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Abstract 

 

Computational techniques are widely used to explore the structure and properties of 

nanomaterials. This review surveys the application of both quantum mechanical and force 

field based atomistic simulation methods to nanoparticles, with a particular focus on the 

methodologies available and the ways in which they can be utilised to study structure, 

phase stability and morphology. The main focus of this article is on partially ionic 

materials, from binary semiconductors through to mineral nanoparticles, with more 

detailed considered of three examples, namely titania, zinc sulphide and calcium 

carbonate. 

 

Introduction  

 

Nanoscience and nanotechnology collectively represent one of the fastest growing 

interdisciplinary scientific areas, spanning interests from physics, through chemistry and 

geoscience, to biology. Be it the electronic or mechanical properties of a material, once 

the key dimension(s) of the system reaches the critical size, typically in the range of 1-

100 nm, then the characteristics exhibit a size-dependent variation. Thus size becomes a 

new design parameter alongside chemical composition. This paradigm shift has created 

new opportunities in fields including solar energy,
1
 electronics,

2
 medical therapies,

3
 

energy storage,
4
 and catalysis.

5
 Indeed the commercial value of items containing 

nanotechnology was estimated to be US$250 billion for 2009.
6
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One of the greatest challenges of the nanoscale is our ability to fully probe the 

atomic details of structure and properties. Although experimental techniques, such as 

atomic force and scanning tunnelling microscopy,
7-9

 can potentially provide images with 

sufficient resolution, care must be taken in interpreting what is observed. Because of such 

difficulties, nanoparticles and nanomaterials have been a fertile ground for theoretical 

studies to support experiment, and in some cases even lead the way. The recent literature 

has seen an explosion in the application of modelling techniques to nanoscale objects, 

both real and hypothetical. Of course, there are also molecular inorganic objects that have 

dimensions of a nanometre or greater that represent ideal model systems for study where 

the structure is well known.
10

 

Broadly speaking, the study of nanostructured materials can be divided into several 

main categories including metal nanoparticles, carbon nanomaterials and their analogues, 

semiconductor quantum dots, and ionic materials. There are of course arguably many 

other sub-divisions, such as covalent molecules, colloids and nanoporous frameworks 

that can have critical dimensions in the range of 1-100 nm and so any attempt to 

rigorously define categories will be flawed. Due to the extensive nature of the 

nanomaterials literature, the aim of this article is not to attempt to review everything. 

Instead, the focus will be on highlighting what can be achieved through the use of theory 

and simulation in the characterisation of nanoparticles for primarily one particular type of 

system, namely ionic compounds. Reviews of the literature for carbon nanomaterials
11-13

 

and metal clusters
14-16

 can be found elsewhere. However, some comparisons will be 

drawn between the techniques applied to each type of system.   

In this review we will first examine some of the methodologies that are prevalent in 

the literature for the simulation of nanoparticles, in order to highlight the state of the field 

and current trends. The application of these techniques will then be demonstrated by 

reviewing studies of a few key examples of at least partially ionic nanomaterials, 

including titania, zinc sulphide and calcium carbonate. 
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Methodologies for nanoparticle simulation  

 

Simulation methods for the study of bulk materials have become well established 

over the last half a century, in parallel with the advances in computing. The use of 

periodic boundary conditions permits the modelling of a quasi-infinite solid to be 

performed routinely with a complexity that is related to a few symmetry-unique atoms. 

Even the simulation of surfaces has become routine by employing a 2-D infinitely 

periodic description (though this is often mapped back to 3-D with a gap between 

repeating surfaces for computational convenience).
17

 When considering nanoparticles, the 

scenario is quite different due to the high surface area to volume ratio. Surfaces can no 

longer be considered independent, especially in ionic materials where electrostatic 

interactions couple terminations over large distances. Furthermore, the energetics of 

edges and corners can become a driver for particle morphology too. To further 

complicate matters, the perturbation due to the particle termination can be large enough 

to induce a phase transformation, such that the underlying structure of the material differs 

from the bulk at the nanoscale. Add to this the fact that nanoparticles must be supported 

or contained within some chemical environment to prevent collapse and the full challenge 

of predictive nanomaterials modelling can be appreciated. 

Before engaging in the more specific discussion of simulation of nanomaterials, a 

brief introduction to what an atomistic simulation actually involves may be in order. The 

problem of simulation involves characterising the energy landscape for an assembly of 

atoms. Typically the starting point is to consider the potential energy surface for a 

system, though ultimate the relative free energies of different configurations are the 

objectives. If a potential energy surface has well-defined minima, separated by barriers 

substantially larger than ambient thermal energy, then the main task of a simulation is to 

locate these states and determine their properties. For ordered materials, the use of 

optimisation to follow the energy surface downhill to the nearest basin can be sufficient. 

The challenge is always to ensure that the lowest energy minimum has been found. For 

more disordered or flexible systems, such as liquids or amorphous materials, the 

properties must be obtained by statistical sampling of all of the thermally accessible 

minima within a given ensemble. Here two classes of method are commonly used: 
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1) Monte Carlo (MC) sampling can be employed where the system propagates 

through random displacements and the running average of computed 

properties, weighted by the probability of the configuration occurring given 

by the Boltzmann factor, is used to approximate the integral over the 

ensemble.
18

 This technique can be improved in efficiency through the use of 

importance sampling, whereby the Boltzmann factor becomes the acceptance 

criterion for a trial move, thus driving the system to primarily explore those 

configurations that contribute most to the ensemble average. The advantages 

of Monte Carlo as a technique are that it only requires the energy to be 

calculated, rather than the forces, at each atomic configuration, and that it is 

simple and efficient to implement, including on parallel computers.  

2) Molecular dynamics (MD) similarly moves across the potential energy 

surface sampling configurations, but this is now performed according to 

Newton’s equations of motion.
19

 Here the atoms are typically treated as 

classical particles with a given mass and velocity. They then accelerate 

according to the force they experience and migrate across the potential 

energy surface. The initial velocities are typically drawn from a Maxwell-

Boltzmann distribution and then scaling or a thermostat is used to achieve a 

target temperature in an isothermal ensemble. Because time must be 

advanced in discrete steps to perform the numerical integration of the particle 

motion, the degree of sampling achieved is limited by the time step (often of 

order ~1 fs = 1 x 10
-15

s) and the total number of steps executed. The 

advantage of molecular dynamics over Monte Carlo is that can, in principle, 

provide information regarding the rates of fast processes, as well as the 

thermodynamic averages. However, because atomistic simulation lengths 

vary between a few picoseconds, when using quantum mechanical forces, up 

to a millisecond, when based on more approximate forces, molecular 

dynamics can be trapped in a region of the potential energy surface if the 

barrier to escape is too high.  

There are other techniques and variants of these two categories of simulation method, 

such as genetic algorithms, simulated annealing, etc, most of which are designed to 
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increase the degree of exploration of the potential energy surface, often in search of the 

global minimum. Such techniques are particularly important for clusters and 

nanoparticles where the structure may differ from that of the corresponding bulk. More 

information can be found regarding different simulation approaches elsewhere. 

Ultimately the objective of simulating nanomaterials is often to understand the 

structure-property relationship so that control can be exerted over the system to exploit 

the unique effects of nanoconfinement for technological benefit. In some cases this may 

not require detailed atomic-scale modelling. For example, the modelling of confinement 

of electronic states in semiconductor quantum dots can be achieved based on solving 

Schrödinger’s equation for electrons in a model potential that reflects the nature of the 

device structure. This effective mass approximation
20

 contains empirical parameters, but 

is generally successful in predicting the variation of confinement effects with device 

structure.
21

 Similarly, the diffusive behaviour of nanoparticles can be simulated using 

mesoscale modelling techniques, such as dissipative particle dynamics (DPD), in which 

atoms or molecules are grouped together as beads on which collective forces act. Yang 

and Ma
22

 have used this approach to explore how nanoparticle shape and angle of 

incidence influence the ability of such species to cross a lipid bilayer. This is an 

important first step to understanding the effectiveness of nanoparticles for drug delivery 

across cell membranes. A similar approach was previously used
23

 to examine 

nanoparticle interactions with vesicles, where they were shown to cause a change in the 

structure of the organic material, albeit in the absence of an explicit solvent. Monte Carlo 

simulation of the agglomeration of nanoparticles has also been performed within classical 

