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ABSTRACT 

 
Most stochastic modelling techniques neglect the correlations among the raw un-

differenced observations when forming the variance-covariance matrix of the Global 
Navigation Satellite System (GNSS) observations. Some methods were developed to model 

these correlations. One such method is the Minimum Norm Quadratic Unbiased Estimator 

(MINQUE). Studies have shown that MINQUE improves ambiguity resolution, and 
ultimately, the positioning solution in short baselines. However, its effect in cases of 

processing with longer baselines and on the estimation of zenith wet delay (ZWD) is 

somewhat unknown. In this paper, a comparison between the impact of neglecting the 
correlations among the observations using an elevation-angle dependent model (EADM) 

and modelling the correlations using MINQUE on height determination and ZWD for 

medium and long baselines is carried out. The initial testing was carried out across two 

Australian GNSS stations with a medium-length baseline throughout a 3-week campaign. 
The results showed that using MINQUE did not resolve the coordinate and height 

components as accurate as the EADM. The results were further verified with two long-

baseline campaigns whereby EADM was also able to provide better coordinate and wet 
delay estimates, and the inclusion of the correlations among the observations did not 

improve the results. 
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1 INTRODUCTION 

 

GNSS data can be processed via the least-squares (LS) principle, in which, GNSS 

measurements are characterised by functional and stochastic models. The functional model 

represents the mathematical relationship among the GNSS observables and the parameters of 

interest, whilst the stochastic model is defined by an appropriate covariance matrix describing 

the spatial, auto, cross and/or temporal correlation among the measurements. The functional 

model, in its general form, is usually well defined (e.g., Hofmann-Wellenhof et al., 2001; 

Leick, 2004) and is not particularly controversial. On the other hand, stochastic modelling 

remains one of the more challenging aspects in precise GNSS positioning (e.g., Wang et al., 

2002). 
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In LS theory, a set of linearised GNSS observations can be defined using the following 

functional regression model: 

 Y = A X̂  + ε (1) 

 

where for m observations and k unknowns, Y is an 1m  observations vector; X̂ is a 1k  

vector of estimates for the unknown parameters with A  being the corresponding km  

design matrix; ε is an 1m  noise vector, with   0E  . 

 

The simple form for the weighted linear LS estimate X̂ , is given by (Johnson and Wichern, 

2007): 

   

  WYAWAAX̂ T1T 
   (2) 

 

The covariance matrix of X̂  is: 

 

  1T

X̂
WAAC


   (3)      

 

the weight matrix W  is usually defined as the inverse of the variance-covariance matrix of 

the observations. From Eq. (2), it can be seen that the choice of stochastic model is an 

important factor in determining the final outcome of the LS parameter solution. LS possesses 

an attractive property in which the residual root mean square error (RMSE) is minimised.  

However, an inadequately defined covariance matrix will result in LS losing its optimality 

property (Johnson and Wichern, 2007). In real-time kinematic (RTK) data processing, where 

results are needed almost instantaneously, a wrongly chosen stochastic model may result in a 

faulty cycle slip detection and degraded ambiguity resolution success. The quality of the 

parameter estimates of interest, such as receiver coordinates, will accordingly suffer as a 

result (Fuller et al., 2005).  

 

Typically the correlations among the raw measurements are ignored and the covariance 

matrix is estimated using an elevation-angle-dependent model (e.g., Kim and Langley, 2001) 

or the signal-to-noise ratio model (e.g., Ward, 1996). The elevation-angle-dependent model 

(EADM), has been shown to produce reliable tropospheric estimates (e.g., Steigenberger et 

al., 2007).  Although more rigorous stochastic modelling techniques are available, (e.g., Wang 

et al., 1998; Teunissen and Amiri-Simkooei, 2007), the complexity of these models generally 

demands more processing time. Additionally, these models have predominantly been used to 

derive positional and integer ambiguity estimates, and the effects on tropospheric estimates 

are still relatively unknown. Though one may hypothesise that better coordinates would lead 

to better tropospheric delay estimation, the significance of this is still speculative.  

