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A mixed symmetric dual formulation is presented for a class of nondifferentiable nonlinear programming problems
with multiple arguments. Weak, strong and converse duality theorems are established. The mixed symmetric dual
formulation unifies the two exsting symmetric dual formulations in the literature
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1. INTRODUCTION

Symmetric duality in nonlinear programming was introduced by Dorn in’, More precisely, a
mathematical programming problem and its dual are said to be symmetric if the dual of the dual
is the original problem. In other words, when the dual is recast in the form of the primal, its dual
is the primal problem. Subsequently, Dantzig, Eisenberg and Cottle® and Mond® formulated a pair
of symmetric dual programs fora scalar-valued function fix, y) that is convex in the first variable
and concave in the second variable. Then, Mond and Weir'® gave a different pair of symmetric
dual nonlinear programs in which a weaker convexity assumption was imposed on f.

Recently, Mond and Schechter!! studied nondifferentiable symmetric duality (of both Wolfe
and Mond-Weir types) for a case in which the objective function contains a support function.
Chandra, et al? presented a mixed symmetric dual formulation for a nonlinear programming problem.
Motivated by their research, we propose a pair of new mixed symmetric dual nondifferentiable
nonlinear programs in this paper. The pair can be reduced to that of Mond and Schechter!! and
that of Chandra et al’ as special cases. We then obtain the weak and strong duality theorems for
the new pair of mixed symmetric dual nondifferentiable nonlinear programs under a weaker
F-convexity condition.

2. PRELIMINARIES

Let C be a compact convex set in IR". The support function of C is defined by
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s(xlC)::max{xTy:ye C}.

A support function, being convex and everywhere finite, has a subdifferential,. that is, there

exists z such that (s (Y1 C)2s(x1C) +zT(y—~x) for all x e C. The subdifferential of s (x| C) is given
by

8s(xlC):={ze C:sz=s(xlC)}.
For any set Sc IR" the normal cone to S at a point x€ S is defined by
Ng (x) :={ye R" :yT(z-—x) SOforallze}S
It is readily verified that for a compact convex set C, y is in N (x) if and only if

s(1C)=x"y if and only if xe ds(y!C).

Let fix, y) be a real-valued twice differentiable function defined on IR" x IR". Let
V,f(x,y) and V,f(x,y) denote the partial derivatives of f with respect to x and y, respectively.

,
Also let Vi f(x,y) denotes the Hessian matrix of f evaluated at (x, y). The symbols

2 2 2 . ..
Vo f(x,¥), Viof(x,y) and V5, f(x,y) are defined similarly.
We now introduce the following definitions, see Hanson and Mond®.

Definition 1 — Let X< IR". A functional F:XxXxIR" — IR is said to be sublinear with
respect to its third argument if, for any x,ye X

(A) F(x,y;a1+ay) SF (x,y.a))+F (x,y;a,) for any aj,a, € R
(B) F(x,y, @xa)=aF (x,y;a), for any oF (x,y;a) for any ae IR, and ae IR".

Definition 2 — Let XcIR",YCIR™ and F:XxYXIR" — IR be sublinear with respect to
its third component. f(-,y) is said to be F-convex at x € X, for fixed ye Y, if

fFaeN-fE2Fx x5V f(x,y), VxeX.

Definition 3 — Let XcIR",YCIR™ and f: XxXY > IR. Let F: XX YxIR" — IR be sublinear

with respect to its third component. f(x, -) is said to be F-concave at ye Y, for fized xe X if

Fe-f)2F 0.5 -V f (%)), VyeY.

Definition 4 — Let XcR",YcIR™ and F:XxYxIR" > IR be sublinear with respect to
its third component. f(-,y) is said to be F-pseudoconvex at X, for fixed ye Y, if

FaxVifoey2z0=1(x,y)2f(x,y), Vxe X.
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Definition 5 — Let XcIR",YCIR™ and f: XxY — IR. Let F: Xx Yx IR" — IR be sublinear

with respect to its third component. f(x, ) is said to be F-pseudoconcve at y, for fixed x € X, if

FO,y; Vo f ) 20=f(x,y)2f(x,y), V ye Y.
3. MIXED TYPE SYMMETRIC DUALITY

For N = {1, 2, ., n} and M = {1, 2, .., m} let JycN,K;cM and J,=N\J},K, =
M\K,. Let I'J;| denote the number of elements in the subject Ji. The other numbers 1J, 1,1 K} |
and | K, | are defined similarly. It is clear that xe IR" can be written as x=( %), xl e RO,
Pe R Similarly, ye R™ can be wriite as yz(yl.yz), yleﬂilkll, y2€ R'%! Let
f:H?”'lxlell — IR and g:ﬂ?”2'x[R|K2|——>H€ be twice differentiable. Here, if J; =0, then
Jy=N,1J;1=0 and |J,1=n. So, in this R and R'2' are 0 and IR", respectively. The other
cases K;=0,K,=0 and J,=0 are defined similarly.

