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Estimation of stress-dependent anisotropy from P-wave measurements on

a spherical sample
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ABSTRACT

Our aim is to understand the stress-dependent seismic ani-
sotropy of the overburden shale in an oil field in the North
West Shelf of Western Australia. We analyze data from meas-
urements of ultrasonic P-wave velocities in 132 directions for
confining pressures of 0.1-400 MPa on a spherical shale sam-
ple. First, we find the orientation of the symmetry axis, assum-
ing that the sample is transversely isotropic, and then
transform the ray velocities to the symmetry axis coordinates.
We use two parameterizations of the phase velocity; one, in
terms of the Thomsen anisotropy parameters «, 5, ¢, ¢ as the
main approach, and the other in terms of «, f3, 1, 5. We invert
the ray velocities to estimate the anisotropy parameters o, &, 0,
and n using a very fast simulated reannealing algorithm. Both
approaches result in the same estimation for the anisotropy pa-
rameters but with different uncertainties. The main approach

is robust but produces higher uncertainties, in particular for 7,
whereas the alternative approach is unstable but gives lower
uncertainties. These approaches are used to find the anisotropy
parameters for the different confining pressures. The depend-
ency of P-wave velocity, o, on pressure has exponential and
linear components, which can be contributed to the compliant
and stiff porosities. The exponential dependence at lower pres-
sures up to 100 MPa corresponds to the closure of compliant
pores and microcracks, whereas the linear dependence at
higher pressures corresponds to contraction of the stiff pores.
The anisotropy parameters ¢ and o are quite large at lower
pressures but decrease exponentially with pressure. For lower
pressures up to 10 MPa, J always is larger than ¢; this trend is
reversed for higher pressures. Despite the hydrostatic pressure,
the symmetry axis orientation changes noticeably, in particular
at lower pressures.

INTRODUCTION

The main motivation for this study is to understand the stress-
dependent seismic anisotropy of the overburden shale in an oil
field in the North West Shelf of Western Australia. As a result
of the depositional pattern of clay minerals, flat-lying shale for-
mations often show transverse isotropy with a vertical axis of
symmetry. To characterize such seismic anisotropy, we build
upon our work (Béna et al., 2010) of Thomsen anisotropy pa-
rameter estimation using quasi-P-wave ultrasonic traveltimes to
study the anisotropy at different confining pressures from a
spherical shale sample from just above a sand reservoir.

The idea of studying the velocity anisotropy and estimating
the elasticity tensor from the traveltimes on spherical samples
has been addressed by different authors. Perhaps the earliest
major contributions in this field could be attributed to Pros and

Babuska (1967, 1968), Thill et al. (1969, 1973), Vickers and
Thill (1969), and Pros and Podrouzkova (1974). They designed
new techniques and apparatus to measure P-wave velocities on
spherical rock samples. They also computed the P-wave velocity
anisotropy from the maximum and minimum of the velocity, af-
ter finding the symmetry axis in igneous and metamorphic
rocks. Jones and Wang (1981) measured the P-waves at normal,
parallel, and 45° to the bedding plane on two Cretaceous shale
samples from the Williston Basin at the confining pressures
ranging from 1 bar to 4 kbar in dry and saturated conditions.
They also measured shear waves in directions normal and paral-
lel to the bedding plane (with polarization lying in the symme-
try plane) at the same pressure and saturation conditions as the
P-waves. Assuming that the shales are transversely isotropic,
they computed five elasticity parameters at the confining pres-
sure of 1 bar.
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Jech (1991) suggested a nonlinear iterative least-squares opti-
mization procedure to solve the Christoffel equation (see, e.g.,
Cerveny, 1972) for the 21 elasticity parameters from the quasi-
P-wave traveltimes measured on spherical rock samples. He
used the same measurement configuration and equipment as that
proposed and designed by Pros and Babuska (1967) and Pros
and Podrouzkova (1974) for high-pressure measurements.

Methodology to estimate the 21 elasticity parameters sug-
gested by Jech (1991) by using the well-distributed quasi-P-
waves may fail for more symmetric anisotropy classes. For
example, for a transversely isotropic material it is impossible to
estimate Cg¢ from only P-wave velocities. Arts et al. (1991,
1996) and Arts (1993) used a method based on the measure-
ments of ultrasonic velocities in a large number of directions on
spherical rock samples. Before a sample was made into a sphere,
they performed two shear-wave measurements on a cubic sample
of the same rock in three mutually perpendicular symmetry
directions of the cube using the experimental setup of Lucet
(1989) and Lucet and Zinszner (1992). This gives six additional
shear-wave measurements.

