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Dynamic permeability of porous rocks and its seismic signatures

Tobias M. Miiller', Gracjan Lambert?, and Boris Gurevich®

ABSTRACT

In inhomogeneous porous media, the mechanism of wave-
induced fluid flow causes significant attenuation and disper-
sion of seismic waves. In connection with this phenomenon,
we study the impact of spatial permeability fluctuations on
the dynamic behavior of porous materials. This heteroge-
neous permeability distribution further complicates the on-
going efforts to extract flow permeability from seismic data,
Based on the method of statistical smoothing applied to Bi-
ot’s equations of poroelasticity, we derive models for the dy-
namic-equivalent permeability in 1D and 3D randomly inho-
mogeneous media. The low-frequency limit of this perme-
ability corresponds to the flow permeability governing fluid
flow in porous media. We incorporate the dynamic-equiva-
lent permeability model into the expressions for attenuation
and dispersion of P-waves, also obtained by the method of
smoothing. The resulting attenuation and dispersion model is
conlfirmed by numerical computations in randomly layered
poroelastic structures. The results suggest that the effect of
wave-induced fluid flow can be observed in a broader [re-
quency range than previously thought. The peak attenuation
shifts along the frequency axis depending on the strength of
the permeability fluctuations. We conclude that estimation of
flow permeability from seismic attenuation is only possible if
permeability fluctuations are properly accounted for.

INTRODUCTION

Permeability variations in sedimentary rocks are important for
predicting fiuid flow through these porous structures. Over the years,
numerous papers have been published discussing varying methodol-
ogies for computing an effective flow permeability for heteroge-
neous structures based on Darcy’s law (e.g., Beran, 1968; Hristopu-

los and Christakos, 1997; Keller, 2001). It has been shown that the
effective flow permeability depends on the observation scale: both
positive scale effect (larger permeability for larger observation
scale) and negative scale effect are reported (Schulze-Makuch et al.,
1999; Bernabé et al., 2003). Because permeability is a major control
of fluid flow, to understand the dependence of seismic amplitudes on
permeubility would be enormously important for the oil industry as
pointed out by Pride et al., 2003.

In porous media with mesoscale inhomogeneities of the elastic
moduli, the effect of wave-induced fluid flow causes significant at-
tenuation and dispersion of seismic waves (Pride et al., 2004; Miiller
and Gurevich, 2005b). Mesoscale refers to a length scale which is
much larger than typical scales of the pore space and which is much
smaller than the wavelength of the seismic wave. Therefore, accu-
rate measurements of frequency-dependent attenuation have the po-
tential to provide estimates of the flow permeability using seismic
data. However, existing models of wave-induced fluid fMlow in ran-
domly inhomogeneous porous media are often limited to a small
contrast in all poroelastic constants (porosity, permeability, density,
elastic moduli, ete.). Under this condition, the effect of permeability
fluctuations on seismic velocity and attenuation is negligible (com-
pared to a similar contrast in porosity or drained bulk modulus), and
thus, a uniform permeability may be assumed (Miiller and Gurevich,
2005a). Numerical tests in 1D showed that these models wark for
relative contrasts of at least 30% (Gurevich et al., 1997; Gelinsky et
al., 1998; Pride et al., 2002; Carcione and Picotti, 2006). Spatial fluc-
tuations of porosity, solid and fluid densities, or elastic moduli sel-
dom exceed such contrast. On the other hand, permeability can vary
by orders of magnitude over short distances. Therefore, the effect of
spatial variations of permeability on wave-induced flow must be tak-
en into consideration,

Berryman (1986, 1988) raised concern about the correct perme-
ability average in the context of the Biot global flow attenuation.
Shapiro and Miiller (1999) first noticed the discrepancy between the
searched-for flow permeability & and the permeability controlling
seismic attenuation related to interlayer flow in randomly layered
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porous media, Through comparison of theoretical and numerical at-
tenuation estimates, they demonstrate that the exact flow permeabil-
ity (1/5)7", i.e., the harmonic average over the layer permeabilities,
is unable to account for the attenuation observed in the numerical re-
sults. To obtain the correct permeability, they proposed to use the
arithmetic average over the layer permeabilities, i.e., {«). This arith-
metically averaged permeability is referred to as the seismic perme-
ability because it controls approximately the seismic attenuation be-
havior. Though this approach is somewhat heuristic, it shows that the
influence of permeability fluctuations on seismic attenuation has im-
portant implications. Any attempt to estimate the flow permeability
from seismic signatures will be biased when permeability fluctua-
tions are nol properly accounted for.

In this paper, we attempt to determine the impact of permeability
fluctuations on the dynamic behavior of porous media caused by
wave-induced flow only using a theoretical approach. Based on the
method of statistical smoothing for Biot's equations of poroelastic-
ity (Miiller and Gurevich, 2003a, 2006), we derive a dispersion
equation for the slow P-wavenumber in the presence of mesoscopic
permeability fluctuations. From this result, we identify an effective
permeability which exhibits dynamic behavior in the seismic fre-
quency band. This is different from the model of Johnson et al.
(1987), which predicts frequency-dependent permeability related to
inertial effects at frequencies of the order of Biot's critical frequency
(Biot, 1962):

_9n
.'cpf’

where ¢ is the porosity, nis the fluid viscosity, and p;is the fluid den-
sity. The latter mechanism produces practically no frequency depen-
dency for typical reservoir rocks at seismic frequencies.

