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Predictions of Biot’s theory �BT� of poroelasticity �J. Acoust. Soc. Am. 28, 168 �1956�� and de
Boer’s theory of porous media �TPM� �Theory of Porous Media �Springer, Berlin, 2000�� for the
low-frequency bulk modulus of a fluid-saturated porous medium are compared with the Gassmann
equation �Vierteljahrsschr. Naturforsch. Ges. Zur. 96, 1 �1951��. It is shown that BT is consistent
with the Gassmann equation, whereas TPM is not. It is further shown that the bulk modulus of a
suspension of solid particles in a fluid as predicted by TPM is only correct if the particles are
incompressible. © 2007 American Institute of Physics. �DOI: 10.1063/1.2778763�

Many natural and man-made materials, such as rocks,
soils, foams, biological tissues, and construction materials,
can be described as porous media consisting of an elastic
frame and a network of empty or fluid-filled pores. The
theory of elastic wave propagation of such materials �theory
of poroelasticity� was proposed by Biot more than 50 years
ago and is still widely used today. Biot1–3 derived poroelas-
ticity equations from thermodynamic considerations. Later
exactly the same equations were obtained by two other meth-
ods: statistical volume averaging4,5 and asymptotic homog-
enization of periodic structures.6–8 This latter method is
based on the rigorous mathematical framework of periodic
homogenization9,10 and yields precise validity conditions for
the equations of poroelasticity.

Despite these rigorous derivations, the acceptance of Bi-
ot’s theory is not universal. In recent decades, a number of
authors have claimed certain inconsistencies in Biot’s origi-
nal derivations and proposed alternative theories of elastic
properties of porous materials.11–14 One of these theories is
the so-called theory of porous media proposed by de
Boer.11,15,16 Comparison of different theories is difficult due
to the use of different notations and different forms of equa-
tions of motions and constitutive equations. However, re-
cently Schanz and Diebels17 performed a detailed analysis of
Biot’s theory �BT� of poroelasticity and theory of porous
media �TPM� and managed to write governing equations of
the two theories in a similar form which allows for easy
comparison. They show that, with certain simplifying as-
sumptions, the two theories give identical predictions for po-
rous media with incompressible constituents but differing
predictions in case of compressible constituents.

Schanz and Diebels17 do not address the question as to
which of the two predictions �in the case of compressible
constituents� is more plausible or indeed correct. In this letter
I attempt to address this very question by comparing the
predictions of the two theories in the limit of low frequency,
that is, in the static limit. It is well known that in the static
limit the bulk modulus of a fluid-saturated medium is given
by the exact Gassmann18 equation. By comparing the predic-
tions of both theories with Gassmann’s exact result I show

that the prediction of BT is consistent with it, whereas the
prediction of TPM is not.

According to Schanz and Diebels,17 in the absence of
body forces, one-dimensional propagation of a compres-
sional elastic wave along the x1 axis in the Laplace domain
both in BT and TPM can be written in the form

L
d2

dx2u − A
d

dx
p − s2Bu = 0,

d2

dx2 p − s2Cp − s2D
d

dx
u = 0, �1�

where u�u1 is displacement along x1 axis, p is the fluid
pressure, L=K+4G /3 ,K and G are bulk and shear moduli of
the dry frame, � is bulk density of the saturated material, s is
Laplace parameter, and A, B, C, and D are coefficients that
have different meanings in the two theories. In BT,

A = �, B = �, C =
�2�F

�RB , D =
��F

�
.

Here �=1−K /KS is the Biot-Willis coefficient, � is porosity,
and �F is fluid density,

RB =
�2KFKS

2

KF�KS − K� + �KS�KS − KF�

and

� =
��2�Fs

�2 + s���a + ��F�
,

where � is the permeability and �a the so-called apparent
density. For small frequencies s→0 and we have �=��Fs, so
that

A = �, B = �, C =
�2

�sRB , D =
�

�s
. �2�

In TPM,

A = � + zS�1 − ��, B = �, C =
�

�R�
=

�

��FsR�
�3�
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D =
�0

FR

�
A =

A

�s
,

where �0
FR=�F is the fluid density, R is the universal gas

constant, � is the absolute temperature, and zS=�=
1−K /KS. Schanz and Diebels17 showed that with the param-
eter definitions �Eqs. �2� and �3��, the predictions of the two
theories differ. In order to assess which of the two theories is
correct, below I compare the low-frequency predictions of
each of the theories with the prediction of the Gassmann
equation.