The P- and S-wave data are sufficiently redundant to be
inverted in terms of the complete set of the 21 elastic coeffi-
cients. Vestrum (1994); Vestrum et al. (1996) demonstrated that
by using a large number of high-quality P- and S-wave velocity
measurements, he could successfully invert for the complete set
of 21 elasticity parameters that best fit the velocity measure-
ments in the least-squares sense. His method makes no prior
assumptions about the symmetry or orientation of the rock.

Dellinger et al. (1998) modified the algorithm of Vestrum to
stabilize the inversion. Rasolofosaon and Zinszner (2002) devel-
oped a technique for measuring the complete set of the 21 elas-
tic coefficients, a technique allowing the identification and
orientation of the symmetry elements (planes, axes), and a tech-
nique for approximating the derived elastic tensor by a tensor of
higher symmetry with the quantification of the error induced by
such an approximation.

Experimental studies on shale to estimate elasticity/Thomsen
anisotropy parameters at different pressures are not widely
addressed in the geophysical literature.

Among these, Hornby (1998) measures one P-wave and two
S-wave velocities for three cylindrical samples from the same
shale cut at normal, parallel, and 45°/30° to the symmetry axis
under the confining pressure from 5 to 80 MPa to estimate the
elasticity and Thomsen anisotropy parameters. This data set was
used by Prioul et al. (2004) to propose a nonlinear rock physics
model to predict stress-dependent elasticity parameters for trans-
verse isotropic shale under isotropic and anisotropic stress fields.
This data set was used by Ciz and Shapiro (2009) to address the
stress-induced anisotropy for transversely isotropic elasticity
using an anisotropic extension of the porosity deformation for-
malism (Shapiro, 2003). Wang (2002a, 2002b) proposed a single
core plug measurement of P-wave at normal, parallel, and 45°
to the bedding plane and also two shear waves along the bed-
ding plane to measure the elasticity parameters for a trans-
versely isotropic rock sample. He has computed the elasticity
parameters for a large number of samples from shale and reser-
voir rocks at different fluid saturations and effective pressures.

Sarkar et al. (2003) studied Thomsen anisotropy parameter
variations under nonhydrostatic stress conditions on Berea sand-
stone. The sample was subjected to uniaxial stress fields up to
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10 MPa, causing orthorhombic seismic anisotropy. They provide
a theoretical model that decouples the stress-induced anisotropy
from the background transverse isotropy with vertical symmetry
axis (VTI) under different uniaxial stress fields. They also have
estimated the Thomsen anisotropy parameters ¢, d, and 7y at the
different symmetry planes, and have decoupled the portions of
these parameters from the VTI background and the stress-related
component. The stress-related component of Thomsen aniso-
tropy parameters in the major symmetry plane has been shown
to be proportional to the magnitude of the stress field.

Dewhurst and Siggins (2006) have conducted similar experi-
mental studies on shale core samples under uniaxial and isotropic
stress fields. Assuming the shales are transversely isotropic, they
measured P-waves in directions parallel, normal, and 45° to the
bedding plane, and two shear waves parallel to the bedding
plane, at different net stresses to compute the transversely iso-
tropic elasticity tensor and the Thomsen anisotropy parameters.
Despite the simplicity of these types of ultrasonic measurements
they suffer from the lack of robustness; Béna et al. (2010) show
how a limited number of ultrasonic measurements can propagate
errors in estimation of elasticity parameter Ci3 and Thomsen ani-
sotropy parameters, in particular 0.

Herein, we present a method of inversion of the P-wave trav-
eltimes for the Thomsen anisotropy parameters that differs from
the above approaches in two major ways. First, we use the nu-
merical derivatives of the measured traveltimes with respect to
the ray angles to express the phase angles using only measured
quantities. Secondly, unlike in our previous approach (Béna
et al., 2010), where we estimate the Thomsen anisotropy param-
eters only at the reservoir pressure, we estimate the Thomsen
anisotropy parameters at every pressure. We use the very fast
simulated reannealing as a global optimization approach to over-
come the nonuniqueness and compare it to local optimization
algorithms such as nonlinear conjugate gradient and quasi-
Newton methods. Both of these differences result in a more
robust estimate of Thomsen anisotropy parameters than do alter-
native approaches.

