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Abstract—We study blind identification and equalization of
finite impulse response (FIR) and multi-input and multi-output
(MIMO) channels driven by colored signals. We first show a
sufficient condition for an FIR MIMO channel to be identifiable
up to a scaling and permutation using the second-order statistics
of the channel output. This condition is that the channel matrix is
irreducible (but not necessarily column-reduced), and the input
signals are mutually uncorrelated and of distinct power spectra.
We also show that this condition is necessary in the sense that
no single part of the condition can be further weakened without
another part being strengthened. While the above condition is a
strong result that sets a fundamental limit of blind identification,
there does not yet exist a working algorithm under that condition.
In the second part of this paper, we show that a method called
blind identification via decorrelating subchannels (BIDS) can
uniquely identify an FIR MIMO channel if a) the channel matrix
is nonsingular (almost everywhere) and column-wise coprime and
(b) the input signals are mutually uncorrelated and of sufficiently
diverse power spectra. The BIDS method requires a weaker
condition on the channel matrix than that required by most
existing methods for the same problem.

Index Terms—Adaptive signal processing, blind system identi-
fication, blind channel deconvolution, colored sources, decorrela-
tion, MIMO channels, sensor array processing.

I. INTRODUCTION

I DENTIFICATION and equalization of finite impulse
response (FIR) and multi-input and multi-output (MIMO)

channels channels driven by unknown colored signals are a fun-
damental problem encountered in a wide range of applications,
which include speech enhancement using microphone arrays,
wireless and mobile communications, video surveillance, and
brain signal analysis. This paper focues on the important case
where very little about the channel input is known. The FIR
single-input multi-output (SIMO) channels studied in [1]–[3],
[18], and [19] and the instantaneous MIMO channels studied
in [4], [5], [18], and [19] are some extreme cases of the FIR
MIMO channels. The FIR MIMO channels driven by colored
signals are also in contrast to the FIR/IIR MIMO channels
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Fig. 1. Illustration of BIDS.H(z) denotes the channel matrix (i.e., the MIMO
FIR channel transfer function matrix). The output signals of eachG (z) are
made mutually decorrelated. EachG (z) may have more input than output,
depending on the dimension ofH(z). BIDS-1 extracts out the input signals of
H(z) from the output signals ofG (z). BIDS-2 reconstructsH(z) fromG (z)
and then estimates the input signals ofH(z).

driven by white signals as studied in [7], [18], and [19]. In the
latter case, the higher order statistics (HOS) have to be ex-
ploited to resolve the ambiguity of a unitary matrix that cannot
otherwise be resolved using the second-order statistics. The
previously developed methods for the same problem that we
consider here are primarily the subspace algorithm [8] and the
matrix pencil (MP) algorithm [9]. These two algorithms require
the channel matrix to be irreducible and column reduced. This
assumption is a barrier to many other methods. A recent work
in [27] also requires the same condition and in addition a known
input power spectra. Another recent work in [28] requires the
channel matrix to have unit diagonal elements at all frequen-
cies. The algorithms shown in [13] and [14] also assume the
channel matrix to have unit diagonal elements. In this paper, we
present a method called blind identification via decorrelating
subchannels (BIDS). The BIDS method (see Fig. 1) is based
on a set of decorrelators that decorrelate the output signals of
subchannels. The BIDS method requires a channel condition
weaker than “irreducible and column-reduced.” Some prior
developments of the BIDS method are available in [10]–[12].

In Section II, we address some of the algebraic properties of
the second-order statistics of the channel output to establish a
sufficient condition under which an FIR MIMO channel is iden-
tifiable up to a scaling and permutation. In particular, we show
that an FIR MIMO channel is identifiable if the channel matrix is
irreducible and the input signals are mutually uncorrelated and
of distinct power spectra. This condition is also shown to be nec-
essary in that no single part of the condition can be weakened
independently. This condition sets a theoretical limit of blind
identification of FIR MIMO channels.

In Section III, we present the BIDS method. Assuming that
there are more output signals than input signals, the BIDS
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method first partition the original channel into a set of subchan-
nels and then construct a set of decorrelators that decorrelate the
output signals of each of the subchannels. The decorrelators are
then exploited in two different fashions, leading to the BIDS-1
and BIDS-2 algorithms. To estimate the channel matrix, the
BIDS-2 algorithm allows the channel matrix to have certain
zeros (i.e., nonirreducible). This remarkable property makes
the BIDS method more robust to noise than other methods like
the subspace method and the matrix pencil method.