We now state the following pair of non-differentiable programs and discuss their duality
results.

Primal Problem (MP) — Minimize f(x',y))+g (%) +s G 1C)+5x21Cy) - N

V. £y - 697 22 subject to (xh a2y 2 2l D e R xR RE ! x REK « gIK 5 RK2
2 y ) Y,y

v,y -2 <o, o (1)
Vo (%) =22 <0, o)
0D (V¥ -D) 2, - (3)
x' 20,220, (@)
e, e, o (5)

Dual problem (MD)
Maximize :

Fal, o)+ g vh-s @ 1D -5 (WP1DY - @)V, Ful, 0" + @AW

subject to : (u],uz, vl, vz’wl,w2)e RV xR x RE xR x RK! x R K2,
Vi@, oy +w! 20, .. (6)
V) (@2, 07 +w? 20, " (D

whT (v, £, vy +wh <o, . (®)
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1220, .. (9)
whe € wle Gy, .. (10)

where C1, C2, D1 and Dj are compact and convex sets of R R 2R gng R respectively.
Theorem 1 — (Weak Duality) :Let Fy, F,, Gy and G, be sublinear functionals, and let

(x].xz,_y], yz, z, 22) be feasible for problem (MP) and (ul, u2, ol, V4wl w2) be feasible for problem
(MD). If f(-,yl) is Fj-convex for fixed y],f(xl, -) is F,-concave for fixed xl,g(-,yz)-k(-)Tw2 is

G-pseudoconvex for fixed y2 and g(xz, -)—(-)Tz2 is G,-pseudoconcave for fixed xz, and the

following conditions are satisfied:
@ F @ Vet o)+ @)V e oY+ DT w! 2 0;
@) Gy 22 u? V1, (6% 1) + WD) + DT W + V), (W2 19) 20;
i) Fo 01 oY) Vol v + 00T ¥, £l ) - (01T 2 <0; and
@) G, 0% V) Vo 04y + ) ¥, £ (% y) - 2 <0,

then inf (MP)2 sup (MD).

PROOF : Suppose that (xl,xz,yl,yz,zl,zz) and (ul,uz, vl,vz, wl,wz) are feasible for

problems (MP) and (MD), respectively. Then using the F;-convexity of f(:, vl) and F,-concavity of
function f (xl, ‘), we have

e o —fah vz F ol u v Fd o),

and fal o -red yh 2 Fy 0y Vo r el yh).

Rearranging the above two inequalities, and by using conditions (i) and (iii), we obtain
e -fel vhz-@h v el o)
_ (xl)Tw] + (yl)T sz(xl, yl) _ (Ul)Tzl.
Using (vl)Tz1 Ss(zl D, and (xl)Tw1 <s(x1Cy) we have
ey +sat e - Vyral vl 2pwl, o)
—s D) —HT v, f@!, vY . (11)
From condition (ii) and (8), we have

G, (2, w5V, A +wh 2— (1D W+ Y, ¢ (2, vh) 20.
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By G,-pseudoconvexity of g(-,y2)+ (-)T w2, we get

802, )+ 6 w2 g (6 o) + 6T 2 - (12)
In a similar fashion, from condition (iv) and (3), we have

Gy 6205 V£ (2% — D) 5= 6IT (V0023 - (T <0.
By G,-pseudoconcavity of g (2 ) -T2 we get

g (%, )~ (W) 2 <g (%)) - 07 - (13)
From eq. (12) and (13) we can conclude that

g (2, )+ @ W - 0D 228 (% 0D - () 2+ @ Wl . (14)
Using (x5 w? <5 (x> +1 C,) and (V)T 2 <5 (v*1D,), we have

g (2 ) +5s (1) - 0D 28 WP D) -5 VP IDy) + (WD) W .. (15)
Finally, (11) and (15) give