ULTRASONIC MEASUREMENT CONFIGURATION

A core plug from overburden at the depth of 2076 m was cho-
sen for our anisotropy studies. This sample is a fairly homoge-
nous argillaceous siltstone aged late Jurassic to early Cretaceous,
and is deposited in a lower delta plain to open marine environ-
ment in Exmouth Basin, North West Shelf of Western Australia.
We often refer to this sample as shale. The neutron porosity from
the well log corresponding to the depth of this sample is 38%
and the gamma ray is 135 API. Density is 2.45 g/cc from the log
and laboratory measurements.

Before making a spherical sample, the core plug was
vacuumed, but was not dried completely and some pores might
be saturated partially with brine. We assume that increasing
the confining pressure essentially leaves the pore pressure
unchanged. To prepare a spherical sample, the core plug is pol-
ished in different directions to form a sphere with 50 = 0.01
mm diameter.

Figure 1 shows two computer tomography (CT) images from
the sample at ambient pressure. These images were taken after
the experiment. The light and dark colors correspond to higher
and lower density minerals, respectively. The resolution of the
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images is not good enough to see the minerals individually;
however the lamination is visible.

The spherical sample was covered by a thin epoxy resin film
(thickness 0.05 mm) to protect the pore space from the pressure
medium and was placed in an oil-filled pressure chamber at
room temperature to measure the ultrasonic P-wave velocities in
a broad range of confining pressures, from ambient pressure to
400 MPa.

Figure 2 shows a schematic of the measurement locations on
the spherical sample. Two similar piezoceramic transducers
were placed at the opposite sides of the spherical sample. A
high-voltage pulse excited one of the transducer-generated ultra-
sonic waves propagating through the sample and recorded at the
other transducer. Signals were measured over the spherical sam-
ple at every 15° in azimuthal and polar directions. This acquisi-
tion pattern produces 132 records of P-waveforms sampled at 10
ns. From these seismograms we picked the first arrivals by
means of a high-order statistics approach (Lokajicek and Klima,
2006) and then found the ray velocities. The measurements on
the spherical sample were performed at the Institute of Geology,
Czech Academy of Sciences, Prague. A more comprehensive
description of the experimental setup is given by Pros et al.
(1998).

ESTIMATION OF SYMMETRY AXIS

Following Boéna et al. (2010), we choose to invert the meas-
ured velocities for the transversely isotopic tensor in two steps.
In the first step we find the symmetry axis, and in the second
step we find the Thomsen anisotropy parameters. These steps
could be combined into one step; however, we prefer to keep
them separate to reduce the complexity of the inversion.

First, we need to establish whether we measure phase or ray
(also called group) velocities. This can be determined by com-
paring the diameter of the transducer with the diameter of the
sample. In our case, the active area of the piezoelectric element
is 3 mm in diameter, which is 1/17 of the diameter of the sam-
ple, and the natural frequency of the transmitter is 2.5 MHz.
Following Vestrum (1994), we conclude that the measured
velocities are the ray velocities.

To estimate the symmetry axis of a transversely isotropic me-
dium, we use the fact that the wavefronts must be at least as
symmetric as the material itself (Bona et al., 2007). To find the
symmetry axis, assuming this spherical shale sample has the
transverse isotropy symmetry, we form an objective function

Figure 1. CT images from two slices of the spherical shale sam-
ple. The diameter of the slices is 47.2 mm.
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where V is the ray velocity, , and w are the assumed coordi-
nates of the symmetry axis, /, @ are the measurement coordinates,
and {, ¢ are the symmetry coordinates, as shown in Figure 3. The
symmetry axis is found by minimizing this function. To find the
minimum of S, we change the orientation of the azimuth axis. This
requires transforming the data from the measurement coordinate
system to the symmetry coordinate system for a given rotation
(Figure 3). The objective function S is 2D, and direct searching of
the model space was used to find the solution.

Table 1 shows the symmetry coordinates from the measurements
at different pressures. Figures 4 and 5 show small but systematic
changes in the direction of the symmetry axis with pressure. The
change is rapid up to 40 MPa, at which point the change reverses
and slows at the higher pressures. Although the pressure field is
isotropic, it changes the symmetry axis direction. The scattered

N ¢

Figure 2. A schematic of measurement locations on the sphere.

a) z b)

Figure 3. (a) Measurement and (b) symmetry axis coordinate sys-
tems after rotation (y, @wp). Vertical planes are symmetry planes.
The symmetry axis is denoted by z'.
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points at 70 MPa for y, and 300 MPa for wy could be explained
by propagation of measurement errors through the numerical deriv-
atives in expression 1.