In Section IV, we compare the performance of the BIDS
method with that of the above two methods.

II. SOME FUNDAMENTAL LIMITS

We consider the following FIR MIMO channel:

(1)

where denotes linear convolution, is the vector of input
signals, is the vector of output signals, is the
matrix sequence of the channel impulse responses,is the
maximum length of the finite impulse responses, and is a
noise vector uncorrelated with . In this paper, all parame-
ters in (1) are assumed to be real valued. A convenient form of
(1) is

(2)

where is the channel matrix, and
denotes the operation of on . Note

that there is a one-to-one relationship between the polynomial
matrix and the sequence . The goal is to estimate

and/or using . In the sequal, we will use
to represent for convenience.

Without any further constraint, the FIR MIMO system is am-
biguous to any unimodular polynomial matrix1 (the in-
verse of which is a polynomial matrix as well), i.e.,

where , and . An
additional constraint must be available to reduce the ambiguity.

We assume that the data sequence is long enough so that
the second-order statistics (SOS) of can be exploited.2 We
write the autocorrelation of of as

(3a)

and the autocorrelation of is defined in the same
way. The power spectral matrix of is defined as3

(3b)

1A unimodular polynomial matrix is a polynomial matrix of constant deter-
minant.

2Higher order statistics would require even a longer sequence to ensure the
same level of accuracy as the second-order statistics.

3Strictly speaking, the power spectral matrix corresponds to the case wherez

is on the unit circle.

and the power spectral matrices and of
and , respectively, are similarly defined. It is natural to as-
sume such that all power spectra
considered here exist. Then, it requires only a standard proce-
dure [21] to show that

(3c)

Note that the power spectral matrix contains all the
SOS information of the channel output. We say that an FIR
MIMO channel is identifiable using the SOS of if
implies , , and uniquely, up to some simple
scaling and permutation.

Without a further constraint on and/or , an FIR
MIMO channel is still not identifiable, but for many applica-
tions, we can assume that the elements in the input vector
are mutually uncorrelated, i.e., is a diagonal matrix, and
the noise elements in are also mutually uncorrelated and
of equal power spectra, i.e., , where

is a rational function. Furthermore, we assume that there
are more output signals than input signals, i.e., (more sen-
sors than sources). In this case, is identifiable from

. Note that if is on the unit circle, then is
real valued and is the least eigenvalue of . If
is given for all on the unit circle, then at any is
given via analytic continuation. In other words, with
available on the unit circle, we can obtain the autocorrelation
of the noise via an inverse Fourier transform and consequently
obtain by taking the -transform of the autocorre-
lation. A more general statement is given next.

Theorem 1: An FIR MIMO system is identifiable (i.e.,
implies uniquely up to a column-wise scaling

and column-wise permutation) if we have the folowing.

A1) is irreducible.
A2) is diagonal and of distinct diagonal (polyno-

mial or rational) functions.
A3) and .

Furthermore, if any of the above subconditions A1–A3 is weak-
ened independently, the FIR MIMO system is not identifiable.

Remark: An irreducible is a polynomial matrix that
has a full rank for every except for . Given ,
is a tall matrix. If all rows of are chosen randomly with
a given maximum degree, is irreducible with probability
one.

Proof: The sufficiency of Theorem 1 follows from the
above discussion of and a proof given in [15]. The
necessity of Theorem 1 is shown next.

1) Necessity of A1:We show here two counter examples.4

Example 1: This example shows that there can be a max-
imum-phase channel matrix and a minimum-phase channel
matrix such that both yield the same output power spectral

4The counter examples were discovered through a tedious andad hocproce-
dure. Although the counter examples are sufficient and rigorous for the purpose
here, a theory that governs the existence of such counter examples has yet to be
developed.
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matrix even if the input signals have distinct power
spectra. Let

where has a zero 4/9, and has a zero 9/4. A zero
of a polynomial matrix is a value of at which the matrix does
not have a full rank. is a minimum-phase matrix, and
is a maximum-phase matrix. One can verify that

Example 2: This example5 shows that there can be two dif-
ferent minimum-phase channel matrices such that both yield the
same output power spectral matrix , even ifthe input sig-
nals have distinct power spectra. Let

where is any irreducible matrix. It is easy to verify that
has a zero 1/2, has a zero 1/3, and furthermore

where both and are minimum-phase.
Necessity of A2:If has some identical diag-

onal functions (disregarding scaling), then the corre-
sponding columns of are ambiguous by a uni-
tary rotation (in addition to column-wise scaling
and permutation), i.e., there is a unitary such that

,
where is a column-wise scaled version of , and

is a corresponding diagonal-wise scaled version of
.