DLVO theory.
24

 Here the nanoparticles are approximated as a sphere containing a dipole 

moment within a dielectric medium, where the dielectric constant sharply decreases as 

two particles come into contact. This coarse-grained description is sufficient to capture 

the tendency of nanoparticles to spontaneously self-assemble into structures that exhibit 

degrees of chain-like character. Refinement to include particle dipole moments based on 

semi-empirical calculations for CdTe leads to similar behaviour during assembly.
25

 

Intrinsic properties of individual nanoparticles may also be probed without specific 

reference to full atomic complexity. For example, in the case of metal nanoparticles the 

plasmon resonance is often the quantity of interest. The variation of this quantity with 
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nanoparticle anisotropy can be modelled using the discrete dipole approximation 

(DDA).
26-28

 Here the metal particle adsorption spectrum is determined from the response 

properties of the self-consistent solution for a grid of coupled polarisable centres with 

induced dipoles. In the case of ionic nanoparticles, such as those of transition metal 

oxides, other properties can be simulated by a similar grid site treatment. Instead of an 

induced dipole, the on-site quantity is now an electron spin of fixed magnitude, but 

variable orientation. By either energy minimisation or Monte Carlo solution of a 

Hamiltonian involving the exchange interaction, typically between only neighbouring 

sites, the magnetisation of the nanoparticle can be found. This approach has been applied 

to binary phases, such as maghemite (-Fe2O3),
29,30

 and to ternary materials, especially 

spinels.
31

  

Although it is possible to simulate a number of properties or behavioural trends of 

nanoparticles without recourse to the specific atomic details, beyond composition, 

ultimately a full understanding can require some form of atomistic simulation. Hence, we 

now consider some of the methodologies that have been adopted in this category. In 

general terms, there are two classes of atomistic approach – those that explicitly treat the 

electronic degrees of freedom and those that try to capture the potential energy surface 

with only implicit regard for electrons. Typically the former techniques involve quantum 

mechanical solution of some form of wave equation, whereas the latter can be broadly 

referred to as force field methods. That said, the division is far from clear-cut since 

increasingly force fields include contributions from charge-transfer,
32

 dipolar or 

quadrupolar polarisability
33

 or even ligand-field effects,
34

 all of which involve electronic 

degrees of freedom that go beyond nuclear position. Furthermore, methods such as 

empirical valence bond theory use a coupling Hamiltonian to mix two or more classical 

force field potential energy surfaces, thereby spanning both categories.
35

 

The most rigorous atomistic approach to calculating the properties of nanomaterials 

is using quantum mechanical methods. Wavefunction theory (WFT) offers the best way 

to systematically improve the accuracy of calculations through post-Hartree-Fock 

techniques, such as coupled cluster theory, configuration interaction, multi-reference 

methods and perturbation theory. However, given the size of most nanostructures, the 

application of these techniques has rarely been practical to date. Consequently, the vast 
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majority of studies have focused on the use of Kohn-Sham density functional theory 

(DFT). Although not systematically improvable in a guaranteed manner, there have been 

several refinements in recent years that have improved the quality of calculations, 

especially in the condensed phase limit. New forms of the Generalized Gradient 

Approximation have emerged, such as the functionals AM05,
36

 Wu and Cohen,
37

 and 

PBEsol
38

 that typically offer a better description of solid-state properties, though often at 

the expense of other quantities, including atomisation energies of molecules. Hybrid 

functionals,
39

 that mix in a fraction of Hartree-Fock exchange, have long been available 

for molecular systems are now becoming more widespread within periodic solid-state 

programs, though with a substantially increased computational cost. Screened hybrids can 

represent a good compromise that trade off the local benefits of improved exchange 

against the increased calculation time.
40

 A well-known failing of DFT is the lack of long-

range dispersion forces, leading to difficulties in describing weak interactions. For 

instance, most GGAs fail to capture the attraction between two graphene layers - 

something that is particular problematic when studying assembles of carbon 

nanomaterials. This limitation can now be addressed through either the addition of an 

explicit damped dispersion interaction, in the style of a force field correction,
41,42

 or 

through use of truly non-local functionals (i.e. ones that depend on the density and its 

gradient at two points in space simultaneously).
43

 These approaches have various merits 

and demerits; the former method is simple to implement and inexpensive to calculate, 

while the later is less empirical since the functionals are universal. Following the 

development of efficient algorithms,
44

 the use of non-local van der Waals functions need 

not lead to a substantial extra computational cost. 

One of the motivations for the use of quantum mechanical methods in the study of 

nanoparticles, aside from obtaining reliable systematic energetics, is to probe the 

electronic properties. Densities of states for nanoparticles are routine by-products of a 

DFT calculation. However, these Kohn-Sham orbitals are not genuine single particle 

states due to self-interaction error within actual exchange-correlation functionals.
45

 To 

compute a more reliable electronic adsorption spectrum, the dominant approach for 

nanomaterials is to employ time-dependent density functional theory (TDDFT).
46

 Here 

both linear-response and real-time propagation approaches can be used, where the latter 
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method has potential advantages for larger systems,
47

 as well as including higher-order 

contributions. As an example, this approach has been used to compute the polarisability 

and dipole strength of C60.
47,48

 The interaction between adsorbed molecules and oxide 

nanoparticles, especially of those of titania, has attracted several quantum mechanical 

studies because of the interest in sensitisation of solar cells and biomedical applications. 

While some studies have considered just the Kohn-Sham states,
49

 there are an increasing 

number of studies that have applied TDDFT to titania clusters,
50,51

 including with 

adsorbed species.
52-55

  

Because of the size and complexity of nanostructures, especially when including 

adsorbates or a surrounding environment, it can be advantageous to use more 

approximate forms of quantum mechanics by simplifying the Hamiltonian. Density-

functional tight binding (DFTB) is one such method that has been applied to the study of 

nanomaterials.
56-58

 Semi-empirical quantum mechanical methods, such as MNDO-based 

techniques, are also applicable in many cases, such as CdS nanoparticles and their 

capping,
59,60

 which have also been studied using DFTB.
61

 

An alternative to reducing the complexity of the Hamiltonian by explicit 

simplification is to apply some degree of localisation to the matrix elements in order to 

lead to linear-scaling construction. This can be achieved by either neglecting integrals 

below a given threshold or by strict localisation of the basis functions.
62

 In this way, the 

scope of DFT electronic structure calculations can readily be extended to the order of a 

thousand atoms. Beyond this point, the computational cost becomes increasingly 

dominated by the time required to solve for the new orbitals and their eigenvalues, rather 

than the Hamiltonian construction. Even if the Hamiltonian is sparsely populated, the 

Kohn-Sham states can potentially be delocalised across all atoms, leading to a dense 

matrix solution with O(N
3
) scaling. In materials with a HOMO-LUMO gap, it is possible 

to solve the self-consistent field problem with algorithms that can achieve linear-scaling. 

Two such methods are functional minimisation
63

 and density matrix purification.
64

 Both 

algorithms allow the ground state density and energy to be determined, and so are suited 

to geometric relaxation of nanostructures, but provide no information regarding the 

electronic eigenvalue spectrum. An alternative strategy is to use a divide and conquer 

approach,
65

 which breaks the Hamiltonian down into a series of overlapping regions, 
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coupled by a common Fermi energy. Although the orbital levels are now computed and 

available, any delocalised states will be most strongly perturbed by the confinement 

approximation and often these are the wavefunctions being sought. Unfortunately, from 

the point of view of achieving robust linear-scaling, the size of the HOMO-LUMO gap 

tends to decrease with increasing nanoparticle size making use of such techniques most 

difficult for the cases where they are most needed.  

If only the energy and forces are required in order to explore the atomistic potential 

energy surface, rather than the full details of the electronic properties, then the use of 

force field methods can often be preferable, provided there is a reliable parameterisation. 

The choice of force field is usually very specific to the type of material to be studied. For 

metal nanoparticles, the use of the Embedded Atom Model (EAM)
66

 or modified 

variants
67

 are very much the de facto standards as they capture some of the many-body 

effects that are missing from a simple Lennard-Jones representation. For the majority of 

semi-conducting materials, the most widely applied model is that of Tersoff,
68

 while for 

the specific case of carbon nanomaterials there are a number of alternative formulations, 

including the Environmentally Dependent Interaction Potential (EDIP),
69

 Reactive 

Empirical Bond Order (REBO),
70

 and LCBOP
71

 models. On the face of it, this would 

seem to represent quite a disparate set of force fields, though all of them are based on the 

central tenant that the energy of an atom in a material is dependent on some function of 

the total bond order at that site.
72

 All that changes is largely the complexity of the 

expressions involved. Although widely used, most of the above models have limitations. 