ESTIMATION AND UNCERTAINTY ANALYSIS OF
THOMSEN ANISOTROPY PARAMETERS

In the preceding section we found the best approximation of
the symmetry axis of the material under assumption of trans-
verse isotropy. In this section we focus on inversion of the
Thomsen anisotropy parameters o, ¢, and ¢ from the measured
data. To this end, we express the measured ray velocity explic-
itly in terms of the ray angle, which will allow us to construct
an objective function for the inversion.

Phase velocity v for a quasi-P-wave as a function of elasticity
parameters can be found by solving the Christoffel’s equations
for a transverse isotropy medium. We use the same notation
(Thomsen, 1986),

v =o5(1 4+ esin® 0 + A),

A (1 - ﬁ%/aé) [{1 +4(25 — &) sin” 0 cos? 0

= (—=20 55

2 1 —Bo/og

1
4(1 — B3 /o2 4 ¢)esin* 0 }2 1]
27,22 -
(1= By/o)
where oy, ff, 0, ¢ are the Thomsen anisotropy parameters, and 0
is the phase angle (wavefront normal angle) measured from the
symmetry axis.

Because of the relatively small size of the transducers, the

measured velocity is the ray velocity. The magnitude of the ray
velocity is related to the phase velocity (Berryman, 1979)

@

Table 1. Symmetry axis coordinate (i, @) estimated from
the P-wave ray velocities at different confining pressures.’®

P.(MPa) ¥o g

0.1 82.2 -3.1
1 80.7 -3.6
2 81.2 -2.9
4 81.5 -2.9
7 81.6 -2.5
10 83.6 -2.5
15 83.2 -2.3
20 84.5 -2.3
40 84.8 2.2
70 83.6 2.2
100 84.8 -2.8
200 83.8 4.9
300 83.4 -3.0
400 82.2 -6.4

*The angles are measured in the measurement coordinate sys-
tem, which was established visually, based upon the lamination of
the shale.

V2 =2 4 (v/00)%, 3)

where V is the ray velocity and 0v/00 can be computed from
equation 2. To express phase angle as a function of ray angle
and ray velocity, we follow the same approach as Ursin and
Hokstad (2003),

dInV\’ dinV\?

2 .

cos”0 = ( cos{ + sin 1+

(cons Cd:)/( (&) )
“

where ( is the ray angle. The derivative dInV /d{ can be found

numerically from the measured data, e.g., by using a four-term

finite-difference operator. Substituting expression 4 into expres-

sion 2 and the result into expression 3, we obtain the ray veloc-
ity expressed as a function only of the measured quantities and
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Figure 4. Azimuth, 1/, of the symmetry axis coordinate at differ-
ent confining pressures.
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Figure 5. Polar angle (dip), wo, of the symmetry axis coordinate
at different confining pressures.
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the unknown Thomsen anisotropy parameters. This way of
expressing the ray velocity is one of the main advantages of the
present method: We can invert directly for Thomsen anisotropy
parameters without the need to calculate the phase angles at
each step of the inversion process. As a result of the lack of
enough measurements along the polar direction (angle from the
symmetry axis) in each azimuth, we use linear triangular inter-
polation for smaller Af.

We estimate the Thomsen anisotropy parameters o, ¢, and o
from the measured P-wave ray velocities. We estimate the three
parameters by minimizing a quadratic objective function of re-
sidual errors given by Tarantola (2005),

f=3 = VIC v -V, ©

where V and V' are the vectors of N measured and computed
ray velocities in symmetry axis coordinates over the entire azi-
muth and polar angles, respectively. The symbol Cp is the
N x N covariance matrix of the data. We assume that there is
no correlation between the errors in data, so the off-diagonal
elements of the covariance matrix are zero. The diagonal ele-
ments, or the variances o2, could be the errors in picking the
traveltimes, or here, the error in measuring the ray velocities.
The uncertainty ¢ in ray velocities is kept at 0.05 km/s for all
the ray velocities, which results from the error in laboratory
measurement and traveltime picking.