Necessity of A3:If is not necessarily diagonal and
is completely unknown, it is clearly not distinguishable from the
other unknown component .

The sufficiency and “necessity”6 of the conditions A1–A3 of
Theorem 1 are now established. It sets a fundamental limit on
the blind identifiability of FIR MIMO channels. However, thus
far there exists no working algorithm under the condition. In the
next section, we show the method of BIDS, which exploits the

5This example unfortunately counters a previously reported result shown in
[10] and [23].

6The necessity implied here should not be confused with other possible mean-
ings of the same term.

spectral diversity of the input signals and consequently requires
a weaker condition on the channel matrix.

III. B LIND IDENTIFICATION VIA

DECORRELATINGSUBCHANNELS

A. Decorrelating Subchannels

In the sequel, we will ignore the noise term for convenience.
The effect of white noise can be mitigated in a conventional
fashion as mentioned later. We now write

(4)

Let be a selection matrix. The BIDS algorithms first
form subchannel output vectors as follows:

(5)

where , and , which is
the total number of subchannels. For each, the BIDS method
searches for a decorrelator such that the power spectral
matrix of

(6)

is diagonal. Let . Then, we can write

...

or simply . The autocorrelation matrix of
can be computed (estimated) as

Equivalently, , where is
the autocorrelation matrix of , i.e., we have the equation
at the bottom of the next page, with

If the noise is spatially and temporally white, then
, where ,

and is the noise variance. Given that is a tall matrix,
is the smallest eigenvalue of . Hence, the noise

contribution can be asymptotically removed from .
Several variations for estimating from a set of the smallest
eigenvalues of are possible. However, we will not
address this issue further here. The least eigenvalue will be
used to estimate in our simulation.

The cost function for constructing the decorrelator can be de-
fined as the mean squared values of the off diagonal elements
of over a sufficient range of, i.e.,

where is defined by
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The cost function is a nonquadratic function of in the
strict sense, but it is quadratic with respect to each (individual)
row of . This leads to a simple algorithm to minimize ,
which consists of a sequence of the following sweeps until con-
vergence. During each sweep, the rows of are updated se-
quentially. When updated, each row of minimizes with
all other rows fixed. To avoid trivial solutions, each row of
is constrained to yield a constant diagonal of , i.e.,

This minimization with respect to each row of is a standard
linear-quadratic problem, but the overall minimization with re-
spect to the whole matrix may converge to a local minimum.
Therefore, in practice, several initial values for are required
to ensure that the global minimum of is achieved with a high
likelihood. If there is some prior estimate of , it should be
used to initialize .

A related idea shown in [22] was recently brought to our at-
tention, but the work shown there was incomplete and was not
continued since then (according to its authors). Theorem 3 in
[22] is incorrect, a counter result of which is Theorem 2, which
will be shown later in this paper.

B. Conditions for Decorrelation Implying Separation

We now go back to (6) and discuss the conditions under which
a decorrelation of leads to a separation of . We can
rewrite (6) as , where

. We show next that with a proper choice
of deg , the product is diagonalizable by

.
Lemma 1: Provided deg deg ,

there exists a such that is diagonal.
Proof: It is easy to verify that under the condition of the

lemma, the number of linear and scalar equations corresponding
to all off-diagonal polynomial elements of is no
larger than the total number of the scalar parameters in
minus . The extra degreeof freedom here corresponds to the
number of nonzero rows of . Hence, there exists a
(with all nonzero rows) such that is diagonal.

If is diagonal, then each element of
corresponds to a distinct element of the input signal
and, hence, is said to be a “signal separator.” It is
such separators that will be further exploited by the
BIDS method. However, a decorrelator is not necessarily a
separator unless a diversity condition on is satisfied.
This condition will be detailed later after we introduce the
definition of spectral diversity.

Definition of Diversity: Given two polynomials, we say that
the distinction of one polynomial from the other is the number
of distinct zeros of the first polynomial that are not shared by
the second polynomial. The diversity of two polynomials is de-
fined to be the larger distinction of the two polynomials. The
diversity of two diagonal functions of a power spectral matrix
is defined to be half the diversity of the two functions. The di-
versity of a power spectral matrix is defined to be the minimum
diversity between any two diagonal functions of the matrix. The
diversity of will be denoted by div . If
is rational, we first write ,
where is the least common multiple of the denomi-
nators of the diagonal elements of , and is a poly-
nomial power spectral matrix. We then define div
div .