For example, the REBO model has no long-range interaction and cannot describe binding 

between graphene sheets unless modified.
73

 

Turning to the primary focus of this review, namely more ionic materials, the main 

force field approaches start with the dominant electrostatic contribution and then combine 

this with short-range repulsive terms, often of Buckingham or Lennard-Jones form. Some 

functional groups may exploit a molecular mechanics description within a fragment, e.g. 

for hydroxyl or carbonate anions, and occasionally angular terms are required, as in some 

models for silicates.
74

 For anions, inclusion of dipolar, or even higher order, polarisability 

is important. One way to do this is to add point ion polarisabilities to the relevant sites.
75

 

Alternatively, the shell model
76

 provides a simple mechanical description of dipolar 
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polarisation that is naturally damped by the surrounding crystalline environment. Broadly 

speaking, force fields for ionic materials can be divided into those that adopt formal 

charges with inclusion of polarisability, and those that use unpolarisable partial charges. 

The latter are clearly advantageous for large-scale molecular dynamics since there is no 

need to handle the extra complexity of the quasi-electronic degrees of freedom in the 

equations of motion. However, this often comes at a price in terms of accuracy. For 

example, in the case of silica, all current partial charge models, including variable charge 

ones, give the wrong phase diagram, with -quartz not being the ground state.
77

  

An exciting trend in force fields is the increasing development of so-called reactive 

force fields. Here we distinguish between reactive force fields and those that allow for 

smooth dissociation by requiring that the former can describe the breaking of covalent 

bonds and/or multiple oxidation states. Although some of the aforementioned models fall 

into this category, they have typically been limited to a small number of elements (e.g. 

hydrocarbons). The key to most reactive force fields is the inclusion of charge 

calculations on-the-fly by some form of electronegativity equalisation or local charge-

transfer scheme, though there are exceptions.
78

 A number of different approaches have 

been derived in the materials science field with the aim of treating interfaces, especially 

those between metals and/or metal oxides.
79-81

 The power of this approach has been 

demonstrated through simulations of the oxidation of aluminium nanoparticles leading to 

the formation of a non-stoichiometric oxide shell surrounding the metallic core.
82

 The 

case of silicon-silica interfaces is also important for gate dielectric materials where the 

critical dimension is on the nanoscale, as well as silicon quantum dots embedded in 

silica.
83-85

  

Arguably the most prolific reactive force field to emerge has been the ReaxFF 

approach of van Duin and co-workers.
86

 This has been applied to a wide range of 

materials including organics, metals and oxides. Although complex to parameterise, once 

achieved it is very powerful since it allows the chemistry of nanostructures to be 

approximately captured with a cost far below that of full quantum mechanics. Indeed 

simulations of up to 0.56 billion atoms have been demonstrated with this method (Figure 

1).
85

 Examples include the simulation of the transition metal catalysed formation of 

precursors to carbon nanotubes
87

 and the hydrogenation of boron nitride nanotubes.
88 
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Before concluding our consideration of different methodologies for determining the 

potential energy surface that have been applied to nanoparticles and nanostructured 

materials, it is important to note that there is no single optimal approach for all problems, 

be it atomistic or otherwise. Indeed the application of what could be called a hierarchy of 

simulation techniques or multiparadigm modelling is often the appropriate strategy for 

many problems.
89,90

 Our attention can now turn to examining the simulation of 

nanoparticle, given a suitable framework for determining the energy as a function of 

configuration. 

One of the key features of a nanoparticle is its morphology. Macroscopically, the 

thermodynamic equilibrium shape of a crystal can be defined using the Wulff 

construction in which the normal distance from a surface plane to the centre of the 

particle is inversely proportional to the surface energy.
91

 In this way, the most stable 

facets will dominate the morphology. This has been successfully used to predict the 

morphologies of crystals in many cases. In principle, this can even be done using simple 

geometric criteria based on the distance between lattice cleavage planes in the underlying 

crystal structure,
92

 though the use of an accurate surface energy is superior. An 

alternative to the use of the surface energy is to employ the attachment energy of a 

growth slice to determine the morphology.
93

 Here the energy of adding a single growth 

layer to the surface is effectively computed. Use of the attachment energy can be 

considered to be a quasi-kinetic approach, in that the morphologies predicted by this 

quantity are often closer to those observed when growth is under kinetic control.
94

 

However, it is still strictly speaking a thermodynamic criterion since no rate constants are 

required. 

As highlighted previously, the above macroscopic view of crystalline morphology 

breaks down at the nanoscale since contributions other than the surface energies become 

important. Barnard and Zapol have formulated an expression for the free energy of a 

nanoparticle that allows for surface, edge and corner contributions and applied it to the 

morphologies of diamond-structured group IV elements (C, Si and Ge).
95

 Here the 

surface, edge and corner energies were determined through DFT calculations, either in 

the presence or absence of hydrogen termination of dangling bonds. As is often the case, 

the free energies were approximated by the internal energies, though this could be 
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remedied through lattice dynamical calculation of the phonon contributions. An 

important feature of this work was the inclusion of surface tension to mimic the presence 

of an environment – something that will be returned to later. This work demonstrates that 

the morphology of these related materials is predicted to be element-specific and size-

dependent (Figure 2), as well as sensitive to surface coverage by hydrogen. 

The calculation of the size-dependent thermodynamic morphology has now been 

applied to a range of semi-ionic materials, including oxides (TiO2,
96

 ZnO,
97

 ZrO2
98

), 

sulphides (ZnS,
99

 FeS2
100

), selenides (CdSe
101

) and nitrides (TiN).
102

 This approach can 

also account for surface impurities and varying chemical potentials, leading to 

stoichiometry changes, through appropriate correction of the energy terms.
103

 Since the 

energetic terms that go into the model are typically obtained from first principles 

calculations, the nanoparticles are usually considered to be in contact with a gaseous 

medium. However, if the energies of surfaces in contact with a solvent can be obtained, 

then the same approach would describe the morphology in some other environment. For 

example, through the use of force field methods, instead of quantum mechanical 

techniques, it would be possible to explore the interfacial energy with a solvent through 

MD simulation. Alternatively, approximate solvated surface energies can be obtained 

through the use of continuum solvation models, such as the COSMO method.
104

 When 

modified to enforce the overall neutrality of the induced charges on the solvent accessible 

surface, as in the COSMIC formulation,
105

 it is then possible to compute solvation 

energies in 2-D periodic boundary conditions, thereby obtaining morphologies that 

depend on the dielectric constant of the surrounding medium. 

Minimisation of the free energy of a nanoparticle with respect to its shape is one 

strategy for obtaining morphology. However, this is only appropriate when a system is at 

thermodynamic equilibrium. Given that nanoparticles are often synthesised by exploiting 

kinetic control, other simulation approaches can also be valuable. Kinetic Monte Carlo 

(KMC) is a powerful technique for simulating growth in such cases.
106-108

 Here the state 

of the system is propagated by stochastically choosing between different activated 

pathways with a weight that is proportional to the rate constant for that process. Although 

KMC can be applied “on-the-fly” to a fully atomistic simulation, it is at its most efficient 

in lattice form when the system can be discretised into a series of states connected by pre-
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tabulated rate constants. For example, the evolution of a crystallite can be represented by 

a grid of points that are occupied or not by growth units, where the growth fragments can 

be in solution, added by vapour deposition, or in different states as part of the particle. 

The probability of different events is then captured by rate constants that can be estimated 

from transition state theory, determined directly from explicit MD simulations, or taken 

from experiment, if known. As an example, this approach has been used to simulate the 

growth of urea crystals from the nanoscale up to micron size, with both water and 

methanol as the solvent (Figure 3).
109

 For a fixed concentration of solute, the method will 

ultimately yield the thermodynamically favoured morphology by dissolution and 

regrowth. However, the results of kinetic control can equally be observed by 

manipulating the mass transport of solute within the reaction vessel. Recent work has also 

shown how nanostructured Pt can be optimised using KMC simulation of growth for 

catalysis applications.
110

  

In a similar manner to the Kinetic Monte Carlo approach, the simulation of 

nanoparticle morphology can be performed using a purely thermodynamic lattice site 

model within the cluster expansion method. Here the system is represented by an 

effective spin Hamiltonian, similar to that highlight earlier for studying the magnetism of 

nanoparticles. In this case the spin state now represents whether a site is occupied by a 

component or not. The energy is then expanded as a function of the interactions between 

neighbouring sites in terms of the spin state. This local site-site interaction energy can be 

parameterised against explicit atomistic calculations and then used to explore a more 

complex configurational space. While this cluster expansion approach has been 

extensively for examining phase diagrams of mixing and solid solutions,
111-113

 the 

application to sodium alanate (NaAlH4) nanoparticles, and thereby hydrogen storage, was 

recently proposed by Mueller and Ceder.
114

 In this way, they were able to not only 

predict the morphology of different nanoparticle sizes and compositions containing 

thousands of formula units (see Figure 4), but could also determine the phase diagram for 

decomposition reactions as a function of particle size. 