Sensitivity analysis

To determine the sensitivity of the objective function (5) to the
model parameters, we explore the model space with different
model parameters. The sensitivity analysis shows that shear-wave
velocity 3, as expected (e.g., Tsvankin, 2005), has very little effect
on the objective function, and thus the estimate of f§ is not reliable
in the presence of noise. Figure 6 shows the model space for a
given f§ = 1.5 Km/s. The iso-surface has been set at the vicinity of
minimum to show the behavior of the objective function. The pa-
rameters o, ¢, and 0 have different uncertainty, but all converge to
their solution. The estimation of Thomsen anisotropy parameters
has the advantage over the estimation of elasticity parameters and
then mapping them to Thomsen anisotropy parameters, since corre-
lation between Cj3 and C44 requires an accurate estimate of Cyy
from other sources, or having shear-wave measurements as well
(Béna et al., 2010).

Figure 6. A closed iso-surface (for the objective function value
1.55) of the model space in the vicinity of the solution where the
value of the Thomsen anisotropy parameter f§ is kept at 1.5 km/s.
Though the uncertainty varies for different parameters, they can be
estimated very well. This solution is practically independent of .

WA95

Local and global minimization

To minimize the objective function given by expression 5, we
implemented and compared three algorithms; very fast simulated
reannealing (VFSR) algorithm (Ingber, 1989) as a global optimi-
zation method, and two local gradient-based search algorithms
(Nocedal and Wright, 1999). VFSR and the gradient-optimization
methods require derivatives of the objective function with respect
to model parameters, which are computed analytically. Nonlinear
conjugate gradient and quasi-Newton methods, as local optimiza-
tion methods, have faster convergence rates, but suffer from
nonuniqueness; different starting points may result in different
solutions. Hence, good prior information is needed for the local
minimization algorithms to reach the global minimum. On the
other hand, VFSR, which is based on a random sampling of the
model space, has a slower convergence rate but guarantees con-
vergence to the global minimum. VFSR is robust, independent
from the starting point and only requires a physically meaningful
range of the model parameters from which to sample.

Figure 7 shows the convergence rate of the objective function
(5) for conjugate gradient and quasi-Newton methods for several
runs from measured velocities at 40 MPa. The prior information
for model parameters is taken randomly from a uniform distribu-
tion. Each run is started from a different random point and the
minimization is continued until there is no further improvement in
the model parameters. It is noticeable that wherever the starting
point is far from the solution, the gradient methods are unlikely to
converge to the global minimum. However, the convergence rate
is very fast and it only takes a few iterations to reach the solution.

As an alternative approach, we have parameterized equation 2
in terms of Thomsen anisotropy parameter ¢ and anisotropy pa-
rameter 1 (Alkhalifah and Tsvankin, 1995),

B e—0
14287

by substituting for the Thomsen anisotropy parameter &. This
parameterization allows us to investigate how reliably # can be

n (6)

100,000
10,000
§ 1000
3
C
=]
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B
S
o)
O 10 > A\\Vemm
1
01 ‘ T [ T [ T | T | T |
0 4 8 12 16 20

Iteration

Figure 7. Convergence rate of the objective function from the
minimization using the nonlinear conjugate gradient (dashed
lines) and quasi-Newton (solid lines) algorithms. Only the lines
that have the smallest value are to be considered to reach the
global minimum. Because of nonuniqueness, the rest converged
to local minima.
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estimated, as compared to computing it from ¢ and 5. We also
are interested in seeing how 7 influences the estimation of the
other parameters, in particular J, and whether it improves the
reliability of the inversion. The convergence patterns of the ani-
sotropy parameters for both approaches, using the same data set,
are shown in Figures 8-13.

In this example we continued the minimization up to 15,000
iterations; however, it is clear that the model parameters con-
verged at very early iterations. In some cases, where trapped in
local minima — as indicated in Figures 8-13 by spikes, they
could jump out quickly and back to the global minimum. It
seems that rescaling the temperature and annealing time forces
the algorithm to sample Thomsen anisotropy parameters mostly
around the global minimum.

A quick inspection of the objective function of different itera-
tions for both approaches shows that the anisotropy parameters

1 .5 T ] T | T | T | T ‘
0 3000 6000 9000 12,000 15,000
lteration

Figure 8. Convergence pattern of the Thomsen anisotropy param-
eter o from VFSR. The parameter o converged to the true solution
at earlier iterations.