To have a clear separation between these mechanisms we assume
throughout the paper that

.

(1)

© < w,. (2)

We also note that all wave attenuation mechanisms other than wave-
induced flow, which might be active in the frequency range (equa-
tion 2), are not considered in the following. In a second step, we in-
corporate the dynamic-equivalent permeability model into the ex-
pressions for the effective fast P-wavenumber (according to Miiller
and Gurevich, 2005b) from which attenuation and velocity disper-
sion are computed. Despite the fact that these results are based on
weak-fluctuation theory, it is shown that the essential effect of per-
meability fluctuations — namely, a frequency shift of the wave-in-
duced attenuation — can be modeled. For 1D random media, the re-
sults can be extended to model the impact of stronger permeability
fluctuations. The predicted attenuation and velocity dispersion
curves for randomly layered media are also compared to numerical
results.

DISPERSION RELATION FOR BIOT’S SLOW
WAVE AND THE DYNAMIC-
EQUIVALENT PERMEABILITY

The slow P-wave (Biot's secand compressional wave, Biot 1956)
in homogeneous porous media is a highly dissipative wave mode. In
an inhomogencous porous medium, the effective slow P-wave will
be additionally attenuated and dispersed due to interaction with in-
homogeneities. Within the assumptions of the first-order statistical

smoothing applied to the low-frequency version of Biot's equations
ol poroelasticity (Biot, 1962), the effective slow P-wavenumber &3
in 3D statistically isotropic random media obeys a dispersion rela-
tion of the form (Miiller and Gurevich, 2006; see also Appendix A),

kit = K1+ Agé(w)], (3)
where &is a frequency-dependent function,

<

Hw) =1+ Lgf rB(r)explikr)dr, (4)
0

and A is a dimensionless coefficient containing the fluctuations of
the poroelastic parameters:

-
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Finally, in equation 3, £ denotes the wavenumber of a slow P-wave
prapagating in a constant background medium (no Quctuations).

ky = Viwyl(kgN), (6)

where s is the permeability in the background medium with fluid
viscosity and with N = M P,/H being a combination of poroelastic
meduli specified as follows: H is the undrained low-frequency
P-wave modulus given by Gassmann’s equation H = P, + a°M, M
is the pore-space modulus of the drained frame defined as M = [{a
- oMK, + $IK]Y Py = K, + 4/3G is the P-wave modulus of the
drained frame, and @ = 1 — K,/K, is the Biot-Willis coefficient. The
terms K, K, and K, denote the bulk moduli of the solid phase, the
drained frame, and the fluid phase, respectfully, whereas G denotes
the porous material shear modulus. In equations 4 and 3, the follow-
ing statistical notations are introduced: B(r) is the normalized auto-
correlation function such that By, = a3,8(r) with B(0) = |; and
Bux(8r) = {ex{r + Sr)eg(r)), where the angular brackets denote en-
semble averaging. The relative fluctvations of the poroelastic pa-
rameters are denoted as ey; they have zero mean, {ey} = 0, and vari-
ance {e}) = a%y. Note that the permeability fluctuations enter in
equation 5 through the variance of the reciprocal permeability (p
= 1/1y) fluctuations. In 1D random media, equation 3 can be used to-
aether with

g(l[))(m) =1 + .!‘sz B(rlexp(ikr)dr (7)
0
and
a’M d 2
A.(s'”)) = ( ) £a= &g, + gd‘) el (8)

Despite the fact that dispersion relation 3 is only valid for small fluc-
tuations in the rock properties, it reveals the essential physics as dis-
cussed in the following.

The result for the effective slow P-wave number (equation 3) al-
lows us to derive a model for an effective (dynamic-equivalent) per-
meability for both 3D and 1D random media. If we assume that &3 is
of the form k3 = viwn/x"N involving an effective permeability «”,
the latter equation can be solved for «*, and equation 3 can be substi-
tuted for k3. Taking the real part (the imaginary part of «” is not rele-
vant in the sequel), we obtain, for 3D random media in the weak-
fluctuation approximation,




Dynamic permeability of porous rocks E151
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where kay denotes the real part of &, (equation 6). Analogously, for

1D random media, we obtain from equations 3, 7, and 8,

kU0 5 s ”
—= I~ + \J"'O-:[-kalkjr B(r)exp(— kgr)
0 0

X sin(kagr + w/4)dr. (10)

The frequency dependence of these elfective permeabilities is illus-
trated in Figure 1. It can be observed that the permeability dispersion
effect is more pronounced in 1D than in 3D random media. The inte-
grals in equations 9 and 10 involving the spatial correlation function
show the nonlocal character of the effective permeability. This dis-
persion is the physical consequence of the existence of a characteris-
tic length scale in the spatial permeability fluctuations.