While both thermodynamic and KMC modelling represent powerful strategies for the 

study of morphology, both are often strictly valid only for larger nanoparticles due to the 

underlying assumptions. In the case of free energy minimisation, it is assumed that the 
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energies of surfaces, edges and corners are all independent (i.e. there is no coupling 

between the contributions of each extended defect), which breaks down in the limit of 

small sizes. In the case of lattice KMC, the tabulation of rate constants often relies on the 

existence of a small number of well-characterised states, which can also fail to be true at 

the lower bound of particle size. Hence, at the lower size limit it becomes necessary to 

switch to a fully atomistic simulation of the entire particle. Fortunately, in this regime it 

also becomes computationally tractable.  

The first challenge when simulating a nanoparticle is often to find the global energy 

minimum or, for complex structures, an ensemble of low free energy states. As noted 

above, the morphology may be very different from that of the macroscopic crystal and 

this is typified by the behaviour of some metals where icosahedral shapes occur for small 

particles (up to ~4,000 atoms for some simulations of gold).
115

 Even more extreme are 

materials such as ZnO and ZnS, where calculations show that small clusters containing 

up 94 atoms consist of cage structures more reminiscent of nanoporous materials and that 

have no bulk analogue for these materials.
116

 For some classes of systems, particularly 

rare gases, metals, buckminsterfullerene and water, there have been extensive 

investigations into the cluster minima as a function of size and energetic model.
117

 

However, there remains a vast region of uncharted configuration space.  

For small clusters, conventional MD may be sufficient to explore the relevant 

structures. However, as genuinely nanoscale objects are reached the limited timescale 

currently accessible will prevent all minima from being visited should any of the 

activation energies be significantly greater than ambient thermal energy. Many 

techniques now exist to accelerate the exploration of configuration space. In the 

framework of MD there is replica exchange/parallel tempering
118,119

 for a fixed potential 

energy surface, while there are also many bias acceleration techniques, including 

temperature accelerated dynamics
120

 and metadynamics
121

 that seek to assist the escape 

from potential wells. Metadynamics is particularly advantageous since it can be possible 

to reconstruct an approximate free energy landscape from the simulation. The choice of a 

suitable set of collective coordinates to bias can be challenging, though new 

developments may alleviate this problem.
122

 Beyond MD there are also many other 

techniques, including Monte Carlo simulated annealing and genetic algorithms. 
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Additionally, there are basin/minima-hopping algorithms that can exploit either static or 

dynamic means of exploring the underlying energy surface.
123,124

 Further information 

regarding the exploration of the structure of nanostructured systems can be found 

elsewhere.
125,126

  

To date, the majority of theoretical studies of nanoparticles have focused on in vacuo 

conditions. However, most real applications of such systems involve trapping the 

nanoparticles in a suitable environment to prevent coalescence. For quantum dots, the 

alignment of the band gap of the embedding material is essential to achieving quantum 

confinement. One of the most studied non-metallic systems is silicon nanoparticles, 

which have been amenable to large-scale electronic structure calculations in both pure 

and doped forms.
127-130

 Here the most common approach is to saturate dangling bonds 

with hydrogen, though other molecular passivating groups have also been considered.
131

 

Furthermore, it is computationally favourable as it keeps the number of additional 

electrons/basis functions to a minimum, but also introduces almost no extra complexity in 

the nuclear configuration space. Given the history of hydrogen termination of dangling 

bonds within QM/MM schemes, this is a natural approach to take. More challenging is 

the case of embedding nanoparticles in other solids, as can be used for chalcogenide 

quantum dots. Here the problem is to find a host material ideally with a commensurate 

crystal structure and only a small degree of lattice mismatch, before even contemplating 

the electronic suitability. For silicon nanoparticles, one way of achieving embedding is to 

use amorphous silica, thereby providing a medium with the flexibility to accommodate 

extraneous particles. However, care is needed to ensure representative amorphous 

structures are adopted for use in computational models.
132,133

 For more ionic materials, 

particles are often simulated in vacuum with no surface modification, or can be 

embedded in a flexible medium, such as a liquid or a polymer.
134

 When ionic solids are 

placed in contact with solvents, and water especially, then this opens up the possibility of 

dissolution and growth occurring. These processes can be driven by either the solution 

concentration, e.g. by supersaturating the solution with excess ions, or by the different 

solubilities of distinct surface sites leading to a change in morphology. Here the challenge 

is that the rate of crystallisation processes is often too slow for explicit atomistic 
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simulation. However, the use of supercritical water as a solvent can be used to accelerate 

nanoparticle growth.
135,136

  

One notable phenomenon for nanoparticles is the modification of phase transitions as 

a function of size. Chen et al
137

 have demonstrated that the activation barrier to convert 

four-fold (wurtzite) to six-fold (rock salt) coordination in CdSe and CdS increases with 

particle size, but with an asymptotic limit that exceeds the bulk value due to the absence 

of defects. In other cases, the stable polymorph at the nanoscale can differ from that for 

the bulk material. One of the greatest challenges is to simulate these changes in phase 

behaviour. Methodologies for simulating bulk phase transitions have become established. 

For facile cases, the use of the Parrinello-Rahman approach is sufficient, though often 

this leads to over-heating or pressurisation in order to induce the transition on a timescale 

currently accessible to MD simulation. The advent of metadynamics using the cell 

vectors as collective variables has seen several successful explorations of phase 

transitions for solids.
138

 In the case of nanoparticles, the situation has several key 

differences. Firstly, a different collective variable must be used since there is no longer a 

periodic cell. Here local order parameters, such as those due to Steinhardt have proved 

particularly effective.
139

 Secondly, in order to study a pressure-induced phase transition 

there needs to be a hydrostatic medium to create the external pressure. Here Lennard-

Jones liquids can be used,
140

 though others have employed an ideal gas.
141

 Finally, the 

simulation of phase transitions in nanoparticles has one advantage over the bulk case, in 

that it is no longer constrained by the requirement to remain commensurate with a 

periodic cell, which can biased the outcome of bulk simulations. Arguably the state-of-

the-art in simulating nanoparticle phase transitions is to utilize transition path sampling
142

 

to create an ensemble of reactive pathways, as exemplified by studies of CdSe (Figure 

5).
143

  

A caveat to all studies of phase transitions, such as those above, is to recognize that 

many theoretical techniques fail to accurately describe phase diagrams. Since a phase 

transition depends on the crossing of two almost parallel lines, just a small error in the 

relative energy of two polymorphs can lead to a substantial error. For force field methods 

particular case must be taken. In the case of II-VI semiconductors, the widely used 

Tersoff model fails to discriminate between the wurtzite and zinc blende tetrahedral 
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structures, giving them as isoenergetic. In contrast, many ionic models for these phases 

yield a stability difference, but normally with the wrong sign unless an explicit four-body 

torsional interaction is included.
144

 

Beyond the properties of single entities, there are assemblies of nanoparticles, as 

highlighted during the discussion of mesoscale simulation. Here fewer atomistic 

simulations have been attempted due to the even greater complexity of trying to probe 

meaningful minima. One strategy worth noting is that of Sayle and co-workers known as 

“simulated amorphisation and recrystallisation”.
145

 Here a sample of bulk material is 

annealed at high temperatures within an expanded cell to induce melting, followed by 

quenching. This induces the formation of polycrystalline materials with inherent defects 

to give a sample of possible microstructures. By adapting this procedure, thin films or 

assemblies of nanoparticles can be generated.
146,147 

The above section describes some of the techniques that can be used to simulate 

materials on the nanoscale. The focus of the next part of the review will be to highlight 

three case studies, which use some of the above techniques, to fully understand the 

structure and relative phase stability of ionic and semi-ionic nanoparticles.  

 

 

Examples of the simulation of nanoparticles 

 

Titania (TiO2) 

 

Titanium dioxide has attracted considered attention as a material for technological 

applications. Not only is it widely used as a non-toxic white pigment, but also its 

adsorption properties can be exploited for other purposes. When sensitised by dye 

molecules, titania can be used for solar cells.
148

 It can also be effective as a photocatalyst 

and for water splitting.
149

 These qualities have led to diverse uses, including self-cleaning 

windows and environmental degradation of organic pollutants. By nanoscale engineering 

it is possible to alter the adsorption properties with the aim of increasing efficiency. 