1
[ T I T I T I T I T |
0 3000 6000 9000 12,000 15,000
lteration

Figure 9. Convergence pattern of the Thomsen anisotropy param-
eter o from VFSR after parameterization. The parameter o con-
verged to the true solution at earlier iterations.

Nadri et al.

converged to exactly the same solution but in different itera-
tions. In the first approach, where equation 2 is parameterized in
terms of o, ¢, and O, the true solution is reached at iteration
6914, while in the second approach where «, #, and J are opti-
mized, the true solution is reached at iteration 5318. The anisot-
ropy parameter 7, where computed from expression 6, is the
same exactly as the one estimated in the second approach.
Because of the stochastic nature of VFSR, every realization is
different than the other; however all converge to the same solu-
tion. A quick comparison of the convergence pattern of the
Thomsen anisotropy parameter ¢ from the two parameterization
approaches, as illustrated in Figures 12 and 13, shows the supe-
riority of the first approach. In the second approach, whenever
is trapped in a local minimum, it takes a long time to return to
global minimum. A few trials also showed the chaotic nature of
the convergence pattern of anisotropy parameters in the second

1.2
0.8
. i
0.4 —
0 ' T | T ' | \
0 3000 6000 9000 12,000 15,000
Iteration

Figure 10. Convergence pattern of the Thomsen anisotropy pa-
rameter ¢ from VESR. The parameter ¢ converged to the true solu-
tion at earlier iterations.

0.2 -
0.8 f
= 0.4;
0 — //lrhl‘““—#
—0.4 I T T T |
0 3000 6000 9000 12,000 15,000

Iteration

Figure 11. Convergence pattern of the anisotropy parameter 7
from VFSR. The parameter # takes more iterations to return to the
true solution after getting trapped in a local minima.
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approach despite the convergence of all the model parameters to
the true solution. This instability in convergence also makes it
difficult to find a region close to the true solution to compute
the uncertainty, as discussed later in the paper. The instability
of the inversion in the second approach could be because of the
division of two small parameters in the expression for .

We note that the lower and upper bands of the model parame-
ters for ¢ and o could have been set closer, according to the
velocity values estimated from the measurements along the sym-
metry axis/plane, but this reduction in the parameter space
would not reduce the inversion time because of the stochastic
nature of the sampling. A summary of the inversion process is
illustrated by a flow chart in Figure 14.

Pressure dependency of anisotropy parameters

Figure 15 shows variation of the Thomsen anisotropy parameter
o with changing confining pressure P.. The velocity o increases
exponentially as the pressure increases from the ambient pressure
up to 100 MPa and continues to increase linearly up to 400 MPa.
Exponential behavior of the velocity dependence on stress is
addressed by many authors (e.g., Eberhart-Phillips et al., 1989;
Freund, 1992; Jones, 1995; Khaksar et al., 1999; Shapiro, 2003).
We can use the formalism of Shapiro (2003) to interpret this in
terms of the compliant and stiff porosities,

V =A+KP, — Bet""P), @)

where A, K, B, and D are fitting parameters, P, = P. — P, is
the effective pressure, and P, is the pore pressure. Because the
spherical sample was partially saturated, we might approximate
the effective pressure, P, ~ P.. Given the applicability of Sha-
piro’s formalism to the shales, the exponential increase in o is
due mostly to the compliant porosity, where the microcracks
and grain contacts close, while the linear part of the curve is
more controlled by the stiff porosity. Figure 15 also shows that
the exponential model fits very well with the estimated veloc-
ities along the symmetry axis with the parameters A = 3.243,
K =0.00256, B = 1.06, D = 0.0403.

Figures 16 and 17 show the changes of ¢ and § with pressure.
A strong anisotropy can be seen at lower pressures and it
decreases as the confining pressure increases. Up to 10 MPa, ¢
always is greater than & however this behavior is reversed for
higher pressures. At 10 MPa, the spherical sample shows ellipti-
cal anisotropy, where ¢ = ¢. At higher pressures, in particular at
400 MPa, the shale sample still shows some degree of anisot-
ropy, which could be caused by the intrinsic anisotropy of the
clay minerals.

The pressure-dependence of the anisotropy parameter 1 is
shown in Figure 18. Up to 20 MPa, n always is increasing. How-
ever as pressure increases 7 behaves more pressure independent,
and fluctuates around a very mildly dipping downtrend. The
pressure dependence of the anisotropy parameters is summarized
in Table 2.