FE Y +g 6 ) +s G 1) +5 (P 10Y - 0N Vo yh - 0D 2

21!, vy +g @k vY)-s (1D —s (WP 1Dy) - @)V £, vy + @HT WA .. (16)
Thus, inf (MP) 2 sup (MD). OJ
Theorem 2 — (Strong duality) Suppose that G],?, ;I,?, Zl,?) is optimal for problem (MP)

and that the Hessian matrix V% f (;1,;1) is nonsingular, tha‘t‘Vgg(;z, ;12) is positive deﬁnite'or

negative definite and that Vzg(?’, ;2)1:22. Then al,?, ;l,;z,—z-l,?) is feasible for problem (MD)

and the corresponding objective function value are equal. If in addition the hypotheses of Theorem

1 hold, then there exist ;1, w? such that (ul, u2, vl, v2, wl, w2) :—Gl,;z, ;],;2, ;1, ;2) is optimal for

problem (MD).
PROOF : Let q=(x1,x2,yl,y2, 2!, 2% and
F@=f&",y)+2 %) - 0N Vora!, yh)-0HT 2+
s(g | {0} x {0}x {0} x {0} x C;xC, ,
G@="ar &y -2,
H@ =Yg (%) -2

I@=-0AT (V8 (%) -2,
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D=R""'xR""'x R&'x R X' x D, xD,.

Then Problem (MP) canbe restated as follows :
minimize F(q)

Subject to :
G(g)<0,
H(g) <0,
1(g) <0,
J(g)<0
K (g)<0,

ge D.

Since 61;2 ;1;2 2! _2) is optimal for problem (MP) ie., g= (x X y 27 ) is optimal

for above programming, by the Fritz John conditions' and note that Ne (@)= {O x {0} x {0} x

{0} x N[)‘ (zl)xND2 (Zz) at any g e C, there exist

ae R, a; e R’Kl',a&ze R%!' )¢ R,y e R and Uy € R'2! such that

a [V, FG = 0N VG 4w+ o] Vi Fa Y -y =0, (7
AV, g (YD) + W+ (@ - 5D Vo g (B3P =ty = 0, .. (18)
—aVo @ Y ol Vg Gy =0, . (19)

(@=2) [V2 ¢ ) -+ (05 - A 82 .7 =0, - 20)
e Np (), .. 1)
ay*+ (0= Ay € Np, @), v)
wec,wh=sa10), .. (23)
wle Co, (W P45 @10y, .. (24)

o (VoG Yy -7 =0, . (25)
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o [V, 8 ) -21=0,

2097 V8 6% 3) -A1=0,

w2 =0,
T
/.12;2=0,

(o, oy, 0, A, 1y, 4p) 20 and (o, oy, 0, A, Yy, i) 20. ... (30)
From (19) and nonsingularity of the Hessian matrix V;z f (;],;I), we have
o = a3
Multiplying (20) by 02—2,;2, and from (26) and (27), we obtain
(0= A V3 8 (2.5 (0= A =0,
Since V;z g (;2, ;2) is positive or negative definite, we have
=2 ¥
From (20), (33) and the hypothesis Vzg(?, ;2):&?, we have

a=A.

811

.. (26)

- 2D

.. (28)

. (29)

. (3D

. (32)

. (33)

. (34)

If =0, then A = 0 and from (33), o, = 0, and from (17), ¢, =0 and from (18), u, = 0.

This contradicts (30). Hence a>0 and A>0. From (33) and (30), we have

2 20.

From (31) and (30), we have
y!>o0.

From (17), (31) and (30), we have
vircLyh+w!zo

From (18), (33), (30) and a>0, we have
\7 g(;z,?)+;220.

From (18), (33), (29) and a>0, we have

T
10 [V g (2,59 = w1 <0.