 

The above issue leads to the objective of this investigation, which is to determine if the 

estimation of tropospheric delay will benefit from a more sophisticated stochastic model that 

considers possible spatial correlations among observations. A suggested model is the 

Minimum Norm Quadratic Unbiased Estimation ‘MINQUE’ (Rao, 1970). MINQUE had been 

successfully applied in GNSS data processing, where it was shown to improve short baseline 

solutions, as well as ambiguity resolution (Wang et al., 1998). However, it has not yet been 

used for the purpose of tropospheric delay recovery, which is needed for real-time precise 

positioning and weather forecast applications. In this paper, the performance of MINQUE for 

both tropospheric delay and height estimation, where the accuracy of the tropospheric 

estimates is related to the estimation of the height component are compared against a widely-
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used stochastic model, i.e., EADM. A simplified form of MINQUE (Satirapod et al., 2002) is 

also tested. 

 

The structure for the rest of this paper is as follows. Section 2 provides detailed description of 

the stochastic models under consideration. Testing of the stochastic models begins with a 

medium-length baseline campaign in the state of Victoria. The test description and results are 

presented in Section 3. The investigation next includes two long-baseline campaigns. Details 

of the campaigns are outlined in Section 4, along with the test results. Concluding remarks 

and recommendations are given in Section 5. 

 

2 STOCHASTIC MODELS 

 

In this section, three stochastic models are presented. The first, EADM, neglects the 

correlations among the raw observations and the second, MINQUE, models such correlations. 

The third model, SMINQUE, is a simplified version of MINQUE that can also estimate the 

correlation values. 

 
2.1 Elevation Angle Dependent Model (EADM) 

 

The dependence of measurement noise on satellite elevation can be attributed to changes that 

take place in the receiver antenna’s gain pattern, atmospheric refraction and multipath with 

changes in the satellite elevation-angle (e.g., Kim and Langley 2001, El-Mowafy 2009). 

Modelling the observational noise as a function of the satellite elevation angle can take on 

many forms. The variance in one of these elevation angle-based models for observation yi has 

the general form (Wang et al., 1998): 

 

 i
z

222
y fba

i
   (4) 

 

where 
2a  and 

2b  are constant coefficients and  i

zf   is the function that is defined with 

respect to the zenith elevation angle i

z  for observation i. The sine function can be utilized to 

define the variances of the zero difference measurements in the form (Jin et al., 2005): 

 

 i
z

2222
y sinba

i
   (5) 

 

neglecting the case where the elevation angle equals 0
o
 (which is acceptable as measurements 

are usually ignored at low angles). The EADM de-weights the observations at low elevation 

angles which are more susceptible to multipath and troposphere errors. For the purpose of 

simplicity, the coefficients a  and b  can be chosen as 0 and 1. The raw observations in the 

EADM are assumed to be spatially and temporally uncorrelated. Thus, the undifferenced 

covariance matrix is taken as a diagonal matrix. The attraction of EADM is its practicality in 

term of computational efficiency. 

 
2.2 Minimum Norm Quadratic Unbiased Estimation (MINQUE) 

 

MINQUE is a stochastic technique that estimates the spatial correlations among the GNSS 

observations. However, the complexity of the MINQUE procedure comes from the need to 

utilise it in a batch processing. Hence, MINQUE is more appropriate in post-processing. 
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Using the functional model given in Eq. (1), the mm  covariance matrix of Y, denoted as , 

can be expressed as follows: 

 





q

1i

ii

q

1i

i VC ,              where 
 

2

1mm
q


  (6) 

   )1m(m1312

2

m

2

2

2

1q21 ...,,,,...,,,...,,, 
 

are the covariance components to be 

estimated, and q21 V...,,V,V  are the so-called accompanying matrices (Wang et al., 2002).  

The problem here is estimating the q  unknown elements of and V. 

 

The MINQUE of the linear function i  (for ,1i  ,2 ..., q ), i.e., qq2211 p...pp  , is the 

quadratic function BYYT , where B is selected such that  Trace(BB) is minimum (Rao , 

1971), subject to 

 

  0BA   and  iBCTrace  = pi,   ,1i  ,2 ..., q  (7) 

 

The MINQUE of 



q

1i

iiV is then estimated from 

 





q

1i

ii

T QQ ,      where RYRVYQ i

T

i    (8) 

 

where the vector   is a solution of 

 

 



q

1i

,jjii pRVRVTrace  for ,1j  ,2 ..., q   (9) 

 

and 

R= W (W
-1

 – X (X
T
 W X)

-1
 X

T
) W,  (10) 

where 

 W = Σ
–1

 (inverse of the covariance matrix Σ of the observations) (11) 

 