Uncertainty estimation

To calculate the uncertainty of the estimation of the anisotropy
parameters, we have used the approach given by Amand and Vir-
ieux (1997) with the last 2000 samples from VFSR to compute the
covariance matrix. The square root of the diagonal elements of the

WA97

covariance matrix (standard deviation) at each pressure is a statisti-
cal measurement of uncertainty for each estimated parameter.

Because in the first approach, the anisotropy parameter 7 is
not part of the minimization procedure, we approximate its
uncertainty from the joint uncertainties associated with Thomsen
anisotropy parameters ¢ and ¢ by taking the partial differential
of n (expression 6) with respect to ¢ and 0,

1 1+2n

An ~ Ae —
T T2 1520

where Ae ~ ¢, and Ad ~ g5. The symbols o, and os are the
uncertainties associated with the Thomsen anisotropy parameters
¢ and 0, respectively, computed from VFSR.

A fairly stable range of model parameters in the vicinity of
the global minimum, in particular for ¢ and #, is needed to esti-

Ao, ®)

1.2 4

0.8

0.4

0 ' I * | ' I ' | ' \
0 3000 6000 9000 12,000 15,000
Iteration

Figure 12. Convergence pattern of the Thomsen anisotropy pa-
rameter 0 from VFSR. The parameter ¢ takes more iterations to
converge to the true solution.
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Figure 13. Convergence pattern of the Thomsen anisotropy pa-
rameter J from VFSR after parameterization. The parameter o0
takes more iterations to return to the true solution after getting
trapped in a local minima.
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Figure 14. Flow chart showing the procedure for
the estimation of the Thomsen anisotropy
parameters.
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Figure 15. The Thomsen anisotropy parameter o and the uncer-
tainties estimated at different confining pressures. Shapiro (2003)
model (solid line) is fitted with R% =0.999, « = 3.243
+ 0.00256P, — 1.06¢(~0-04037¢),
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Figure 16. The Thomsen anisotropy parameter ¢ and the uncer-
tainties estimated at different confining pressures.
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Figure 17. The Thomsen anisotropy parameter ¢ and the uncer-
tainties estimated at different confining pressures.
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Figure 18. Anisotropy parameter # and the uncertainties at differ-
ent confining pressures. The thick bars are estimated from the
VESR, while the thin bars are computed from the uncertainty
associated with ¢ and 9.
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Table 2. The Thomsen anisotropy parameters &, d, « and their uncertainties at different pressures.4
P.(MPa) & o o n o, os o} Oy ol oy o,
0.1 0.720 1.009 2.183 —0.096 0.003 0.012 - 0.003 - 0.002 -
1 0.664 0.873 2.238 —-0.076 0.016 0.045 - 0.015 — 0.008 -
2 0.650 0.810 2.256 —0.061 0.017 0.054 - 0.019 - 0.012 -
4 0.566 0.627 2.351 —0.027 0.013 0.033 - 0.013 - 0.008 -
7 0.501 0.528 2.436 —0.013 0.009 0.026 - 0.011 - 0.008 -
10 0.402 0.401 2.577 0.001 0.003 0.010 - 0.004 - 0.004 -
15 0.325 0.290 2.726 0.022 0.004 0.015 — 0.007 - 0.007 -
20 0.280 0.228 2.838 0.036 0.002 0.007 - 0.004 - 0.004 -
40 0.202 0.170 3.096 0.024 0.005 0.017 0.007 0.011 0.006 0.010 0.004
70 0.151 0.122 3.329 0.023 0.007 0.027 0.014 0.017 0.010 0.017 0.010
100 0.119 0.072 3.531 0.041 0.004 0.014 0.006 0.012 0.005 0.010 0.005
200 0.128 0.106 3.737 0.018 0.003 0.011 - 0.009 - 0.007 -
300 0.105 0.068 4.014 0.033 0.001 0.004 - 0.003 - 0.003 -
400 0.086 0.066 4.265 0.018 0.001 0.007 - 0.005 - 0.006 -

“The symbol P, is confining pressure, and ¢ stands for standard deviation. The values of the o and its uncertainty are given in km/s. The
uncertainty for the anisotropy parameter 1 is computed from the uncertainties in ¢ and . The symbol o, is the absolute value of the uncer-
tainty in #. The expressions o}, o5, and aj; are the uncertainties for the anisotropy parameters estimated from the parameterization of phase

velocity in terms of o, J, and 7.