. (35

.. (36)

. (3D

.. (38)

.. (39)
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Hence from (23), (24), (35), (36, (37), (38) and (39), & ,x2%5 . 3% w !, w?) is feasible for
(MD). Now from (17), (23), (28), (31) and a>0,, we have

s e =-hHTv el . .. (40)

From (21) and (31), we know that y' € N, (2)), ie.,
1

o'z =50 1Dy, . (41)
From (22), (33) and a>0, we have
ye Np, (22).
That is, 0O 2 =5G71Dy. . (42)

Finally, from (24), (40), (41) and (42), we give ‘
FE Y +g @D +sE 1C) +s@1C) -GN Vur L3 - AT 2
= feL YN +g Ay —s 0N ID) —s 071D - YTV FGL Y + DT WA L @3)

By the weak duality and (43), (x', %, y', %, w!, w?) is an optimal solution of (MD).  [J
By the similar method of Theorem 2, we can prove the following converse duality theorems

Theorem 3 — (Converse duality) Suppose that Gl,?, ;], }2 ;1, ;;2) is pptimal for problem

2 -1 - 2 .
(MD) and that the Hessian matrix V| f (xl, yl) is nonsingular, that V g(;2 , ;2) is positive definite

2

or negative definite and that V, g(;z, ;2);#;. Then (Tvl?‘ , ;l,?, ;v_],;z) is feasible for problem

(MP) and the corresponding objective function value are equal. If in addition the hypotheses of
Theorem 1 hold, then there exist ?22 such that (xl,xz,y], y2, zl, zz) = (_Jc1;2 ;l,?, ?,?) is opimal

for problem(MP).

4. SPECIAL CASES

In this section we consider some special cases of problem (MP) and problem (MD) by choosing
particular forms of sublinear functionals Fi, F2, Gi and G2 and the compact convex sets
C1,C2, Dy and Da.

() If C,=C, ={0}, Dy =D, = {0}, then (MP) and (MD) reduce to a pair of primal problem
and dual problem programs studied in Chandra, et al’
Primal Problem (MP), :

Minimize
FE Y+ 63 - 0N v, £l yh

subject to:
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voret yh <o,
V, g (%) <0,

0D V28 (%% 20,

x' 20, x>0
Dual Problem (MD)l :
Maximize

Fat,vh+g @ vh) - T vy £l o
subject to:

V,f@!, vhy20,

Vig (u2, 1)2) 20,

WAV, f@? ) <0,

0120, V2 20.

(i) If J,=0 and K, =0 the symmetric dual pair (MP) and (MD) reduces tot he pair (P)
and (D) of Mond and Schechter'!
Primal Problem (MP), :

Minimize
el yh+sal ey -ohT vy ret yh
subject to :
Vo, yh -7 <o,
x> 0,
1
z € Dy.

Dual Problem (MD), :

Maxirnize

fa, oY -s @Dy - @V, f!, v
subject to :

viral v -2 <o,

v1 20,
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W] € C].

where C] and D) are compact and convex sets of IR" and IR™, respectively.
If /,=0and K, = 0 the symmetric dual pair (MP) and (MD) reduces to the pair Py and
(D,) of Mond and Schechter”

Primal Problem (MP),
Minimize
gy +s (P 1Cy-N 2
subject to:
Vg () -2 <0,
0D (Vo 62D =22 20,
x> 0,
Fe D,.
Dual problem (MD); :
Maximize
g (*. V%) = s (VP 1Dy + ()T w?
subject to :
Vg (uz, U2) + w2 >0,
@ (v f0d, D) +wh <0,
v? >0,
w? € Gy,

where C2 and D; are compact and convex sets of IR" and IR™ respectively.

Chandra, Husain and Abha (see [5]) proved the weak and strong duality theorems for
(MP), and (MD); amd Mond and Schechter (see [11]) proved the weak and strong duality theorems
for (MP); and (MD), or (MP); and (MD); under convex-concave functions. Here we prove our

weak, strong and converse duality theorem under F-convex and F-concave functions. So our theorem

1 and 2 generalize the main results in [5], and improve, extend and unified Mond and Schechter’s

work in“.



SYMMETRIC DUALITY IN NONDIFFERENTIABLE MATHEMATICS 815

(éii) From the symmetric dual models (MP) and (MD), we can construct other symmetric
. . i - — o7
dual pairs. For example, if we take Ci={Aiy.y Ai),s 1} (i=1,2) and Di'{Bix'x B{.x.<_ljL
(i = 1, 2) where A; and B; are positive semi-definite, then it can be readily verified that

(xTAi x)l/2 -=s5(x1C;) and (yTBl. y)1/2=s(lei), and thus a number of symmetric dual pairs and
duality results are obtained. In particular, (MP), and (MD), reduce to the symmetric dual pair S.

Chandra and 1. Husain®.

(iv) These results in this paper can also be extended to multiobjective programming, and
integer programming on the line of [2, 3] under various types of generalized convexity assumption.
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