For n number of epochs considered in a selected processing window, the symmetric matrix R 

can be partitioned as 

 





















nn2n1n

n22221

n11211

R...RR

RRR

RRR

R






  (12) 

 

By expressing Eq. (9) as pS  , and defining the elements of the S matrix, ijS , as 

 

 
jiij RVRVTraceS    (13) 

 

this leads to pS 1 .  
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Since the MINQUE of 



q

1i

iiV  is  

 

    ˆpQSpQSpQ T1TT1TT   (14) 

 

then  ,ˆˆ
1 2̂ , ..., q̂  is a solution of 

 

Q̂Ŝ   (15) 

 

Q̂  can alternatively be defined as 

 

 i

T

i

T

i WVRYRVYQ̂   (16) 

 

Given an initial estimate  0̂ , the  th1j  approximation can be generated using the following 

iterative procedure 

 

     1j

1

j1j Q̂Sˆ




  ,    for ,0j ,1 ,2 … (17) 

 
2.3 Simplified MINQUE (SMINQUE) 

 

As the number of observations becomes large, the execution of MINQUE will require a 

substantial computational power and memory. This is mostly due to the computation and 

storage of the R matrix, given in Eq. (12). The notion behind the simplified MINQUE 

(Satirapod et al., 2002), which will be referred to here as SMINQUE, is to reduce the 

complexity of the R matrix, leading to the efficient computation of the MINQUE process.  

The proposed simplification of MINQUE disregards the off-diagonal block entries of the R 

matrix and considers a block-diagonal matrix R* as its replacement in the procedure. The R* 

matrix is expressed as:  

 





















nn

22
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R00
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R0

00R

*R









 (18) 

 

Subsequently, Eq. (13) can be simplified to 

 

 



n

1r

jrrrirrrij VRVRTraceS        (19) 

 

where irV  is the block-diagonal element of iV  for epoch r. 
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3 TESTING OF DIFFERENT STOCHASTIC MODELS FOR MEDIUM BASELINE 

 

3.1  Test Description  

 

The purpose of this manuscript is to determine whether the inclusion of spatial correlations in 

the stochastic model using MINQUE can improve the coordinate and tropospheric solutions 

over medium to long baselines. Up until now, MINQUE has only been used for relatively 

small processing windows, and over relatively short baselines (<15km) due to its 

computational demands (e.g., Wang et al., 1998; Satirapod et al., 2002; Wang et al., 2002). 

These studies were also carried out over short isolated periods. A study of the stations 

coordinates over a prolonged time period, as a result of using MINQUE, is also lacking. The 

usefulness of MINQUE over longer baselines has not yet been investigated. Furthermore, its 

impact on the estimation of tropospheric delays is still unknown. However, the accuracy of 

the tropospheric estimates is related to the estimation of the height component (Bock et al., 

2001). Therefore, it is important to understand the impact of MINQUE on the height 

component firstly over a medium-length baseline before proceeding to a long-scale baseline 

or a network campaign. For this purpose, a medium-length baseline was set up between two 

Australian stations, namely Ballarat (BALL) and Melbourne Observatory (MOBS) in the state 

of Victoria (see Figure 1). 

 

 
 
Figure 1 Locations of Ballarat and Melbourne Observatory test stations 

 

MOBS is an International GNSS Service (IGS) station from the Australian Regional GPS 

(Global Positioning System) network, and BALL is a station from the Australian 

Continuously Operating Reference Station (CORS) network. For this baseline campaign, 

three weeks of data from March 31
st
 to April 22

th
 in 2004 were selected for post processing. 

The ITRF (x, y, z) Cartesian coordinates for MOBS and BALL for the testing period is (–

4130636.1116, 2894953.1117, –3890531.0333) and (–4088335.4061, 2986195.6103, –

3867029.3597), respectively. The medium baseline length between MOBS and BALL 

stations is approximately 103 km. MOBS uses an Ashtech UZ-12 receiver with a 

ASH701945C_M antenna, whilst BALL utilises a Trimble 4000SSI receiver and a Dorne 

Margolin T (with choke ring) antenna. Both test data in this study were dual frequency GPS 

data. The data were analysed with 1 h, 2 h, 3 h and 6 h processing windows. In other words, 

the data were batch-processed at every 1 h, 2h , 3 h or 6 h block throughout each day for the 

whole 3-week campaign. 
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To ensure that “absolute” tropospheric delays can be estimated appropriately a long baseline 

length is required (Kouba, 2009). Tregoning (1998) also indicated that a baseline length of 

more than 2000 km is more appropriate in providing sufficient de-correlation of the 

observations between the two baseline stations to enable better absolute estimation of the 

zenith wet delay (ZWD). Therefore, due to the medium length of the MOBS-BALL baseline, 

estimation of the absolute tropospheric delay at the stations was not appropriate. A longer 

baseline was examined, which will be discussed in the next section. 