By considering the plane-wave solution of the form
exp�ikx1�, we can rewrite Eq. �1� in the form

− k2Lu − Aikp − s2Bu = 0,

− k2p − s2Cp − s2Diku = 0, �4�

where k can be considered a wave number. The system �Eq.
�4�� is a system of two linear equations which has nontrivial
solutions if and only if its determinant is zero, that is,

�− �k2L + s2B� − Aik

− s2Dik − k2 − s2C
� = 0, �5�

or, in frequency domain, �= is,

�− �k2L − �2B� − Aik

�2Dik − k2 + �2C
� = 0. �6�

This gives a quadratic equation in k2

Lk4 − k2�2�LC + B + AD� + �4BC = 0.

Substituting k=S� yields biquadratic equation for the slow-
ness S,

LS4 − S2�LC + B + AD� + BC = 0.

Noting that for small frequencies C and D scale with �−1,
while A and B scale with O�1�, we can write

LS4 − S2�LC + AD� + BC = 0. �7�

Equation �7� has two roots,

S2 =
�LC + AD� ± ��LC + AD�2 − 4BCL

2L
,

or, again for small �,

S2 =
�LC + AD��1 ± 1 � 2BCL/�LC + AD�2�

2L
.

Thus the two roots are

S+
2 =

LC + AD

L

and

S−
2 =

BC

LC + AD
,

or, for two velocities,

c+
2 =

L

LC + AD

and

c−
2 =

LC + AD

BC
=

K + �4/3�G + AD/C

�

�note that B=� in both theories�. Since C and D scale with
�−1, c+→0 for �→0, and therefore corresponds to Biot’s
slow wave,1 while c− corresponds to the fast or normal com-
pressional wave. At low frequencies the velocity of normal
compressional wave has the form

c−
2 =

Ksat + �4/3�G
�

. �8�

Thus in both theories we have

Ksat = K +
AD

C
. �9�

In BT we have

Ksat = K +
�2RB

�2

or

Ksat = K +
�2

�/KS + ��1/KF − 1/KS�
. �10�

Equation �10� is the familiar Gassmann equation. Thus, we
have obtained the well known fact that in the low-frequency
limit, BT gives the velocity consistent with Gassmann equa-
tion.

Before deriving the corresponding result in TPM, we
note that it contains two constants, R and �, which are absent
in BT. This is not an original feature of TPM, but results
from the way Schanz and Diebels17 defined the equation of
state for the fluid. Namely, they assume an ideal gas law,

�FR�p� =
�FR

p0
p =

p

R�

or

��FR�p�
�p

=
1

R�
,

where R is the universal gas constant and � the absolute
temperature. This law is, however, restricted to ideal gases
whose effect on the overall compressibility of the porous
medium would be negligible anyway. To make the equation
of state for the fluid consistent with that for BT, we write it in
a general linear form,

�FR − �0
FR

�0
FR =

p − p0

KF

or

��FR�p�
�p

=
�0

FR

KF
.

Thus to make the equation of state for the fluid in TPM
consistent with that used in BT, we should replace R� with
KF /�0

FR. This gives
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A = � + zS�1 − ��, B = �, C =
�

i��KF
, D =

�

i��
.

�11�

Substitution of Eq. �11� into the general expression �Eq. �9��
yields

Ksat = K + �� + zS�1 − ���2KF

�

or

Ksat = K + �� + ��1 − ���2KF

�
. �12�

Clearly, Eq. �12� is not, in general, consistent with the Gas-
smann equation �Eq. �10��. In particular, the former is linear
in fluid bulk modulus, while the latter is not. Since in the
case of an isotropic frame made of an isotropic and homo-
geneous solid constituent, Gassmann’s equation is exact; this
clearly shows that the prediction of TPM is incorrect. To
make it even more apparent, consider a suspension of solid
particles in a fluid. In this case the bulk modulus of the dry
frame K=0, �=1, and BT gives

Ksat =
1

�1 − ��/KS + �/KF
. �13�

This is classical Wood’s equation, which shows that the
modulus of the suspension is harmonic average of the con-
stituent bulk moduli of the solid and fluid. On the other hand,
TPM gives Ksat=KF /�. Generally speaking, this result is in-
correct as it suggests that the compressibility of the suspen-

sion is independent of the compressibility of the solid par-
ticles. The TPM result is only correct if the particles are
incompressible.

I conclude that in the limit of low frequencies the pre-
diction of Biot’s theory is consistent with the Gassmann
equation, whereas the prediction of de Boer’s theory of po-
rous media is not.

The author is grateful to Martin Schanz for valuable dis-
cussions and advice.
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