The notion of diversity is a key for the study of the identifia-
bility conditions of the BIDS method as shown below.

Theorem 2: Let be a nonsingular (i.e., full rank almost
everywhere) polynomial matrix. The diagonalization of

implies the diagonalization of up
to a row permutation if

div deg (7)

Proof: See Appendix A.
Remark: The necessity of an alternative condition

[as opposed to (7)] was
discussed and established in [10], but the sufficiency of

has not been proved or disproved.7

Corollary 1: Provided that is nonsingular and

div
(8)

there exists such that is diagonal, and the diago-
nalization of also implies that is diagonal
up to a row permutation.

Proof: The proof follows from Lemma 1 and Theorem 2.
Note that is nonsingular if and only if

is nonsingular (since is nonsingular). The nonsingularity
condition on

can be ensured in the BIDS method with the constraint.

7An error in the previous report [23] was later discovered.

...
...

. . .
...

and
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C. Sorting Out Subchannel Decorrelators

Assuming that the condition of Corollary 1 is met, we
can now find such a by diagonalizing that

is diagonal up to an unknown row permutation.
The row permutations in the computed for different
are generally different. In this subsection, we show how to find
these permutations needed to sort out .

In this section, we use to denote the ideal decorrelator
such that is exactly diagonal. A permuted version
of is given by , where is an un-
known permutation matrix. Consider the cross spectral matrix
between and :

(9)

where , which is
computable from given data. Note that the (ideal) cross spectral
matrix is diagonal, given that is diagonal. The
time-domain expression of (9) is

(10)

where is ideal and diagonal, and

(11a)

(11b)

Note that the above definitions of the autocorrelation matrices
are for the asymptotical case, i.e., , but the actual im-
plementations use a finite . Define the operator as follows:

otherwise
(12)

(13)

In the ideal situation where the decorrelation is perfect,is zero.
Therefore, ideally, we have [from (10)]

(14)

or equivalently

(15)

where is a matrix of with all elements replaced by their
squared magnitudes. Then, we have

(16)

We see that the matrix for any is equal to the cor-
responding ideal decorrelator up to a (unknown) per-
mutation matrix independent of. Therefore, the th row of

for all is associated with a distinct input signal
(common for all ) or, equivalently, a distinct column of .

Without loss of generality, we can next ignore in (16) and
assume that is available such that
diagonal.

D. Properties of Subchannel Decorrelators

We now show some properties of the subchannel matrices and
subchannel decorrelators. These will be useful for establishing
the BIDS algorithms. Let , be all of the

square submatrices of . Assuming that has a
full column rank for almost all , we have Lemmas 2–5.

Lemma 2: Each (nonzero) row of must be a row of an
square submatrix that is nonsingular (i.e., with full

rank for almost all ).
Proof: We know that must have at least one

square submatrix that is nonsingular. Now, choose any
row from the rest of the rows of . must belong to
the span of rows of for almost all . Substituting

for any of these rows, we form another nonsingular sub-
matrix.

Lemma 3: All the submatrices that are nonsingular
are “chained” together in the sense that every two nonsingular
submatrices share a common row either within the two subma-
trices or with another.

Proof: Suppose and are nonsingular and
that they do not have a common row. Then, we know that not
all rows of belong to (for almost all ) the span of any
chosen rows of . Then, for a row of that does
not belong to (for almost all ) the span of the chosen
rows of , we can form another nonsingular submatrix

that shares one row with and rows with
.

Lemma 4: If is nonsingular, so is the corresponding
.

Proof: If is nonsingular, we know that is
such that
is nonsingular diagonal, and hence, is nonsingular.

We now let , (where
) is all of the nonsingular decorrelators. Furthermore, we can

assume that each row of is coprime. If it is not, one can
extract out the greatest common divisor (GCD) of each row of

by following the method shown in [16] or [24]. We can
now define that for

diag

Lemma 5: For any , any zero of is a
zero of .

Proof: Suppose is a zero of , i.e., . Then,
the th diagonal element of the diagonal matrix
must be zero for all . Since none of the rows
of for any is zero, the rows of must be lin-
early dependent for all . Now, by Lemma 4,
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is singular for all . (Note that for any
, does not have full rank for any.)

Hence, has a rank less than, i.e., is a zero of .
Corollary 2: If is irreducible, so is for all

.
Proof: It follows from Lemma 5.