 

All data were processed with the Bernese GPS software package (Dach et al., 2007). IGS 

products concerning the monitoring stations, including precise satellite ephemerides, Earth 

Orientation Parameters (EOPs), coordinates and velocity of ground stations, antenna phase 

centre offsets and variations were used in the processing. During processing, the station 

coordinates; satellite and receiver clock offsets and the tropospheric zenith delay were 

estimated as the unknown parameters. The processing included the use of a cut-off elevation 

angle of 15
0
 and the Niell troposphere mapping functions. The ionosphere-free linear 

combination was implemented to mitigate the ionospheric residual errors.  

 

In the MOBS-BALL baseline campaign, the coordinates of MOBS were constrained to within 

0.1 mm from the International Terrestrial Reference Frame 2008 (ITRF2008) estimates on the 

31
st
 of March 2004. The impact of MINQUE and SMINQUE were realised from the 

estimated coordinate solutions of BALL, since the coordinates for BALL were known 

beforehand. Thus, accuracy of the Cartesian and height coordinates for BALL, estimated 

independently using the EADM, MINQUE and SMINQUE were assessed by comparing the 

estimated values with the known ITRF2008 values. 

 

3.2 TEST RESULTS OF THE MOBS-BALL BASELINE 

 

The accuracy, i.e. the root mean square error (RMSE) of each of the x, y, z and h coordinates 

obtained from each of the tested stochastic models, namely EADM, MINQUE and 

SMINQUE, are calculated using  

 

 RMSE
 







k

1i

2

i

k

Coordinate
  (20) 

 

where horz,y,xCoordinate  and k is the total number of coordinate solutions over 

the 3-week testing period. 

 

The RMSE results are summarised in Figure 2. The top-left, top-right, bottom left and bottom 

right diagrams represent the results for when the data were analysed with a 1 h, 2 h, 3 h and 6 

h processing window session. The RMSE of the coordinate and height discrepancies (offsets), 

indicated as bars in Figure 2, were determined from all solutions over the whole 3-week 

campaign. 

 

It is evident from Figure 2 that the EADM consistently produced the best results among the 

three presented stochastic models with respect to the RMSE of the Cartesian and height 

discrepancies. Although studies have shown that MINQUE and MINQUE can produce better 

coordinate solutions for short baselines of less than 15 km (e.g., Wang et al., 1998; Satirapod 

et al., 2002; Wang et al., 2002), this improvement was not evident over a longer baseline, as 

shown by the MOBS-BALL baseline campaign. An increase in the baseline length generally 

leads to an increase in the residual errors due to differences in the troposphere, ionosphere, 
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and other location-dependent factors experienced at each respective station (e.g., Eckl et al., 

2001). The EADM is location sensitive as it weighs the raw GNSS observations by 

considering the elevation angles from different satellites to a particular location. The greater 

the elevation angle, the more atmosphere GNSS signal pass through and hence, larger residual 

errors.  However, MINQUE and SMINQUE do not consider these factors in their modelling 

the correlations. This is a possible explanation as to why they were outperformed by EADM.  

 

As stated earlier, the aforementioned studies on MINQUE were never used for an extended 

period of time for a baseline campaign. Although there were instances whereby the MINQUE 

produced better coordinates than the EADM, the 3-week campaign outlined in this study 

revealed that the results by MINQUE and SMINQUE have poor repeatability overall. 

 

 

 
Figure 2 Plots of the Cartesian and height coordinate discrepancies at BALL for the MOBS-

BALL baseline campaign for (a)1 h, (b) 2 h, (c) 3 h and (d) 6 h of processing. 

 

 

4 TESTING OF DIFFERENT STOCHASTIC MODELS FOR LONG BASELINE 

 

4.1  Test Description 

 

As it is necessary to have a much longer baseline to obtain absolute tropospheric estimates, a 

long-baseline campaign in Australia (Alice Springs to Hobart (ALIC-HOB2)) and one in 

Europe (Onsala to Wettzell (ONSA-WTZR)) were set up and analysed. Locations of the 

stations are presented in Figure 3.  