Furthermore, there is interest in using lithium intercalation in nanostructured titania (such 

as in the layer-structured TiO2-B polymorph) as a battery material.
150
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Despite being extensively studied, bulk TiO2 remains a difficult material to simulate 

theoretically in some regards. First principles calculations of the relative stability of rutile 

and anatase often to lead to the latter being the stable phase,
151

 in contradiction to 

experiment for the bulk limit, as opposed to the finite surface area case.
152

 With some 

functionals rutile can even possess an imaginary phonon thereby driving a ferroelectric 

distortion.
153

 There also exists a plethora of force fields from formal charged shell 

descriptions to variable charge reactive models
154

 with their own pros and cons.
155

 

Understanding the factors that control the phase stability, growth, and phase 

transformation kinetics in nanoparticles is critical to quantify the material behaviour. In 

this regard titanium dioxide is a particularly interesting material to study because under 

ambient conditions the rutile phase (space group P42/mnm) is the thermodynamically 

stable phase relative to the other naturally occurring phases of brookite (space group 

Pcab) and anatase (space group I41/amd). Much of the early investigation into the phase 

stability as a function of size of the different polymorphs of nanocrystalline titania was 

performed by Zhang and Banfield. They showed that the thermodynamic stability is 

particle-size dependent, and at particle diameters below ca. 14 nm, anatase is more stable 

than rutile.
156

 Zhang and Banfield applied thermodynamic and kinetic analysis to 

understand the phase transition during growth and aggregation of nanocrystalline TiO2. In 

their study they concluded that the sequence of transformations between the three 

polymorphs of anatase, rutile and brookite, is size dependent. Due to the very small 

differences in energy between the three phases, only a small change in surface energy 

will alter the stable phase from one polymorph to another.
157

  

Naicker et al. took this characterisation of TiO2 polymorphs further by applying MD 

simulations to describe the structure, heat capacities and surface energies.
158

 Assuming 

that the nanoparticles are spherical, the authors calculated the surface energy, Usurface, 

according to the expression; 

 

   

Usurface =
Ucluster - nUbulk

4pr2                                             (1) 
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where Ucluster is the potential energy of the nanoparticle, Ubulk is the potential energy per 

TiO2 unit in the bulk material, n is the number of TiO2 units in the nanoparticle, and r is 

the radius of the nanoparticle. This equation is the spherical analogue of the one used to 

describe the surface energies of two-dimensional surfaces.
159

 The calculated surface 

energies for a size range of 2-6 nm shows that rutile has a higher surface energy than 

anatase. Furthermore, Naicker et al. demonstrate that the surface energy contribution is 

sufficient to alter the order of phase stability with size, especially for anatase, which is 

found to exhibit the strongest variation.  

Aside from those mentioned above, there have been many other molecular dynamics 

simulations of titania nanoparticles, too numerous to mention all of them. These studies 

examine various aspects including sintering
160,161

 and amorphous nanoparticles.
162,163

 In 

addition, there have been first principles calculations of nanoclusters in vacuo.
164

 

However, the computational expense of exploring many configurations limits the 

application of quantum mechanical methods more to the study of relatively ordered 

systems, such as titania surfaces or nanoribbons.
165

 

To give some consideration to the influence of environmental conditions Koparde 

and Cummings used MD simulations to describe the interactions of rutile and anatase 

nanoparticles, with a size range of 2.5-4.0 nm, in a box of water.
166

 Here simulations 

were performed at both ambient conditions and in a hydrothermal environment (523 K 

and 50 kbar) resembling the regime utilised for industrial processing. Rutile nanoparticles 

were found to be more hydrophilic than anatase nanoparticles of the same size in terms of 

the water coverage, with there being two discernable water layers around the surface. No 

phase transitions were found for the length- and time-scale of their simulations. However, 

the surfaces of the nanoparticles remained significantly more crystalline when immersed 

in water, as compared to those in vacuum, due to the water completing the preferred six-

fold coordination of titanium. Simulations of approximately spherical rutile particles in 

water have also been performed in the presence of an ionic atmosphere and static electric 

fields in order to probe electrophoresis with non-equilibrium molecular dynamics.
167

 

It should be noted that the bonding state of water at the surface of TiO2 is an on-

going debate, with it being unclear as to what extent dissociation into H
+
 and OH

-
 may 

occur, even within first principles studies.
168,169

 When using force field methods it is 
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often assumed that dissociation cannot occur due to the nature of most standard water 

models. Hence, this may influence simulation results. With the use of reactive water 

models this situation could be alleviated though.
170,171

 A full review of the simulation of 

titania-water interactions can be found elsewhere.
172

 

Barnard et al. applied a thermodynamic model based on the free energy of 

nanoparticles as a function of size and shape to determine the morphology of anatase and 

rutile phases with varying surface chemistry.
96

 An important feature of this methodology 

is to include the weighted surface tensions of the crystallographic surfaces present on the 

nanoparticle. Therefore to calculate the equilibrium morphology using a Wulff 

construction Barnard and co-workers use the surface energy and the surface tension 

applied when an absorbed molecule is present on the surface. By comparing the values of 

the surface energies and dilation tensor properties of 30 surfaces of rutile and anatase, 

Barnard et al. found that although the hydrated surfaces result in the lowest surface 

energies, there is a lack of correlation between stability and the terminations that 

minimise the surface stress.
173

 This highlights the importance of considering the 

morphology of a nanoparticle in different chemical environments. In the case of 

hydrogen-poor and oxygenated surfaces the nanoparticles of both polymorphs become 

elongated. Anatase nanoparticles are stabilised by surface adsorbates containing a large 

fraction of hydrogen, whereas rutile nanoparticles are stabilised by larger fractions of 

oxygen adsorbates. This provides the thermodynamic reasoning behind experimental 

findings of anatase nanoparticles being grown in acidic conditions.
174,175

 Theoretical 

calculations have also been used to design the chemical modification of anatase surfaces 

by fluorine to control the morphology.
176

 

There has been considerable interest in minerals on the nanoscale, not only for the 

case of finite particles, but also nanotubes. Nanotubes of mineral phases are now being 

extensively studied due to their high surface-to-volume ratio and the curvature of the 

surface provides increased reactivity compared to nanoparticles of the same phase. One 

example of this includes the aluminosilicate imogolite, which can exhibit different 

chiralities similar to carbon nanotubes.
177

 Titanium oxide nanotubes have also been 

successfully synthesised and studies have indicated that they have improved properties 

when compared with other forms of titania, especially when applied in photocatalytic
178
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and photovoltaic applications.
148

 An excellent review on the application of titanium oxide 

nanotubes for solar energy production has been given by Mor et al.
179

 Despite their 

potential applications, the crystal structure of titanium oxide nanotubes remains unclear 

with several models being proposed, including the trititanate (H2Ti3O7),
180

 a 

lepidocrocite-like structure (Hx Ti2-x/4 []x/4 O4 where x~0.7 and [] is a vacancy),
181

 and 

anatase.
182,183

 This problem has been addressed by Hart et al. who have examined 

different titania nanotubes constructed by rolling of 2-D sheets to create single-walled 

materials. They concluded that the most stable structure for titanium oxide nanotubes 

depends on the activity of water during synthesis. At high water chemical potential there 

is an increase in hydrogen bonding interactions at the trititanate nanotube surfaces. 

Therefore nanotubes with diameters greater than 8 nm appear to be thermodynamically 

more favourable than bulk trititanate. At low water chemical potential, it appears that 

tubes generated by chiral wrapping of (101) sheets of anatase are more stable.
184

  

The simulations described above provide atomistic detail into the structure and size 

dependent phase stability of titania nanomaterials. Here the interaction of the surfaces 

with the surrounding medium clearly plays a vital role in determining the phase stability 

of nanophase titania. In the next case study we will see how computer simulations can be 

used to describe the structure and stability of II-VI semiconductors and how we can begin 

to describe the growth mechanisms of these materials. 