In the low-frequency limit, the integral terms in equations 9 and
10 vanish such that

‘ o
K (3D)[w—>0)=1(0(1—f) (1)
and
€M 5 0) = i1 - 62.). (12)

Note that equation 12 corresponds to the harmonically averaged
permeability (1/x)~!, provided that a,<1. Therefore, the low-
frequency limit of the effective permeability corresponds ta the
searched-for flow permeability. It is interesting to note that the same
low-frequency limit, equation 11, is also obtained by Keller {2001),
using the method of smoothing applied to Darcy’s law, Moreover, it
is well known that the factor 1/3 in equation 11 refiects the assump-
tion of statistical isotropy in 3D random media and is typical for ef-
fective permeability analysis in weakly inhomogeneous structures
(Beran, 1968). In the high-frequency limit, only the behavior of the
correlation function at small argument is of importance. All correla-
tion-function models that have power-series expansion of the form
Bir/ay= 1= r/a + 0(r*/a*) (where a is the correlation length),
produce, after substitution of B(r/a)=1 - r/a into equations 9 and
10 and integration,

K PN w == ) = "D ') = gy, (13)

i.e., the arithmetic average of the permeability values. Further prop-
erties of this frequency-dependent, effective permeability are dis-
cussed in Miiller and Gurevich (2006).

For 1D random media, the result for the effective permeability can
be improved using the fact that the low- and high-frequency results
{equations 12 and 13) correspond to the exact bounds (e.g., Hris-
topulos and Christakos, 1997). If we assume that the frequency-de-
pendent part of equation 10 interpolates correctly between the har-
monic and arithmetic average, ( E
equation 10 can be rescaled into

=1 v
% and {«x), for any given contrast,

x

U0 1\

=iy = (If>_l + o':",\Eszf B(r)

Ky I 0

Xexp(— kapr)sin(kapr + w/d)dr, (14)

where the “contrast” o7 is now expressed as the normalized differ-
ence of the arithmetic and harmonic average:

1 -1
op=1- 0= M| . (15)
K

For strong permeability fluctuations, we expect (/c)>><%()_' such
that o — 1. We note that the rescaling operation (i.e., the multiplica-
tion with the normalized difference o) used to obtain equation 14 is
not based on arigorous mathematical formalism but is guided by the
exact physical results available in space dimension one. In other
words, our ansatz is to use the frequency dependence of the perme-
ability determined in a weak-fluctuation approximation as an inter-
polation function between the exact bounds, The resulting effective
permeability (equation 14) is no longer restricted to weak fluctua-
tions.

In summary, in the presence of mesoscopic heterogeneitics (in
particular, permeability fluctuations), the permeability becomes a
frequency-dependent quantity, Dispersion relations for this quantity
can be derived from the dispersion relation for Biot’s slow wave in-
volving the second-order statistics of the uid transport and po-
roclastic moduli fluctuations. In the next section, we use this perme-
ability model to quantify the effect of permeability fluctuations on
the signatures of seismic waves,
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Figure 1. Frequency dependence of the effective permeability for 1D
and 3D random media for varying correlation lengths of the perme-
ability fluctuations (the correlation lengths are from left to right; @
= 0.6 m,0.3 m,0.15 m). The frequency is normalized by the critical
Biot frequency f,. = 108 kHz; the effective permeability is normal-
ized by the arithmetic average of the permeability fluctuations (i)
= xq. The effect of permeability dispersion is more pronounced in
1D than in 3D random media. The thick arrow indicates the surface
seismic frequency range, 10 to 100 Hz. The lower bound is the har-
monic average of permeability fluctuations and is an exact result for
1D random media (depicted by squares), whereas the upper bound
(depicted by circles) is given by the arithmetic average of permeabil-
ity fluctuations and is exact for all space dimensions (see also equa-
tion 13).
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SEISMIC SIGNATURES
OF PERMEABILITY FLUCTUATIONS

The physics of wave-induced flow can be interpreted as conver-
sion scattering at heterogeneities from the fast P-wave into the diffu-
sive slow P-wave mode (Gurevich and Lopatnikov, 1995; Gelinsky
and Shapiro, 1997; Gelinsky et al., 1998). The resulting atienuation
of the fast P-wave is, therefore, dependent on the characteristics of
the slow P-wave described by one or another approximation. At suf-
ficiently low frequencies and higher concentrations of heterogene-
ities, the slow P-wave will interact with these heterogeneities (in par-
ticular, with spatial permeability fluctuations). To our knowledge,
these slow P-wave scattering effects are neglected in all theoretical
descriptions of wave-induced flow in random porous media. In light
of the results of the previous section, this also indicates that fluctua-
tions in the transport propertics are not properly accounted for. A nat-
ural way to incorporate the slow P-wave scattering effects and,
hence, the dependence on transpert property fluctuations into theo-
ries of wave-induced flow is to replace the slow P-wavenumber
(equation 6) by its effective value derived in the previous section
(equation 3). This strategy can be applied in 1D as well as in 3D me-
dia and will be pursued in the following.

