7! '6) ("67 '5) ('5’ "4) ("41 '3) ('37 '2)
D 7 9 21 48 125 232 158
be the natural logarithm of the smallest singular value of the APPENDIX

Sylvester matrix of the channel matéixThe Sylvester matrix In this Appendix, we prove Theorem 2. We begin with
H,, is defined as in (21) witht¥ = 3. The sample size is Lemma AL '

N =10000. The SNR is 20 dB. Itis clear from this figure that

the performance of all methods depends significantly on themma A1

condition number (and, in fact, for a wide range of SNRs and

. LetQ = [q1, Q2, -'*, qm] be anm-column constant
sample sizey. We see that the SUB method performs poorl : g N
if the condition number is poor (small). On the other hang(namx’ and leQ; beQ with theith column deleted. 1Q; has

. ; i >
the BIDS-2 algorithm always performs the best among all tﬁ’iefu" column rank andy; for anyi > 2 does not have a full
cPlumn rank, thery; = 0.

methods when the condition number is poor (small). Table Proof: SinceQ; has a full column ranky; for i > 2 are lin-

shows the distribution of the condition numbers of 600 ran-_, . .
. early independent vectors. Sin@g does not have a full column
domly selected channel matrices of degree 1.

Finally, we remark that the BIDS method depends criticallranfk’q,1 (unlessq, = 0) must then be a linear combination of
on its Step 3—the source separation step. Provided that this sté pOr i 2318,
is successful, all other steps are computationally efficient and m
statistically robust. Step 3, however, involves a minimization of = Z k1,idi
a nonquadratic function that potentially has many local minima. =2

Developing a more effective approach of Step 3 is an importamherek; » = 0. SinceQs does not have a full ranky; (unless

future direction. q: = 0) must then be given by the above expression, where
k12 = 0, andk; 3 = 0. By continuing this reasoning, we see
V. CONCLUSIONS thatk,; = Oforalli > 2,i.e.,q; = 0.

Inthis paper, we have shown a sufficient and “necessary” con Proof of Theorem 2:We denotec; ;(z) = (C(z));; and
dition of blind identification of FIR MIMO channels. This con—si(z) = (8(2))i- Without loss of generality, we assume that

iy R A o deg(s1(2)) < deg(s2(z)) < t--- < deg(sr(z)). Let us con-
o, sets 5 eorelca it of i etfcton, 000 cer et columnofh dagonaimar - S(-C* ).
tion. We have also developed the BIDS method that perfoereI — 1 zero entries of theth column imply
far better than the previously developed methods: the subspace C,(2)Dp(2)s(z) =0 (A.1)
method and the matrix pencil method (in a lower SNR regiq&here
and/or with a poor channel matrix condition). A key feature o
the BIDS method is that it exploits a bank of source separd=,(z) =C(z) with thepth row deleted
tors/decorrelators. As long as the source separators are well COM;(2) =diag(cpq (271), o (27Y), o cpr(27Y))
structed, the BIDS method is robust. The BIDS method provides T
a new framework of blind identification of MIMO channels )=[51(), 52(2) - s1(2)]
where (subchannel) source separation plays a partial and Mete that the diagonal elements db,(z) correspond
critical role. Among different possible implementations of theo the pth row of C(z7!). We will show later that
BIDS method, the BIDS-1 and BIDS-2 algorithms are present€d},)(z)=C,(z)D,(z) = 0. At the moment, we assume
in detail. The BIDS-2 algorithm has the most promising perfothat it is true.
mance. Through the development of the BIDS-1 and BIDS-2,Forp = 1, this implies that
a great deal of insight into the FIR MIMO channels has bee

s(z

revealed. We hope that these insights will be useful for future (2)=C1(2)D1(2)
development in the field of blind system identification. c21(2) ca2(2) - c21(2)
03,1(2) 63,2(2) s 63,[(2)
0171(2) CI’Q(Z) CL[(Z)
0111(2_1)
8A more conventional definition of condition number is the ratio of the 01,2(2_1)

1l
e

largest singular value over the smallest singular value, which is different from
ours.

9For other values of SNR and/, the patterns of all figures look similar cl’](z—l)
and, hence, are omitted.
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Observing each column of the above equation, we see that tharearly dependent for alt. [That is, the determinant of every
are two possibilities for each column 6f(z): 1) All elements (I — 2) x (I — 2) submatrix 0fQ, (z)’ for k > lisidentical
exceptthe first one of that column are zero, or 2) the first elementzero under diS(z)) > (I — 1)deq C(z)).]

of that column is zero. However, sin€¥z) is nonsingular, one  Then, if Q,.1(z)" has full column rank for almost
of the elements in the first row &®(z) must be nonzero. Cor- all z, we know by Lemma Al that the first column of
responding to that nonzero element, all other elements in @, (z)'=C,(2)'D,(z)" is zero. If Q) (z)" does not
corresponding column must be zero. have a full column rank for any, then we know that

Forp = 2, we can similarly observe that another column afank Q(,)(z)’) = rankC,(z)'D,(z)") < I — 2 for all z.

C(z) must be of all zero elements except for one. This nonzeBince C,(z)" has a rank no less thah — 2 for almost all
element must be in a different row from that for the= 1 case z, D,(z)" must be singular for alt. Therefore, one of the

sinceC(z) is nonsingular. diagonal elements db,,(z)’ must be zero, and hence, one of
By consideringQ ;) (2)=C,(z)D,(z) = 0 for all p, we see the columns 0 ,)(2)'=C,(z)'D,(z)" is zero.
thatC(z) must be diagonal up to a row permutation. By continuing the above reasoning of (B.1), we can see that

We now show thaQ,)(2)=C,(z)D,(z) = 0. LetQ; ;, = all columns ofQ,)(2)=C,(z)D,(z) must be zero, and hence,
{z: s1(2) #0; sp(z) =0}.Forallzin; ;,wherek > 1, C(z) must be diagonal up to a row permutation.
we know from (A.1) that
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