E. BIDS-1 Algorithm

We are now ready to present the BIDS-1 algorithm. Recall
. Define that for

It follows that , which is an FIR SIMO
system. If is irreducible (and, hence, so is ), one
can apply any of the SIMO system methods [1]–[3] to retrieve

from for each . If is not irreducible, we can
write where all zeros of belong to
the zeros of , and is coprime. The SIMO methods
can then be used to retrieve from . The SIMO
system method shown [1] will be used in conjunction with the
BIDS-1 algorithm in the simulation. If is not irreducible,

is unknown, and hence, would be an unknown
distortion of the desired signal .

Once the input signals for all are es-
timated, one can then use both the input and output signals to
estimate . A least square fitting method would suffice.

The BIDS-1 algorithm not only shows some interesting in-
sights into the FIR MIMO channel but also has some useful
features. In particular, the BIDS-1 algorithm suggests that one
can obtain the input signals before the channel response is ob-
tained, and the relatively mature methods for SIMO systems can
be readily applied here.

Summary of BIDS-1 Algorithm

Step 1) Compute
for , where is such that
and for . Note that

.

Step 2) Remove the noise contribution from and then
construct for each (square) subchannel.

Step 3) Carry out the following minimization for each sub-
channel :

subject to

Step 4) Construct the decorrelator from
for each subchannel.

Step 5) Compute the sorting matrix for each subchannel.
Step 6) Multiply the decorrelator output vector

by (from left) for each subchannel
.

Step 7) Construct the vector sequence
for each input

signal .
Step 8) For each , apply a SIMO system technique

[18], [19] to estimate based on the model
, where is an unknown

FIR channel vector.

F. BIDS-2 Algorithm

The BIDS-2 algorithm first estimates the channel matrix
from the decorrelators and then estimates the

input signals using the estimated . Recall that we can
obtain the row-wise coprime nonsingular matrices for

such that for
are diagonal. Furthermore, given the assumption that has
full column rank for almost all , we have Lemmas 2–4. We
now define

without its th row

Then, we know that for and

(17)

Since has the rank for almost all , the solution
to for each is ,
where is a scalar polynomial. From Lemma 3, we know
that for are “chained” together through
shared elements. Hence, the solution of to

for all (18)

where has the same overlapping (or chained) pattern as
, is then , where is inde-

pendent of . In other words, (18) yields theth column of the
channel matrix up to a common polynomial. This leads to
the following lemma.

Lemma 6: If is nonsingular (full column rank for al-
most all ) and column-wise coprime (each column is a coprime
vector), then each column of can be found uniquely (up
to scaling) from (18).

Proof: With the column-wise coprimeness, the common
factor in the solution of (18) can be removed by following
the method in [16] or [24].

Equation (18) can be made more explicit once all the non-
singular , or equivalently all , are detected. For ex-
ample, consider a channel matrix of the dimension
with . Let be without its th row. If ,
for all , are nonsingular, then (18) can be written
as

(19)

with

...
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where is with a zero column inserted before
its th column, and is the
estimate of .

To describe (19) in more detail, let
and , which must meet the condition
of Corollary 1. Note that we do not need to know the exact de-
gree (but an upper bound) of . Then, we write

and . Then, the poly-
nomial matrix (19) can be reformulated into the numerical ma-
trix equation

(20)

where

...

...
...

. . .

. . .

. . .
...

The least square solution to (20) is given by the least eigen-
vector of . Any common factor in can be removed,
and hence, the complete channel matrix can be estimated
even if has zeros under the condition of Lemma 6.

To estimate the input signals, we can reformulate the data
model (1) into a slide-window channel model as follows:

(21)

where

...

...
...

...

It is known [17], [20], [25] that the generalized Sylvestor ma-
trix has full column rank if and is irre-
ducible, column-reduced, and of equal column degrees. Under

these conditions, (21), with any given, has the unique solution
in the absence of noise.

A more general result is shown here.
Lemma 7: If and is irreducible (but is

not necessarily column-reduced or of equal column degrees),
then in the absence of noise, the solution

to (21) with a fixed contains the unique (al-
though is not necessarily unique in itself), i.e., the first

subvector of is unique.
Proof: It is known [7] that if has the degree and

the dimension and is irreducible, then there is a
of degree such that , which

means that . It also
means that for

where . Hence, must be unique
given .

Lemma 7 implies that except for vector
samples of the vector sequence , all other vector samples
of can be obtained from the vector sequence if
is irreducible. When the number of available samples is large,
this number can be negligible.