Weak permeability fluctuations in 3D random media

The method of statistical smoothing applied to Biot’s equation of
poroelasticity yiclds an effective fast P-wavenumber &} that ac-
counts for the effect of wave-induced fluid flow (Miiller and Gurev-
ich, 2005b, their equation 1):

ki=k|1+ A+ A,kgf rB(ryexpliksr)dr|, (16)
0

where A, and A, are combinations of the variances of the elastic
maoduli,

aM( 5 s BT s B0
A= 2P, Oy — 20y¢ + Oge + EF‘TGG - EEG-HG
8G
+§EUGC (1D
1, 4G , 4G 46 ,
Ay= A+ =@y — —— o + —+1)—— 2. (1%
2= 2T S T T 3y TG (H 155 7ce (18)

Here we use C = aM. In equation 16, k| = w/c, is the wavenumber
of a P-wave in the homogeneous background medium with cp
= vH/p and composite density p = (1 — ¢)p, + dpg p, and py are
the densities of the grain material and fluid, respectively. Attenuation
and dispersion are obtained from equation 16 in the vsual way
(White, 1983): 0! = 23{!?,,}/9%{5,,} and v, = w/P{k,} Equation 16,
whichis based on the first-order smoothing approximation, accounts
for fluctuations in the poroelastic moduli H, G, and C but does not
account for permeability fluctuations. An extended first-order ap-
proximation can be obtained by replacing the background, slow
P-wavenumber £, (in equation 16) by its first-order approximation
k3, which is given by equation 3. The resulting P-wavenumber de-
pends on the second-order statistics of all poroelastic parameters, in-
cluding that of the permeability. Thus, the searched-for dependence
of the fast P-wave characteristics on the permeability fluctuations is
abtained. Note, as a result of the exisience of a positive imaginary

part in the expression for &3, the resulting integrals converge for all
correlation functions (that decrease with increasing argument).

Let us examine the validity range of the extended first-order ap-
proximation, i.e., the replacement of &, by &3 in equation 16 as pro-
posed in the previous paragraph. The overall range of validity de-
pends on the ranges of validity of the effective wavenumbers, k) and
k3. As usual in perturbation theory, the results are assumed to be pre-
cise, provided that the additional terms coming from perturbation
analysis (e.g., the second and third term on the right-hand side of
equation 16) provide only a small correction to the background val-
ue. Applying this rule to the effective slow P-wavenumber (equation
3), we obtain the condition,

|Age(w)] < 1. (19)

The absolute value of the frequency-dependent function &lw) as-
sumes values between 0 and 1, so that the range of validity of &3 can
be estimated as

Ag < 1. (20)

A similar analysis yields the applicability range for the first-order
statistical smoothing approximation of &} (see also equation 58 in
Miiller and Gurevich, 2005a):

max{A,(|k,|a)% A} < 1. (21)
The correction term for the extended first-order approximation is
*9 = ]
§=A,;+ A,kl“f rB(r)exp(ikyr)dr. (22)
0

Using the upper bound of &ei and the fact that the correction term of
k> produces an additional exponentially decreasing multiplier in the
integral in 22, we find

§=< A, + A,k%(l + As)f J'B(I')CX]J(isz')(!J'
0

o

=A, + A]k%f rB(r)exp(ikar)dr + O(A%). (23)
0

Apart from terms of the order of O(A?), i.e., terins containing the
product A Ay, the last line corresponds to the correction term of the
effective fast P-wavenumber which results into the applicability
condition 21. To make ouwr results consistent with the precision of the
first-order statistical smoothing approximation, i.e., O(A), terms of
the order of O(A?) are neglected. We note that the smallness of the
correction term § is also fulfilled if the condition 20 is relaxed,
whereby Ay = 1. In conclusion, the combined model is applicable il
the conditions for the applicability of k7 and &3 are fulfilled (relations
20 and 21).

Figure 2 shows the reciprocal quality factor obtained from equa-
tion 16 by using the poroelastic parameters of Table | and by using
A = 0,060, ¢ = 0.15 m. If the constant background permeability
value of iy = 250 mD is used, we obtain the dashed curve. Using
equation 16 in conjunction with the effective slow P-wavenumber
given by equation 3, we obtain the solid curves (here we use Ag
= (1.5) for different correlation lengths of the permeability fluctua-
tions «,, (ranging from 0.01a to 10a; values of a), outside this range
do not produce an additional change in the attenuation behavior).
For the case in which ¢ = g, i.e., when correlation lengths of the
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elastic moduli and permeability fluctuations coincide (this is a real-
istic assumption), three effects can be observed. First, the maximum
seismic attenuation shifts to lower frequencies if we account for the
permeability fluctuations (compared to the constant-background-
permeability case). Second, the magnitude of attenuation is slightly
reduced. Third, incorporation of the permeability fluctuations in
equation 16 results in a broadening of the altenualion peak. At high
frequencies, the permeability fluctuations have no impact and the at-
tenuation is identical to that produced using the constant permeabili-
ty model (circles). This is because the effective permeability model
employed predicts that, at high frequencies, " = x,. The phase
velocity dispersion for the same model parameters (and for A,
= 0.064) is shown in Figure 3. Interestingly, the presence of perme-
ability fluctuations increases the phase velocity (again, when com-
pared with the constant-background-permeability case).