 

 

Zinc Sulphide 

 

Binary semiconductors, and in particular chalcogenides, have been extensively 

studied as examples of quantum dots. During the review of methodologies for 

nanoparticle simulation we have already touched on materials such as CdSe and CdTe as 

examples. In this section we briefly review the closely related material zinc sulphide 

(ZnS), as this has been the focus of much computational scrutiny, leading to some 

unexpected behaviour for small nanoparticles containing tens of atoms. A full review of 

this topic can be found elsewhere.
185
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When the surfaces of polymorphs of the same material possess different surface 

energies, a change in phase stability can occur with decreasing particle size.
156,186

 Zinc 

sulphide has two naturally occurring polymorphs, the more stable cubic sphalerite and the 

higher energy hexagonal wurtzite form.
144

 These polymorphs are separated by an energy 

difference that is close to thermal energy at ambient conditions, thereby making it a 

prime candidate for possible phase changes. Indeed bulk ZnS exhibits polytypism 

through the presence of stacking faults, indicating the facile nature of transitioning 

between polymorphs. Zhang et al. described a ZnS nanoparticle system that under goes 

structural changes in response to alternations in surface environment rather than particle 

size.
187

 The average particle diameter determined by UV-vis was 2.8 nm and 3.0 nm 

when determined by transmission electron microscope. This joint experimental-

computational study showed that the peak position in the XRD spectrum, following the 

introduction of water to the nanoparticles, went from a disordered structure to a more 

crystalline sphalerite-like structure. However, interestingly the UV-visible absorption 

threshold position remained unchanged, indicating no significant size variation. Further 

evidence from WAXS data showed that the nanocrystalline ZnS undergoes a room 

temperature structural modification. The authors conclude that following the binding of 

water to the surface there is a disorder-to-order transition. 

The MD simulations of Zhang et al. show that the interaction between water and ZnS 

decreases the interfacial energy, as would be expected. This drives a resultant increase in 

crystallinity that propagates through the nanoparticle (Figure 6). The simulations of 

nanocrystalline ZnS indicate not only that there is a strong interaction between water and 

the surface, but also that this causes a large stabilisation of the entire nanoparticle. Zhang 

et al. have also used joint experimental and computational techniques to study the 

adsorption of other molecules, such as methanol and chlorobenzene, on ZnS 

nanoparticles.
188

 The surface structure and core-shell distortion of the nanoparticle are 

strongly influenced by the environment. The stronger the interaction between the surface 

and the adsorbed molecule, the more crystalline the structure will be in the nanoparticle. 

The above simulations of zinc sulphide focus on particles that are already well and 

truly at the nanoscale. However, if we are to begin to understand the formation and 

nucleation of very small clusters of ZnS we need to be able to confidently predict the 
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structure. Although ZnS nanoparticles have been the subject of a great deal of 

experimental investigation, little was known regarding the structure and properties of 

such clusters in the limit of very small sizes. Spano et al. applied a global minimisation 

technique to investigate the structure of ZnS clusters in vacuo.
116,189

 To ensure that a 

global minimum has been found Spano et al. performed at least three different simulated 

annealing processes for each cluster. The geometries and energies of ZnS clusters, with 

sizes ranging from 10 to 47 ZnS units, were simulated using interatomic potentials and 

then relaxed with first principles techniques to provide more accurate cluster energies.
116

 

The simulated annealing process involved a 50 ps molecular dynamics run for every 

cluster at 3000 K, which were then cooled by 10 K every 50 ps until a temperature of 300 

K was reached. The high temperature used for the initial steps of the simulated annealing 

has the effect of removing any possible influence that the initial configuration could have 

on the final structure. The authors found that the same structures were obtained starting 

from a random arrangement of atoms or from a cluster cut from the bulk material. 

Spano et al. showed that clusters with up to 47 units are more stable with a 

spheroidal structure than with a bulk like structure.
116

 These “bubble clusters” are formed 

by the fusing of 4, 6, and 8 atom rings, where all of the atoms are three coordinated. The 

rings are non-planar distorted polygons; bond distances and bond angles in the same ring 

are unequal. A strong analogy exists between these cluster structures and the topology of 

some zeolite cages. For example, the (ZnS)12 cluster exhibits a sodalite cage structure as 

found in faujasite, zeolite-A and sodalite itself. Using DFT techniques they compared the 

energies of clusters cut from bulk wurtzite and sphalerite with the bubble clusters. The 

bubble clusters were always more stable due to a reduction of the total dipole across the 

system. As the cluster size was increased to 60 units of ZnS Spano et al also found 

bubble clusters with onion-like structures.
189

 

Even larger zinc sulphide clusters have been probed, containing up to 560 formula 

units.
190

 Here a new structural motif emerges with the particles beginning to adopt 

something analogous to the BCT framework, rather than wurtzite or sphalerite. However, 

this observation may in part be an artefact of the force field used, which yields BCT as 

the most stable bulk phase. Force fields that are designed to target the energetics of ZnS 
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polymorphs
144

 and periodic quantum mechanical calculations are found to give the 

correct ordering for phase stability.
191

 

Using a range of concentrations of zinc and sulphur ions in solution from 0.5 M and 

1.25 M Hamad et al. investigated the early stages of nucleation of ZnS in water.
192

 

Initially Zn
2+

 ions form a stable Zn(H2O)6
2+

 complex in water. However, these complexes 

then attract S
2-

 ions and form ion pairs. They found that there was an activation barrier to 

forming clusters of ZnS, and only when the concentration of ions was increased did the 

clusters form readily. Hamad et al. increased the temperature to 500 K so that more ions 

would be able to jump the energy barrier and therefore they could study the structures of 

the clusters that formed. The structures that ultimately formed from solution (Figure 7) 

were very similar to the bubble structures found in the in vacuo study performed 

previously.
116,189

 Given the difficulties of simulating crystal growth by direct unbiased 

molecular dynamics, there are a couple of caveats to this study. Firstly, the concentrations 

used correspond to a high level of supersaturation and so it remains an open question as 

to how much this might change the association mechanisms relative to conditions where 

the system is closer to equilibrium. Secondly, the growth has to be assumed to occur via 

the S
2-

 anion in solution because of the use of a non-reactive force field. However, it is 

unlikely that there is a substantial equilibrium concentration of this species present, 

except at very high pH, with SH
-
 being the dominant anion. Whether the point of proton 

transfer and any potential net charge on the clusters would alter the details of growth can 

only be speculated on at present. 

The above investigation of zinc sulphide association in solution highlights some of 

the challenges faced when trying to use computational techniques to simulate the early 

stages of growth of clusters and nanoparticles from solution. Ultimately it is often 

necessary to introduce bias acceleration or to methodically determine free energy profiles 

for the key reactions to be able to make progress. This will be highlighted in the next 

example of calcium carbonate, a mineral that has a particular complex formation 

mechanism. 

 

Calcium carbonate 
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The evolution of mineral nanoparticles has a significant impact on the natural world. 

Nowhere is this perhaps more evident than for the case of calcium carbonate (CaCO3). 

Organisms are able to selectively control the production of this mineral through 

biomineralisation to create anything from skeletal materials for protection through to 

optical lenses. This has led to interest in the creation of advanced materials via 

biomimetic processes, inspired by biomineralization.
193

  

While much progress has already been made toward a fundamental understanding of 

such biomineralization phenomena, especially through the use of atomic force 

microscopy to study peptide-surface interactions,
194-196

 there remain many important 

questions regarding the precise mechanism.
197

 Calcium carbonate can occur naturally as 

three crystalline polymorphs (calcite, aragonite and the disordered vaterite) as well as an 

amorphous form (ACC) and two hydrates (monohydrocalcite and ikaite). Therefore to 

fully understand the biological control that is exerted over the selection of polymorphs it 

is critical to understand the growth of calcium carbonate in aqueous solution, including at 

the nanoscale. 

Typically the growth of minerals is explained via classical nucleation theory. Here 

ions aggregate to form clusters that are initially unstable due to the entropic penalty for 

organization and the positive surface free energy of forming the crystal-solvent interface. 

As the particles increase in size, the cost of the surface energy is outweighed by the bulk 

lattice energy and so the system passes through a free energy maximum before increasing 

in stability with growing diameter.
198

 Recent experimental studies
199

 have proven that 

calcium carbonate grows by a non-classical mechanism in which stable prenucleation 

clusters occur prior to the formation of amorphous calcium carbonate. Both estimates of 

the hydrodynamic radius
199

 and the results of cryo-TEM
200

 indicate that some of the 

initially formed particles have dimensions of a few nanometres. Despite this major 

advance it remains difficult to unambiguously determine the structure and composition of 

prenucleation clusters, or the mechanism of their transformation to ACC, from 

experimental alone. Consequently there is a valuable role for atomistic simulation to play 

in probing nanostructured calcium carbonate. Although bulk phases of calcium carbonate 

are readily amenable to first principles quantum mechanics, the study of nanoparticles 
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and solution growth is currently largely the realm of force field methods due to the 

demands of the time- and length-scale required.  