 

(a) (b) 

(c) (d) 
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Figure 3  Locations of (a) Alice Spring and Hobart GNSS stations in Australia, and (b) Wettzell and 

 Onsala station in Europe. 

 

 

A week of data from March 31
st
 to April 6

th
 in 2004 was selected for the Australian baseline 

campaign, whilst two weeks of data from September 10
th
 to 23

rd
 in 2003 were used for the 

European campaign. The selected periods correspond to the autumn season in the respective 

region. This season has high diurnal variation and thus, allowing the stochastic models to 

demonstrate their capability under varying atmospheric conditions. All stations in the ALIC-

HOB2 and ONSA-WTZR baseline campaigns are IGS stations, and hence their coordinates 

are known with a high degree of accuracy (Kouba, 2009). The (x, y, z) Cartesian coordinates 

of the stations for the testing period are given in Table 1. The lengths of the baselines are 

approximately 2447 km and 920 km respectively, which ensured that the absolute zenith 

tropospheric delays can be estimated from the campaigns along with the coordinates.  

 
Table 1  Cartesian coordinates for the Australian and European stations  

 

Station 
ITRF2008 Coordinates 

x y z 

ALIC –4052052.1042 4212836.1056 –2545105.5242 

HOB2 –3950071.6113 2522415.2415 –4311638.1117 

ONSA 3370658.5630 711877.1203 5349786.9403 

WTZR 4075580.5771 931853.7760 4801568.1232 

 

The receiver and antenna models for each station are outlined in Table 2. Products concerning 

the antenna phase offsets were used in the process to mitigate subsequent residual errors. 

 
Table 2  Receiver and antenna model for the Australian and European stations  

 

Station Receiver Model Antenna Model 

ALIC AOA ICS-4000Z AC AOAD/M_T  

HOB2 AOA ICS-4000Z AC AOAD/M_T  

ONSA ROGUE SNR-8000 AOAD/M_B 

WTZR ROGUE SNR-8000 AOAD/M_T  
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Other IGS products such as precise ephemerides, ocean tide loadings and EOPs were also 

used in post-processing. The processing parameters were the same as the MOBS-BALL 

campaign, i.e. the station coordinates; satellite and receiver clock offsets and the tropospheric 

zenith delay were estimated as the unknown parameters. The processing included the use of a 

cut-off elevation angle of 15
0
 and the Niell troposphere mapping functions. The ionosphere-

free linear combination was implemented to mitigate the ionospheric residual errors. The data 

were analysed with 1 h, 2 h, and 3 h processing windows. The tropospheric parameter was 

estimated at every hour, regardless of the size of the processing session. The ALIC and 

ONSA stations were chosen as the reference station in each respective campaign and their 

coordinates were constrained to within 0.1 mm from the ITRF2008 coordinates. The accuracy 

of the Cartesian and height coordinates of HOB2 and WTZR, estimated independently using 

EADM, MINQUE and SMINQUE were assessed by comparing the estimated values with the 

known ITRF2008 coordinates. For the ALIC-HOB2 campaign, the ITRF coordinates were 

calculated on the 31
st
 of March2004, whereas for the ONSA-WTZR campaign the coordinates 

for the stations were calculated on the 10
th
 of September 2004. The corresponding hourly 

GNSS precipitable water vapour (PWV) estimates for the ALIC-HOB2 campaign were 

converted from the ZWD estimates using the following equations (e.g. Bevis et al., 1992): 

 

 ZWDPWV   (21) 

with 

 
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M
kkk    (23)  

 sm T72.02.70T   (24) 

 

where wvR  and w  are the specific gas constant of water vapour and the density of liquid 

water, respectively; mT  is the weighted mean temperature; sT  is the surface temperature in 

Kelvin; wvM  and dM  are the molecular mass of water vapour and dry air, respectively; ,k1  

,k 2  3k  are the pre-determined coefficients based on theory and experimental observations. 

Table 3 provides the values for these coefficients. 