Strong permeability fluctuations in 1D random media

While the replacement k: = &3 based on equation 3 is only valid
for the weak fluctuation case, the implications of strong permeability

0.030 T T - T T
0.0251
0.020
&}

= 00151

0.010

0.005 Constant permeability

Fluctuating permeability

1e-06 1e-05 1e-04 0.001 0.01 0.1
1,

Figure 2. Frequency dependence of the inverse quality factor com-
puted using equation 16. If there are no permeability fluctuations,
one oblains the curve displayed with circles. In the case of perme-
ability fluctuations, the solid curves are valid. Three regimes can be
observed depending on the relation between the correlation lengths
af the permeability fluctuations (a,) and the poroelastic moduli fluc-
tuations (a). If @, = a, we can see that attenuation peaks at lower fre-
quencies (with a slightly decreased magnitude) and that the curve
becomes more broadened.

Table 1. Typical poroelastic parameters for a
waler-saturated, well-consolidated porous sandstone.

K, 40 GPa
K, 4.5 GPa

G 9 GPa

& 0.17

I 250 mD

Pe 2650 kg/m?
K, 2.17 GPa

7 0.001 Pa.s
Pr 1000 kg/m?

fluctuations in 1D random media can be madeled by using an ef-
fective slow P-wavenumber involving the effective permeability
(equation 14). We recall that equation 14 is obtained by rescaling the
dispersion relation 3 such that the exact bounds at low and high fre-
quencies are met. The strength of the permeability fluctuations is ex-
pressed through equation 13, which contains the ratio of harmonic
and arithmetic average of the permeability fluctuations:
=7 =
e iK ()" = % (24)

iy

That is, irrespective of the permeability contrast between individual
layers, the overall contrast is controlled by the two end-members, i,
and i, Obviously, this rescaled permeability model is incomplete in
the sense that the rescaling introduces an arbitrary, large frequency
shift of the whole dispersion curve (i.e., its shape is preserved but the
location relative to the frequency axis is incorrect). This problem can
be overcome when connecting the model with the results for the ef-
fective fast P-wavenumber: If there are no permeability fluctuations,
it is known that maximum attenuation occurs at ey, = xeN/(2a*n)
= Dyla®, where Dy s the diffusivity. This [requency is determined by
either direct calculation or by computing the intersection point of the
low- and high-frequency asymptotes of attenuation {(Miiller and
Rothert, 2006). Assuming that the low-frequency asymptote of at-
lenuation depends on &, whereas the high-frequency asymptote de-
pends on iy, the intersection point of these asymptotes yields the
maximum frequency

f I~

DD 'r
Winpx = \—h_"gA = DL;“’ (25)

a a

where D, and Dy; denote the diffusivities involving &, and i, re-
spectively. We use this frequency to fix the peak attenuation in the
combined model. Hence, substituting &3 = Viewn/x 0PN (with "1
as defined in equation 14} into the 1D version of equation 16 (see
equation 56 in Gurevich and Lopatnikov, 1995), yiclds a new elfec-

1 g T T T
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Figure 3. Frequency dependence of P-wave velocity (normalized to
background velocity). The velocity-dispersion behavior for the con-
stant permeability case is indicated by the circles. If permeability
fluctuations are accounted for, one obtains from equation 16 the sol-
id curves. As in Figure 2, the dependence of the dispersion on the re-
lation between a and a,, is displayed. Note that in all cases, the pres-
ence of permeability fluctuations increases the phase velocity.




E154 Miiller et al.

tive fast P-wavenumber kP, The applicability range of this ap-
proximation is defined by relation 21. However, there is no restric-
tion with respect to the strength of permeability fluctuations.

Figure 4 illustrates the resulting attenuation for a varying ratio of

harmaonic (o arithmelic permeability using the parameters given in
Table | as background a medium that is superimposed by random
fluctuations with A; = 0.075, A, = 0.081, and & = a, = 0.1 m. The
circles and squares denote the attenuation using the arithmetic- and
harmonic-averaged permeability (with » = 107%), respectively. All
effects observed in Figure 2 (weak-fluctuation case) can now be ob-
served in an amplified manner. For r = 104, the peak attenuation is
shifted by factor V1/r = 100 and the magnitude is reduced by 30%.
At very low frequencies, the attenuation behavior is controlled by
the harmonic average of the permeability. Figure 5 displays the cor-
responding phase velocity dispersion. It can be observed that now
the inflection point is shifted by the factor VI/r = 100.

The combination of the approximations for the fast and slow
P-waves in random poroelastic media yields seismic attenuation and
dispersion estimates that also depend on the statistical characteris-
tics of the fluid transport properties. In the next section we see if the
effects predicted theoretically can be confirmed with the help of nu-
merical simulations.