Therefore, like the BIDS-1 algorithm, the BIDS-2 algorithm
yields the exact input signals in the absence of noise if is
irreducible and the subchannel decorrelation is ideal. However,
unlike the BIDS-1 algorithm, the BIDS-2 algorithm yields an
estimate of that can reveal whether or not is irre-
ducible. To do that, one can form a vector where each
element is a determinant of an square submatrix of .
Let the vector contain all such polynomials. It follows
that any zero of is a zero of and vice versa. One
can apply the method shown in [16] or [24] to find all zeros of

. Furthermore, unlike the BIDS-1 algorithm, the estima-
tion of by the BIDS-2 algorithm does not require to
be irreducible, and hence, the estimate of by the BIDS-2
algorithm is generally more accurate than that by the BIDS-1
algorithm.

Summary of BIDS-2 Algorithm
Steps 1–6) Same as BIDS-1 algorithm.

Step 7) For each , construct
(and, hence, ) from .

Step 8) For each , solve
in least squares for , and hence, .

Step 9) Remove the GCD from for each to ob-
tain the estimate of the th column of .

Step 10) For each , solve in
least squares for , and hence, . Al-
ternatively, follow a discussion shown below.

The accuracy of Step 10 depends on the condition of the
generalized Sylvestor matrix . This matrix does not nec-
essarily have a full column rank even if is irreducible. As
an alternative of Step 10, one can use the following approach
to estimate once and are available. Without
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loss of generality, we can assume that the common factor of
each row of is removed. Then, we can assume that

deg deg

and

det

It is then easy to show that for each , the SIMO
system defined for BIDS-1 algorithm becomes

where

det
det

...
det

Note that this polynomial vector is coprime if and only
if is irreducible. Therefore, the generalized Sylvestor
matrix of is of full column rank if and only if is
irreducible. The inversion of is hence
more robust than the previous approach of Step 10. Namely,
in Step 10, we can replace the MIMO slide-window model

by the SIMO slide-window model
for and compute

the input by

where

Another modification is that we can choose
from if the ( )th row of the pseudoinverse

has the minimum norm among all
rows. This choice of input estimation has a further improvement
of robustness against noise.

G. Finding the Number of Input Signals

We now discuss the issue of finding the number of input sig-
nals. It is known that a nonsingular (full rank almost every-
where) polynomial channel matrix can be decomposed
into the following form [17]:

where is irreducible and column-reduced, and is
a nonsingular square polynomial matrix. In fact, is a
greatest common divisor (GCD) of . Then, the data model
(2) becomes

where . Similar to (21), we can reformulate
the above into a slide-window form:

where and are defined in the same way as and
. It is known [17], [20], [25] that if (a

weaker condition is shown in [25]), then

rank

where deg deg , and is the sum of
the column degrees of . Note that is independent of

. Therefore, if is given for two or more values of , then
can be found (via linear regression). can be estimated from

the distribution of the eigenvalues of the following covariance
matrix:

For large , we have

where and are the covariance matrices of
and , respectively. For large , if

is proportional to identity (i.e., white noise) and is
nonsingular, then the first eigenvalues of are strictly
larger than the rest of its eigenvalues, and all the rest of the
eigenvalues are equal. Various statistical criteria are available
to estimate from the eigenvalues of [21], but we
will not pursue this topic further here.

IV. SIMULATION EXAMPLES

In this section, we present some examples to illustrate the
performance of the BIDS-1 and BIDS-2 algorithms. We also
compare the BIDS algorithms with the matrix pencil algorithm
developed in [9] and the subspace method developed in [8], [25],
and [26]. The subspace method yields an estimate of up to
a constant matrix factor if is irreducible, column-reduced,
and of equal column degrees. To retrieve the constant matrix
(up to a column-wise scaling and permutation), one needs to
use additional methods. The methods shown in [5] and [6] are
good choices for incorporation into the subspace method for
blind identification of the FIR MIMO system driven by colored
signals.

The performance measure considered here is the
mean-squared-error (MSE) of the channel estimation and
the MSE of the signal estimation, i.e., we have the equation at
the bottom of the next page, whereis the total number of runs
( ), the total number of estimated samples of the
input as well as (approximately) the number of available output
samples, is a diagonal matrix, and is a permutation
matrix. and are the estimates of and ,
respectively, at each run.

At each run, the input sequences and the noise sequences are
all randomly selected. The noise sequences are white Gaussian
and of variance . The signal-to-noise ratio (SNR) is defined
as

SNR
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Fig. 2. MSE versus SNR of the BIDS-1 and BIDS-2 algorithms and two other
algorithms for randomly chosen channels. The “Direct” algorithm (nonblind)
uses the exact channel parameters to estimate the input signal.N = 10000.