To the best of our knowledge, the first published simulations of what might be 

considered calcium carbonate nanoparticles are due to Bearchell and Heyes.
201

 They 

simulated clusters with ten formula units of CaCO3 in the presence of surfactant 

molecules to provide insights relevant to the lubricant industry. Initial particle structures 

were cleaved from bulk calcite with an approximately spherical morphology. It was 

observed that the clusters effectively became amorphous during molecular dynamics. 

This may be a consequence of the starting configuration, since anything other than a 

rhombohedral morphology composed of the single dominant cleavage plane may be 

unstable at this dimension. Kerisit et al. also studied the behaviour of small calcite 

nanoparticles, containing 18 CaCO3 units, during a molecular dynamics simulation in 

vacuo and similarly found that the particles rapidly lost long-range order. However, when 

the same particle was simulated surrounded by an explicit model of water, the underlying 

crystal structure of the nanoparticles was preserved for throughout the duration of the 

simulation.
202

  

Cooke and Elliott also used MD simulations to investigate the size dependant 

stability of calcite nanoparticles and the role of water on stabilising the nanoparticle.
197

 

Using the Wulff construction to generate the equilibrium shape, Cooke and Elliott created 

ten different calcite nanoparticles ranging in size from 18 to 324 CaCO3 formula units 

and with a diameter up to 2.5 nm. To gain molecular level insight into the stability of the 

nanoparticles as a function of size, they quantified the extent to which the carbonate 

group rotates during the simulation by defining an order parameter. At a temperature of 

300K there was little orientational ordering of the carbonates in the three smallest 

nanoparticles. As the nanoparticles increased in size the orientational ordering of the 

carbonates also increased. This was attributed to the increased ratio of the number of bulk 

atoms with surface atoms. Instability of the structure of the nanoparticles was ascribed to 

under coordination of the atoms on the surface. By considering the radial distribution 

function (RDF) of the nanoparticles they also found translational disorder of the atoms, 

which increased as the nanoparticle size decreased. When the nanoparticles were 

immersed in a box of water the orientational ordering of the carbonates increased with 
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respect to the same sized nanoparticle in vacuum. The solvent molecules complete the 

coordination shell of the surface cations, thereby stabilising the particle. Hence this 

reduces the need for the surface carbonate groups to rotate, resulting in high values of the 

order parameter for all the nanoparticles considered. This further illustrates the 

importance of including a full description of the solvent when describing the structure 

and stability of nanoparticles as a function of size.  

A further complication in the study of nanoparticles of calcium carbonate is that the 

thermodynamically preferred state may well be the amorphous form, rather than 

something approaching a crystalline structure. The challenge is therefore to quantify the 

difference in stability between phases as a function of particle size under conditions 

where spontaneous transformations will not occur on the timescale of several tens of 

nanoseconds readily accessible to molecular dynamics. To overcome this problem, 

Quigley and Rodger used metadynamics to explore the possible structural arrangements 

of a 2 nm diameter calcium carbonate nanoparticle.
139

 Here the nanoparticle was 

constructed in a different manner to previous simulations by melting a bulk aragonite 

supercell at 2500 K. By removing the periodic boundary conditions, the melted calcium 

carbonate formed a liquid drop, which was quenched to form an approximately spherical 

particle of amorphous material. This amorphous nanoparticle, which contained 75 

CaCO3, units was then embedded in a box of water. The same size of calcium carbonate 

particle had previously been shown by Cooke and Elliott to retain order over a 

nanosecond simulation in water and limited order over 20 ns simulation in vacuo.
197

 

Therefore it could be expected that metadynamics simulations might locate at least 

partially ordered configurations in addition to amorphous states. During the simulations, 

indeed examples of both amorphous (Figure 8A) and partly ordered (Figure 8B) particle 

configurations were explored due to the metadynamics bias, though the free energy basin 

associated with the amorphous state dominates the energetic landscape. Although not 

presented in detail, Quigley and Rodger comment that the amorphous state became 

increasingly dominant with decreasing cluster size. 

In a later study, Quigley et al. presented a revision to their methodology so that they 

could allow simulations to be conducted at constant pressure (rather than constant 

density) and for larger nanoparticles.
203

 The results of this study concluded that by 
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changing the volume available to the nanoparticle and solvent it is possible to manipulate 

the stable phase, which may have implications for how nature controls its selectivity for a 

given polymorph.  

While being a powerful demonstration of the use of metadynamics to map out the 

free energy landscape in complex environments, there is an important caveat to note for 

the above and many other simulations of calcium carbonate, namely that the underlying 

force field fails to give the proper relative thermodynamics of the different phases. Many 

of the force fields that have been used for the simulation of this mineral either give 

aragonite as the stable phase instead of calcite, contrary to experiment, or overstabilise 

calcite by up to an order of magnitude. Equally as important, most models also fail to 

describe the free energies of solvation of the ions accurately leading to a solubility 

product that is in error by tens of orders of magnitude, which can have consequences for 

the way that clusters interact with the solvating water. Raiteri et al. have recently 

developed both rigid and flexible interatomic potentials that correctly describe the 

thermodynamic behaviour of the calcium carbonate-water interface, as well as the correct 

free energy difference between calcite and aragonite.
198,204

 The second model with a 

flexible carbonate group also benefits from an improved description of the relative 

energetics of vaterite.   

Using the above revised force fields, Raiteri and Gale have also sort to examine the 

thermodynamic stability of calcium carbonate nanoparticles. The approach taken to 

create nanoparticles was similar to previous studies. To create crystalline nanoparticles of 

calcite they assumed that the most stable basal (10 4) surface plane dominates the 

morphology. The hexagonal crystal structure of calcite leads to morphologies where all 

terminations are of this surface resulting in rhombohedral crystallites. To create 

nanoparticles of amorphous calcium carbonate they followed a similar approach to 

Quigley and Rodger by annealing particles in vacuo at 3,000 K until all order is removed. 

Raiteri and Gale took a number of sizes of both crystalline and amorphous nanoparticles 

(18-864 CaCO3 formula units) and immersed them in water. A graphical representation 

of the two 864 CaCO3 nanoparticles is shown in Figure 9.  

Amorphous calcium carbonate is known to actually contain a variable amount of 

structural water, with an approximate stoichiometry of one to one in some materials.
205

 

   

1
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To address this, Raiteri and Gale included a range of water contents within their 

amorphous nanoparticles. Although the direct determination of relative free energies is 

complex for such systems, they were able to correct the calculated enthalpy differences 

with an estimate of the entropy of water incorporation based on experimental data. In this 

way, it was found that the amorphous nanoparticles exhibit an increasing preference for 

water incorporation as they grow. Furthermore, the amorphous clusters, with their 

favoured water content, are lower in free energy than calcite nanoparticles up to a size of 

~4 nm, beyond which they become metastable. 

In order to begin to probe the thermodynamics of growth, the free energy profile for 

the addition of ion pairs to different nanoparticles was also determined by umbrella 

sampling in the above study. The addition of ion pairs to the (10 4) calcite surface is 

only favourable energetically when solvent separated due to the ordered layer of water 

that is present at the interface. In contrast, the free energy profile for addition of ion pairs 

to amorphous calcium carbonate exhibits almost no activation barrier and leads to a 

stable bound state. This difference is caused by the amorphous surface frustrating the 

formation of an ordered interface with the surrounding water. Remarkably, this effect and 

the resulting free energy profile are almost independent of nanoparticle size or water 

content. These results support the experimental findings of Gebauer et al.
199

 who 

proposed a speciation model in which the energetics of ion pair addition is constant for a 

given coordination number. Furthermore, it is consistent with the non-classical nature of 

the growth of amorphous calcium carbonate, though the question of how the 

experimentally observed nucleation occurs remains open.   

 

 

Conclusions 

  

In this review we have attempted to capture the current status of atomistic simulation 

of nanomaterials, with a primary focus on partially ionic nanoparticles, while also trying 

to place this in the context of other computational approaches. Because of the rapidly 

expanding nature of the field it is only possible to survey a small fraction of the full 

literature, and so the main objective has been to highlight the challenges involved in 

   

1



 30 

predicting structural and morphological properties of semi-ionic nanoparticles. Here the 

key challenge is to be able to explore a complex potential energy surface sufficiently to 

identify the important configurations. This is made all the harder by the fact that force 

field models, and even some density functionals, fail to describe the correct relative 

energetics of different phases. 