NUMERICAL SIMULATIONS
IN RANDOMLY LAYERED MEDIA

To validate the analytical model developed above, realizations of

randomly layered media are created and wave propagation simula-
tions are conducted using the OASES reflectivity code for poroelas-
tic media (Stern et al., 1985; Schmidt and Tango, 1986). The OASES
code allows numerical models to be constructed for horizontally
stratified poroelastic layers by computing the plane wave, complex
transmission coefficient T along with the associated phase. This co-
efficient can then be used to calculate the phase velocity V, and at-
tenuation 1/Q in an equivalent homogeneous medium. For normal

0.030 T T T T g T T

0.025

Arithmetic
Harmonic
0.020

S o015}
=

0.010}

0.005 %

1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 1e-04 0.001 0.01 0.1

(A

Figure 4. Frequency dependence of the inverse quality faclor using
the strong-contrast model involving equation 14, The ratio of har-
monic to arithmetic average is denoted as r. With decreasing r, the
peuk attenuation shifts towards lower frequencies and its magnitude
is smaller than that obtained for constant-permeability, random me-
dia involving the arithmetic/harmonic average of the permeabilities
(circles and squares).

incidence, the transmission coefficient 7 for such an equivalent me-
dium can be written as

T = exp(iKL) = exp{— yL)exp{iwL/Vp), (26)

where L is the overall thickness of the layered system, K = w/V,
+ iyisthe complex wavenumber of the transmitted fast P-wave, and
v is the effective attenuation coefficient. Taking absolute values of
the left- and right-hand sides of equation 26 yields

|7] = exp(~ yL). (27)

ory = — InlT/L. Effective altenuation coefficient ¥ for low-loss me-
dia is related to the inverse quality factor 1/Q by (White, 1983)

2V, 2V,
Pl B e, il (28)
Lew

- w ¢

Equation 28 is used to compute the inverse quality factor from abso-
lute values of the transmission coefticients.

To construct random sequences of layers, we use a random num-
ber generator in conjunction with an autoregressive filter, which cre-
ates spatially correlated random numbers for fluid bulk modulus K/
and permeability « {see also Shapiro and Miiller, 1999). Altogether,
an ensemble of 10 realizations te 200 layers with constant layer-
thickness of 0.75 m are created. We note that fluctuations of any of
the bulk moduli (and the shear modulus) produce wave-induced
flow and that the choice of K ~fluctuations only is to keep the numer-
ical model simple. The ensemble is characterized by the spatial, nor-
malized autocorrelation function:

(k0 - Rkt -9 - &)
%

= 0'12\']. exp(— [s|/a), (29)

with a constant background value of K, = 2.25 GPa, correlation
length ay = 1.43 m, and standard deviation oy, = 0.22, so that A,
= (.0013. To obtain a positive permeability sequence, we randam-
ized the logarithm of the permeability s = log(«) using the normal-
ized autocorrelation function,
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Figure 5. Frequency dependence of phase velocity for the same
model as in Figure 4. Note the increase/decrease in phase velocity in
the presence of permeability fluctuations compared to the velocity in
random mediainvolving the arithmetic/harmonic average of the per-
meabilities (circles and squares).
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[st2) =5l[stz= = s) =5])

2 = g, exp(~ |s|/a), (30)
with the constant correlation length a, = 1.43 m and such parame-
ters § and @, that give for the ensemble an arithmetic average of &,
= 8.15- 107" m? and a harmonic average of &, = 0.09-10-* m? (r
= 0.011). The constant background medium is characterized by a
porosily ¢ = 0.09 and fiuid viscosity 7 = 5-107% Pa.s (all other pa-
rameters are those of Table 1),

We construct three different models with the same fluctuations of
the fluid bulk modulus but with different permeability values. Model
I has random permeability values as specified above. In model 11, the
permeability is kept constant and equals the harmonic average &,
Model I1T has a constant permeability for all layers that is equal to the
arithmetic average k. The resulting P-wave attenuation as a func-
tion of frequency for these three models is displayed in Figure 6 (sol-
id, dashed, and dotted line), The theoretical predictions for models 11
and III are computed using equation 16 whereby the slow P-wave-
number (equation 6) involves the harmonic and arithmetic average
permeability values, respectively (squares and triangles). The theo-
retical prediction for model I is also computed using equation 16;
however, it involves the effective slow wavenumber (equation 3}
(depicted by circles). For all models, the attenuation of both the theo-
retical and numerical results matches reasonably well in magnitude
and frequency dependence. Peak attenuation is almost identical for
models 1T and 111 There is approximately two orders of magnitude
separation in the frequency at which maximum attenuation occurs
for these two models. Both the numerical and theoretical attenuation
peaks for model | are approximately 30% lower than the correspond-
ing peaks for models ITand I11, whereas the peak frequency for mod-
el 1is roughly between the peak [requencies for models 11 and [11. At
low and high frequencies, fluctuations of the numerical results can
be observed. We verified that to increase the number of medium real-
izations does not lead to a further reduction of these fluctuations.
They can be explained us follows. At high frequencies (say >20 Hz)
we cxpect the contribution of scattering attenuation. This attenua-
tion mechanism is not sensitive to permeability fluctuations, which
explains the similarity of the modulations of all three numerical
models. At low frequencies (say<<0.7 Hz), the numerical values
fluctuate around the theoretical curves with an increasing magnitude
of fluctuations for decreasing frequencies (again showing similar
modulations for all three models). These fluctuations are caused by
resonance effects of the whale stack of layers which is sandwiched
between two constant elastic half-spaces. They can be reduced by
suitable choice of the elastic properties of the half-spaces and by the
overall thickness of the stack of layers. Another difficulty is that, in
the numerical model, the fluctuations of permeability are log-nor-
mally distributed, whereas theory assumes normally distributed ran-
dom variables. )