The 3 1 input sequences are generated as follows:

diag

where each entry in is a randon selection of white noise
from , and

Fig. 3. MSE versus sample sizeN of the BIDS-1 and BIDS-2 algorithms and
two other algorithms for randomly chosen channels. SNR= 20 dB.

where , , , and . These
input signals are all autoregressive (AR) random processes and
have distinct power spectral centers.

In the figures to be shown, the channel matrix is chosen
to have the dimension and the degree .
Higher degrees of were also considered in our experiment,
but the number of local minima of the cost function used in
Step 3 of the BIDS method increases significantly as the degree
of increases. The global minimum of the cost function is

MSE dB

MSE dB
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Fig. 4. MSE versus SNR of the BIDS-1 and BIDS-2 algorithms and two
other algorithms for a fixed irreducible (but not column-reduced) channel.
N = 10000. (Most MSEs of the SUB method are above 0 dB and, hence ,not
visible here.)

difficult to find for higher degrees of unless a good initial
estimate of is available.

Fig. 2 compares the MSEs versus SNR of the four algorithms:
BIDS-1, BIDS-2, MP (matrix pencil) and SUB (subspace),
where all parameters of were randomly chosen from

(i.e., Gaussian distribution of zero mean and unit
deviation) at each run. The channel estimation error is shown
in the upper part of the figure, and the signal estimation error is
shown in the lower part of the figure. The “direct” algorithm
shown for signal estimation uses the exact channel parameters.
The number of samples is .

Fig. 3 compares the MSEs versus the sample size of the four
algorithms. The channel parameters of are the same as
in Fig. 2. The SNR is 20 dB. The upper part is for the channel
estimation error, and the lower part is for the signal estimation
error.

From Figs. 2 and 3, we see that the BIDS-2 algorithm is the
most robust in the low SNR region and that the SUB algorithm
yields the highest accuracy in the higher SNR region (above

Fig. 5. MSE versus channel condition number of the BIDS-1 and BIDS-2
algorithms and two other algorithms. SNR= 20 dB. N = 10000. The
condition number distribution of 600 randomly selected channels is shown in
Table I.

30 dB). This is because that a randomly selected channel with
a fixed degree is almost surely irreducible and column-reduced,
and hence, at high SNR, the SUB method enjoys an ideal data
model, but at lower SNR, a weakly irreducible channel matrix
does not stand strong against noise. The BIDS algorithms re-
quire a weaker condition on the channel matrix and, hence, per-
form better at lower SNR. The “direct” algorithm has a constant
MSE of the estimated input signals versus the sample size. This
is because the number of input samples increases in (one-to-one)
proportion with the number of output samples.

Fig. 4 illustrates the MSEs versus SNR of the four algorithms
with and a fixed channel matrix of degree 1. This
channel matrix is irreducible but not column reduced. In this
case, both the MP and SUB methods fail miserably, as expected.
Note that most part of the MSEs (in decibels) of the SUB method
is higher than 0 dB and, hence, is outside the (vertical) range of
the figure.

Fig. 5 shows the MSEs of the four methods as a function
of the channel condition number. This number is defined to
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TABLE I
DISTRIBUTION OF THECONDITION NUMBERS OF600 RANDOMLY SELECTED CHANNEL MATRICES, WHEREC DENOTES ARANGE OF CONDITION NUMBERS, AND

D DENOTES THENUMBER OF CHANNELS WITHIN A GIVEN RANGE OF CONDITION NUMBERS. EACH MSE VALUE SHOWN IN FIG. 5 WAS AN AVERAGE OF

MSES CORRESPONDING TO THEABOVE RANGES OFCONDITION NUMBERS

be the natural logarithm of the smallest singular value of the
Sylvester matrix of the channel matrix.8 The Sylvester matrix

is defined as in (21) with . The sample size is
. The SNR is 20 dB. It is clear from this figure that

the performance of all methods depends significantly on the
condition number (and, in fact, for a wide range of SNRs and
sample sizes9). We see that the SUB method performs poorly
if the condition number is poor (small). On the other hand,
the BIDS-2 algorithm always performs the best among all the
methods when the condition number is poor (small). Table I
shows the distribution of the condition numbers of 600 ran-
domly selected channel matrices of degree 1.

Finally, we remark that the BIDS method depends critically
on its Step 3—the source separation step. Provided that this step
is successful, all other steps are computationally efficient and
statistically robust. Step 3, however, involves a minimization of
a nonquadratic function that potentially has many local minima.
Developing a more effective approach of Step 3 is an important
future direction.