mate the uncertainty. This requires a large number of trials in
the second approach, and thus we have investigated the effect of
parameterization on the uncertainty of anisotropy parameters
only at three different pressures. Wherever possible, the uncer-
tainty of estimation of all the anisotropy parameters is lower
than the uncertainty estimated from the first approach. The
uncertainty is lower in particular for the anisotropy parameter #.
The uncertainties for the Thomsen anisotropy parameters o, &,
0, and parameter 5 are illustrated in Figures 15-18 as the error
bars for the whole range of the pressures. We also have plotted
in Figure 18 uncertainty for the anisotropy parameter #, esti-
mated from VFSR, at 40—-100 MPa along with the uncertainties
computed from expression 8. For a better comparison, the
uncertainties also are shown in Table 2. The higher uncertainty
of ¢ also is correlated well with Figure 6, in which the iso-sur-
face is elongated mostly along the J axis. This shows smaller
sensitivity of the objective function (5) to the change in J, as
compared to the other parameters in a simultaneous inversion.

CONCLUSIONS

We have estimated the Thomsen anisotropy parameters o, &, 0,
and anisotropy parameter 1 for a spherical shale sample using the
measured ultrasonic P-wave traveltimes in different azimuth and po-
lar angles at confining pressures from 0.1 to 400 MPa. We assume
that this spherical shale sample has transverse isotropy symmetry.
The dependence of the residuals of the ray velocities on direction
confirms the validity of this assumption (Béna et al., 2010). We
compute the phase angle from the measured ray velocity using nu-
merical derivatives. This approach is extremely fast compared to
ray tracing methods but may suffer from measurement errors. We
have shown that this method works well for most of the pressure-

dependent measurements. We estimate the symmetry axis assuming
the invariance of ray velocities along the azimuth.

We have compared local and global minimization algorithms
to estimate the Thomsen anisotropy parameters. The nonlinear
conjugate gradient and quasi-Newton algorithms show similar
fast performance. However, they suffer from nonuniqueness and
their solutions often get trapped in local minima, unless the
prior model is close to the solution. Very fast simulated rean-
nealing has proven to overcome the nonuniqueness issue and
converges to the global minimum. Local minimizations are very
fast and converge to minima rapidly, unlike VFSR, which
requires more iterations to reach the global minimum. We also
have estimated the uncertainties associated with the estimation
of the anisotropy parameters using VFSR.

We parameterized the phase velocity in terms of the anisotropy
parameters  and 7 to investigate the stability of the inversion and
the effect on the uncertainty. A few trials showed that the parame-
terization makes the objective function more complex with more
local minima. Because of the stochastic nature of VFSR, when-
ever the sampling is in the vicinity of the global minimum for a
long annealing time, it is possible to estimate the uncertainty fairly
well and it often is lower than the uncertainty computed from
expression 8. But this requires a large number of trials, which
does not make this approach very attractive. Local gradient opti-
mization algorithms often fail to reach the global minimum in par-
ameterized approach, which also requires more trials.

A further investigation of the eigenvalues and the condition
number of the matrix of the partial derivatives of the ray veloc-
ities with respect to the anisotropy parameters is required to see
how ill-posed the parameterized inversion is.

We found that the Thomsen anisotropy parameter o depends
exponentially on the confining pressure up to 100 MPa and linearly
from 100 MPa to 400 MPa. According to Shapiro’s formalism
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(Shapiro, 2003), these two types of behavior have been attributed
to the closure of the compliant and stiff porosities, respectively.
Shapiro’s expression fits the estimated o with coefficient of deter-
mination R? ~ 1, which supports the extension of Shapiro’s for-
malism given by expression 7 to shales.

Thomsen anisotropy parameters ¢ and J decrease exponen-
tially with pressure and possibly reach to the intrinsic anisotropy
of the clay minerals at 400 MPa. Up to 10 MPa, o always is
greater than ¢, but this trend reverses at higher pressures, which
requires further investigations to explain. We found that despite
hydrostatic pressure, symmetry axis direction changes noticeably
with pressure, in particular at lower pressures. This change in
the symmetry axis direction could be because of the closing of
the microcracks with certain orientation; the characterization of
such microcracks requires further studies.
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