The numerical simulations indicate that the effects of permea-
bility fluctuations on seismic attenuation in randomly layered media
can be described by the theoretical approach developed above. In
particular, the frequency shift of the atienuation behavior in the
presence ol permeability fluctuations is well predicted by the
theoretical model.

DISCUSSION

From perturbation analysis, we find an expression for the effec-
tive Biot slow wavenumber from which we deduce a dynamic-

equivalent permeability for 1D and 3D random porous media. This
permeability is bounded by the arithmetic and harmonic averages of
the permeabilities of the inhomogeneities:

1 -1

= = i (w = 0)

K

< E(SDJ((D = 0) < E“D'?'D}(w "y

«) = (k). (31)

The proposed dynamic-equivalent permeability produces a negative
scale effect (decreasing permeability for increasing observation
scale). The expression for the dynamic-equivalent permeability is
nonlocal and involves an integral over the spatial correlation fubne-
tion of the permeability fluctuations.

The frequency-dependence of the permeability can be explained
as follows. At low frequencies, the diffusion wavelength A = 27/k,
is larger than the correlation scale of the fluctuations, and, therefore,
fluid flow takes place on a spatial scale that encompasses many inho-
mogeneities. On average, these permeability fluctuations hinder the
pressure equilibration (and hence the flow), so that the effective per-
meability is decreased (with respect to the background permeabili-
ty). In 1D inhomogeneous media, the low-frequency limit of the per-
meability is given by the harmonic average, {1/x)~". In 3D inhomo-
gencous media, the effect of permeability fluctuations on the effec-
tive permeability is less pronounced (because of the existence of
high-permeability paths). At higher {requencies, i.e., if A<=a, fluid
flow takes place on a spatial scale comparable to or smaller than the
correlation length, This implies that only the local permeability val-
ue is relevant, which, upon ensemble averaging, yields the effective
permeability, & = {«). We note that the positive scale effect reported
from field measurements is probably caused by preferred high-con-
ductivity paths encountered as larger regions of the medium are ana-
lyzed. Itis clear that the present theory, based on ensemble-averaged
quantities (in a statistically homogeneous medium), does not ac-
count for such effects.
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Figure 6. Attenuationas a function of frequency according to numer-
ical simulations in randomly layered media including permeability
fluctuations (solid line) and with constant permeability correspond-
ing to the arithmetic and harmonic average of the permeability fluc-
tuations (dotted and dashed lines). The corresponding theoretical
predictions are also displayed (open symboals).
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To examine the effect of permeability fluctuations on seismic sig-
natures, we incorporate this dynamic-equivalent permeability mod-
el into expressions for seismic wave attenuation and dispersion re-
lated to wave-induced fluid flow. The most prominent feature of the
resulting model is a frequency shift of the seismic atienuation that
depends on the strength of the permeability fluctuations. For [ D ran-
dom media it is possible to infer the impact of strong permeability
fluctuations. Because the low- und high-frequency values of perme-

ability coincide with the exact bounds regardless of the strength of

fluctuations, we rescale the effective permeability model to these
bounds (equation 14). Incorporating this rescaled model into the ex-
pressions for wave attenuation, we observe a significant frequency
shift (Figures 4 and 5). Numerical simulations in stacks of randomly
fayered, poreelastic media confirm this picture. Extensions of the
theory in order to model strong, log-normally distributed permeabil-
ity variations in all space dimensions and including a permeability-
porosity correlation are currently under investigation.

CONCLUSIONS

In conclusien, the results indicate that permeability fluctuations
on the mesoscopic scale (of the order of several centimeters) affect
seismic wave propagation, In particular, we have shown that seismic
attenuation related to wave-induced flow can be observed in a broad-
er frequency range in structures with nonuniform permeabilities
than that in structures with uniform permeabilities. Given that the
present results are based on perturbation analysis and, thus, allow
only for relatively small fluctuations of the permeability, we hypoth-
esize that for realistic permeability fluctuations, these effects are
more pronounced. This hypothesis is supported by theoretical and

numerical results for 1D random media. This means that the effect of

wave-induced fluid flow can be observed in a broader [requency
range than previously thought. And more importantly, any attempt to
infer fluid transport properties from seismic attenuation measure-
ments will fail il the permeability fluctuations are not properly ac-
counted for.
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APPENDIX A