V. CONCLUSIONS

In this paper, we have shown a sufficient and “necessary” con-
dition of blind identification of FIR MIMO channels. This con-
dition sets a theoretical limit of blind identification, although
thus far, there exists no working algorithm under this condi-
tion. We have also developed the BIDS method that performs
far better than the previously developed methods: the subspace
method and the matrix pencil method (in a lower SNR region
and/or with a poor channel matrix condition). A key feature of
the BIDS method is that it exploits a bank of source separa-
tors/decorrelators. As long as the source separators are well con-
structed, the BIDS method is robust. The BIDS method provides
a new framework of blind identification of MIMO channels
where (subchannel) source separation plays a partial and yet
critical role. Among different possible implementations of the
BIDS method, the BIDS-1 and BIDS-2 algorithms are presented
in detail. The BIDS-2 algorithm has the most promising perfor-
mance. Through the development of the BIDS-1 and BIDS-2,
a great deal of insight into the FIR MIMO channels has been
revealed. We hope that these insights will be useful for future
development in the field of blind system identification.

8A more conventional definition of condition number is the ratio of the
largest singular value over the smallest singular value, which is different from
ours.

9For other values of SNR andN , the patterns of all figures look similar
and, hence, are omitted.

APPENDIX

In this Appendix, we prove Theorem 2. We begin with
Lemma A1.

Lemma A1

Let be an -column constant
matrix, and let be with the th column deleted. If has
a full column rank and for any does not have a full
column rank, then .

Proof: Since has a full column rank, for are lin-
early independent vectors. Since does not have a full column
rank, (unless ) must then be a linear combination of

for , i.e.,

where . Since does not have a full rank, (unless
) must then be given by the above expression, where
, and . By continuing this reasoning, we see

that for all , i.e., .
Proof of Theorem 2:We denote and

. Without loss of generality, we assume that
l . Let us con-

sider the th column of the diagonal matrix .
The zero entries of theth column imply

(A.1)

where

with the th row deleted

diag

Note that the diagonal elements of correspond
to the th row of . We will show later that

. At the moment, we assume
that it is true.

For , this implies that

...
...

.. .
...

. . .
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Observing each column of the above equation, we see that there
are two possibilities for each column of : 1) All elements
except the first one of that column are zero, or 2) the first element
of that column is zero. However, since is nonsingular, one
of the elements in the first row of must be nonzero. Cor-
responding to that nonzero element, all other elements in that
corresponding column must be zero.

For , we can similarly observe that another column of
must be of all zero elements except for one. This nonzero

element must be in a different row from that for the case
since is nonsingular.

By considering for all , we see
that must be diagonal up to a row permutation.

We now show that . Let
. For all in , where ,

we know from (A.1) that

(A.2)

where

with the th column deleted

with the th element deleted.

Since for any in , (A.2) implies that
does not have full column rank for anyin ,

or equivalently, det for all in . Note
that by the definition of diversity, the number of (distinct)
entries in is no less than 2 div . Hence, given that
deg det 2 div , which is equivalent to
div deg , we have det ,
which implies that the columns of are linearly
dependent of each other for alland all .

As for , there are two possibilities: 1) It has full
column rank for almost all , or 2) it does not have full column
rank for any . For the first case, Lemma A1 implies that the
first column of is identical to zero. For
the second case, every columns of are linearly
dependent of each other for all, and hence, rank
rank for all , but we know that
have the rank for almost all . Then, must be sin-
gular for (almost) all . This implies that one of the diagonal
elements of is zero, and hence, one of the columns of

is zero.
By deleting the zero column from , we

have a corresponding matrix , which
has the dimension , and then, (A.1) becomes

(A.3)

Without loss of generality, we can assume that the degrees
of the elements in are arranged in ascending order. We
can then consider (A.3) for all in (associated with the
elements of ), where . In a manner applied before,
one can show that the columns of for any
are linearly dependent for allin . Given that div

deg (which is sufficient but more than necessary
at this step), the columns of for are

linearly dependent for all . [That is, the determinant of every
submatrix of for is identical

to zero under div deg .]
Then, if has full column rank for almost

all , we know by Lemma A1 that the first column of
is zero. If does not

have a full column rank for any , then we know that
rank rank for all .
Since has a rank no less than for almost all
, must be singular for all . Therefore, one of the

diagonal elements of must be zero, and hence, one of
the columns of is zero.

By continuing the above reasoning of (B.1), we can see that
all columns of must be zero, and hence,

must be diagonal up to a row permutation.
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