Arguably the two greatest challenges for the simulation of nanomaterials going 

forward are realism and making the connection with experiment. Increasing there are 

many simulations that make predictions ahead of experiment for nanomaterials in exotic 

structures. It is therefore the responsibility of simulators to try to ensure that such 

predictions stay within the bounds of what might be achievable. Optimisation of 

structures only finds the nearest local minimum, and so serious consideration must 

always be given to competing forms that might be more stable. If something is 

metastable, then a strategy for trapping the proposed state should be given. Many 

calculations are performed on nanoparticles in vacuo, but for technological purposes it is 

necessary to consider how the surface might be passivated to preserve the cluster in a 

terrestrial environment. Having designed a realistic pathway for synthesising a given 

nanoparticle, the second challenge is to use theory to provide guidance on how the 

prediction might be experimentally validated. Increasingly calculations are becoming 

able to make useful predictions of spectroscopic properties, such as NMR and optical 

spectra. Therefore it is feasible to assist in the detection of a predicted nanomaterial in 

cases where direct structural interpretation of the experiments may be difficult. 

In all the case studies highlighted above it can be seen that to fully understand the 

behaviour of nanoparticles and their relative phase stability there needs to be an accurate 

description of the surrounding medium. As the power of computers increases, more and 

more research is moving away from in vacuo studies and the level of complexity is 

increasing. There are already several examples in the literature of single mineral 

nanoparticles in boxes of explicit water.
206-208

 In the limit of larger nanoparticles 

predictions can be made of size dependent morphology based on the adsorption of water 

vapour. However, for aqueous environments it is ultimately necessary to move beyond 

monolayer coverage of water and to consider the interface with bulk liquid. For many 

minerals and ionic materials, speciation then becomes an issue and so it becomes 
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necessary to use either quantum mechanical methods or a reactive force field capable of 

describing dissociation of water. Ultimately multiscale techniques may well be required 

to handle the dual requirements of large system sizes and chemical reactivity in particular 

regions. Furthermore, the current trend toward massively parallel computing will also 

demand a re-examination of some of the underlying algorithms. For example, instead of 

plane wave density functional theory being the de facto standard for first principles 

calculation, real space systematic algorithms involving multi-resolution basis sets may 

well become the norm for calculations on heterogeneous nanomaterials.
209,210

 

When a nanoparticle is immersed in a complex environment, such as a liquid or 

polymer, then the process of determining energetics becomes more complex. Instead of 

computing just enthalpies, the consideration of free energies becomes mandatory as the 

impact of a nanoparticle on the entropy of the surrounding medium can no longer be 

regarded as negligible. As shown above, free energy calculations, such as umbrella 

sampling and metadynamics have been successfully used to describe the structure and 

growth of preformed amorphous calcium carbonate. Future computer simulations should 

include free energy calculations to study other processes, such as the aggregation of 

nanoparticles in solution, in cases where mesoscale models are inappropriate. One 

example of where atomistic simulations could be used to explain a natural phenomenon is 

oriented attachment. Oriented attachment involves spontaneous self-organisation of 

adjacent particles so that they share a common crystallographic orientation.
211

 It occurs 

readily in nature and has been observed in a range of different materials.
211-214

 Atomistic 

simulations could be used to explain how this process occurs and predict the conditions 

that favour this type of crystal growth. The ability to direct crystallisation through 

oriented attachment is an exciting prospect that could allow for the creation of new 

nanostructures with well-defined sizes and shape.
215

 The majority of computer 

simulations on the aggregation of nanoparticles have been performed in vacuum to 

date,
215-218

 and so a challenge for the future is to include the surrounding medium. 

As discussed in the above case studies, one approach to describe oriented attachment 

could be free energy calculations. However, to utilise free energy approaches more 

widely can be non-trivial though since it is necessary to have a well-defined reaction 

coordination or a small number of collective variables to be explored. Even where a good 
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choice is made there can be problems if other degrees of freedom are not explored rapidly 

enough. This is highlighted by the case of agglomeration, where the distance between the 

nanoparticles is sampled as a reaction coordinate. In the presence of a medium, the 

rotation of nanoparticles will be slow and so there is no guarantee a unique free energy 

profile will be obtained in a finite sampling time. Despite this, there is good cause for 

optimism as rapid progress is being made in the development of collective variables to 

accelerate the timescale for exploring configuration space.
122

 

Atomistic computer simulation of nanomaterials has already shown itself to be a 

valuable complement to experimental observation. As the complexity of nanoscience and 

nanotechnology increases, so will the opportunities for modelling, making for an exciting 

future in this area of research. 
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Figure Captions 

 

Figure 1: Reactive simulation of a 20 nm aluminium nanoparticle with oxygen gas. Snapshot is taken after 

40 ps and already shows the partial formation of a non-stoichiometric aluminium oxide layer at the surface. 

Sphere size of small and large denotes aluminium and oxygen, respectively, while the colour coding 

indicates the temperature of the atoms. 85 Reprinted with permission from P. Vashishta, R. K. Kalia and A. 

Nakano, Journal of Physical Chemistry B, 2006, 110, 3727-3733. Copyright 2011 American Chemical 

Society. 

 

Figure 2: Morphologies of pure/hydrogen terminated carbon (as diamond) (a/d), silicon (b/e), and 

germanium (c/f) nanoparticles as a function of size (increasing from left to right) as computed by Barnard 

and Zapol.95 Reprinted with permission from A. S. Barnard and P. Zapol, Journal of Chemical Physics, 

2004, 121, 4276-4283. Copyright 2011, American Institute of Physics. 

 

Figure 3: Crystallite morphologies for urea grown from water (left) and methanol (right) obtained from 

kinetic Monte Carlo simulation and optical microscopy. Particles start at the nanoscale and can evolve to 

the micron-scale during the time of the simulation.109 Reprinted by permission from Macmillan Publishers 

Ltd: S. Piana, M. Reyhani and J. D. Gale, Nature, 2005, 438, 70-73, copyright 2011.  

 

Figure 4:  Illustration of the application of the cluster expansion method to nanoparticle morphology for 

the case of sodium alanate decomposition. Predicted ground-state morphology for nanoparticles consisting 

of (a) 15000 atoms of NaAlH4, (b) 5000 atoms of NaH, (c) 9000 atoms of Na3AlH6, (d) 2500 atom Al.114 

Reprinted with permission from T. Mueller and G. Ceder, ACS Nano, 2010, 4, 5647-5656. Copyright 2011 

American Chemical Society. 

 

Figure 5: Simulation of the nucleation of rock salt (blue) structured CdSe within a hexagonal (grey) 

nanoparticle of size ~50 Å.143 In (a) the critical nucleus is illustrated as a function of pressure while in (b) a 

series of time slices are shown to indicate the shearing of (100) planes after 13 ps. Reprinted with 

permission from M. Grunwald and C. Dellago, Nano Letters, 2009, 9, 2099-2102. Copyright 2011 

American Chemical Society.  

 

Figure 6: Snapshots taken from the molecular dynamics simulation of an approximately 3 nm nanoparticle 

of ZnS, with zinc and oxygen coloured yellow and red, respectively. The upper images (a) indicate the 

nanoparticle viewed from different directions after simulation in vacuo, while those in (b) represent the 

same system after simulation in water.187 Reprinted by permission from Macmillan Publishers Ltd: H. 

Zhang, B. Gilbert, F. Huang and J. Banfield, Nature, 2003, 424, 1025-1029, copyright 2011. 
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Figure 7: Formation of clusters of ZnS (Zn are blue and S are yellow in colour) at 500 K from a 

supersaturated solution.192 Reprinted with permission from S. Hamad, S. Cristol and C.R.A. Catlow, J. Am. 

Chem. Soc., 2005, 127, 2580-2590. Copyright 2011 American Chemical Society. 

 

Figure 8: Sample configurations illustrating both amorphous (A) and ordered (B) nanoparticles of calcium 

carbonate in water during metadynamics simulation of a 75 formula unit nanoparticle.139 Reprinted with 

permission from D. Quigley and P. M. Rodger, Journal of Chemical Physics, 2008, 128, 221101. Copyright 

2011, American Institute of Physics. 

 

Figure 9: Illustration of two 864 formula unit nanoparticles of (a) calcite and (b) anhydrous amorphous 

calcium carbonate when immersed in water. The van der Waals surface of the nanoparticle has been shown 

in grey, with part of it removed to allow the inner structure to become visible.198 Reprinted with permission 

from P. Raiteri and J. D. Gale, J Am Chem Soc, 2010, 132, 17623-17634. Copyright 2011 American 

Chemical Society. 
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