MATHEMATICAL CONSIDERATIONS

Here we give a short derivation of the dispérsion relation for Bi-
ot’s slow wive in randomly heterogeneous porous media (equation
3). The derivation is analogous to that of the fast P-wavenumber giv-
en in great detail by Miiller and Gurevich (20054). Using a Green’s-
function approach 1o solve Biot's equations of dynamic poroelastic-
ity in randomly inhomogeneous media, the averaged (mean) Green’s
function G can be expressed by the following integral equation:

é=Gu+ffGnQaa (A-1)

where G, denotes the matrix of Green tensors for an isotropic, po-
roclastic whole-space in which only slow P-wave interactions are

accounted [or (that means that no coupling with the fast wave modes
is possible):

(S
explik,R H* H
Gy=—L 34, pUikR) . (A2)
d7iw R E I
H

Here R is the source-receiver distance, and partial spatial derivatives
are denoted as d;. Q is the matrix of the so-called kernel-of-mass op-
erators,

0={Tci-+ f LGLGL + f Y (a3

containing linear combinations of all even statistical moments of the
random fields. The fluctuations of the random fields X [defined via
X =X(1 +ey) = X(1 + X/X), where the mean value is (X) = X]of
the poroelastic parameters H. M, and C = aM are collected in the
perturbation operator matrix

- r7j[;r7j ﬁ,-E'r')j
L= - . ; (A-4)
Equation A-1 for the matrix of mean Green's tensors is oo com-
plicated to be solved exactly. Instead, one or another approximation
must be employed. The methad of statistical smoothing consists of
truncating Q after the first term:

Q" = (LG,L). (A-5)
This truncation implies that the range of validity is restricted by

small Aluctuations. By means of the spatial Fourier transform,

Gr-r')= fg(l()exp{r’K c(r=r')dK (A-6)

g(K) = ——-—(7;)3 f Gir—1r')

Xexp(— iK « (r —r'))d(r — r'), (A-T)

the [2,2] component of the mean Green's tensor matrix {equation
A-1) becomes

7 =g+ (87)guq"%. (A-8)

Similar equations for the other tensor components can be obtained
but are not needed in the sequel. In equation A-8, ¢* denotes the spa-
tial Fourier transform of the corresponding [2,2] component of Q%

sz,z = (E[l.sz[l.]]i[lj]) + 3<E[1.21G[1.1]i[2,2]>

+ (i[Z.ZJG[Z‘zji[E.Zj)' (A-9)

where L,,_\-J,GL,_,J are the [x,y] component of equations A-2 and A-4,
respectively. If we assume that the mean Green's function g is of the
same functional form as g, involving an effective wavenumber & in-
stead of k,, equation A-8 reduces to an algebraic equation for k™
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. 87k,
=131+ —24%|. (A-10)

Iaw

That means that the only remaining problem is to evaluate the trun-
cated kernel-of-mass operator matrix element Q¥ and its spatial Fou-
rier transform g. This computation is analogous to that in Miiller
and Gurevich (20052, Appendix B) and invalves the following steps.
Using partial integrations, the spatial derivatives of the perturbation
operators can be shifted to the Green's tensor. Averaging implies that
(X9 = Byy = o3yB (where B is the normalized correlation function
such that B(0) = 1) and yields, for each term on the right-hand side
of equation A-9, expressions of the form

e = aByyGp . (A-11)

[nverse Fourier transform of these expressions yiclds, then, ¢*
= g"M + g 4 €€ + g which, after substitution into equation
A-10, yields equation 3, with the frequency-dependent function &
(equation 4). The corresponding 1D result (equations 7 and 8) can be
derived from the 3D result using the Fresnel approximation as
shown in Miiller and Gurevich (2005a). The coefficients of the vari-
ous ¢ terms are collected in a single parameter Ay

& s

Oce

M, M,
Oyt + 2 00un +

As

w E"m

T HANTCCT AR N
! 2 3 UZ;)
= o {(a’Mec - Hey)?) + =22 (A-12)
¥

d =

Using the relations between the relative fluctuations ey, = Ex, = Es
andec = &, — gy yields Agas given by equation 5.

APPENDIX B

LIST OF SYMBOLS

Ko, k" = Permeability, effective (dynamic-equivalent)
permeability
Ay Ay A, = Dimensionless coefficient composed out of
linear combinations of the variances of the
-andom fields
7 = Fluid viscosity
& = Porosity
a = Biot-Willis coefficient
Pe P = Mass density of grain material, fluid phase,
porous composile
G = Shear modulus of porous material
K4 K, K, = Bulk moduli of the solid phase, the drained
frame, and the fluid phase
P, H = Drained and saturated P-wave modulus
M = Pore space modulus
N = Poroelastic modulus
iy, k3 = Wavenumber of Biot’s slow wave,
dynamic-cquivalent slow P-wavenumber
ki, ki = Fast P-wavenumber, dynamic-equivalent
P-wavenumber
ey = Average-normalized fluctuations of random
field ¥
B{r} = Normalized correlation function

ay = Correlation length associated with random field
X
a3y = Normalized cross-variance of random fields
X ¥
T = Complex transmission coefficient
L = Overall thickness of stack of layers
0! = Inverse quality factor
¥ = Attenuation coefficient
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