 

Table 3 Values for Coefficients 21 k,k  and 3k   

 

 k1(Kmbar
-1

) k2(Kmbar
-1

) k3(K
2
mbar

-1
) 

Smith and Weintraub (1953) 77.607 ± 0.013 71.60 ± 8.50 3.747 ± 0.031 

Thayer (1974) 77.604 ± 0.014 64.79 ± 0.08 3.776 ± 0.004 

Bevis et al.(1994) 77.600 ± 0.050 70.40 ± 2.20 3.739 ± 0.012 

 

The factor   is sometimes approximated as 6.5 (Kleijer, 2004), but it varies spatially and 

temporally. 

 

Once estimated, the PWV were then validated against co-located radiosonde (RS) data. The 

RS data were provided by the Australian Bureau of Meteorology (BoM) twice daily at 0:00 

and 12:00 Coordinated Universal Time (UTC), together with other relevant surface 

meteorological data such as temperature and pressure data. The meteorological data allow the 

GNSS wet delay estimates to be converted to PWV estimates using eqs. (21) – (24). 
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Unfortunately, RS data were not available for the ONSA-WTZR baseline campaign; however, 

water vapour radiometer (WVR) data were accessible for comparisons. A WVR is able to 

direct measure the amount of water vapour (i.e. wet delay) in the atmosphere along a line-of- 

sight. The WVR data at ONSA were available at every 60 seconds whilst hourly WVR data 

were provided at WTZR. However, the WVR data Onsala were averaged at every hour to 

ensure that comparisons can be made with the hourly GNSS ZWD estimates. 

 

4.2 TEST RESULTS OF THE ALIC-HOB2 AND ONSA-WTZR BASELINES 

The RMSE, calculated using eq. (20), for each of the tested stochastic models, namely 

EADM, MINQUE and SMINQUE, are summarised in Figure 4 and Figure 5 for HOB2 and 

WTZR stations, respectively. The given RMSE of the coordinate and height discrepancies 

(offsets) were determined from all solutions over the whole investigated period of the 

campaigns. In each of these figures, the top-left, top-right and bottom diagrams represent the 

results for when the data were analysed with 1 h, 2 h and 3 h processing windows. 

The magnitude of the RMSE for these small processing windows can be attributed to the large 

baseline length, i.e. greater residual errors. As expected, the coordinate solutions improve 

with increasing processing window size. For the ALIC-HOB2 campaign, the EADM 

consistently produced the best results among the three presented stochastic models with 

respect to the accuracy of the coordinate offsets from the referenced ITRF values. The 

MINQUE method did perform marginally better with the 2 h processing window than the 

EADM. The differences between the MINQUE and SMINQUE were generally in the sub-

millimetre range. However, differences of up to a few millimetres were also observed.  

 

 
Figure 4 Plots of the Cartesian and height coordinate discrepancies at HOB2 for the ALIC-

HOB2 baseline campaign for (a) 1 h, (b) 2 h and (c) 3 h processing windows 
 

(a) (b) 

(c) 
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Figure 5 Plots of the Cartesian and height coordinate discrepancies at WTZR for the ONSA-

WTZR baseline campaign (a) 1 h, (b) 2 h and (c) 3 h processing windows 

 

The positional results, shown in Figure 5, for the ONSA-WTZR baseline with a 1 h 

processing window were similar to that of the ALIC-HOB2 baseline in that the MINQUE and 

SMINQUE models performed relatively poorly in comparison to that of EADM. However, 

the MINQUE and SMINQUE models showed improvements for the 2 h and 3 h windows. In 

fact, the MINQUE and SMINQUE models produced better coordinate solutions. The more 

favourable results from the ONSA-WTZR campaign (as compared to ALIC-HOB2) can be 

attributed to smaller location-dependent residual errors due to shorter baseline length, as well 

as a smaller difference in latitudes between the two stations and thus, both stations 

experienced somewhat similar satellite geometry and atmospheric effects.  

 

The RMSE is used to evaluate the accuracy of corresponding set of GNSS tropospheric 

solutions for these campaigns. The RMSE for the differences between GNSS and RS PWV 

and for the differences between GNSS and WVR ZWD estimates is computed as follows: 
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where cn  refers to the number of data compared.  

 

The RMSE of the PWV differences for ALIC and HOB2 are summarised in the Tables 4 and 

5, which showed that the EADM was superior to the MINQUE and SMINQUE models in 

resolving the PWV estimates, in additional to providing better positional estimates (as shown 

in Figure 4). On average, the EADM was able to provide PWV estimates with an 

improvement of approximately 38 % and 45 % in accuracy when compared to the PWV 

values estimated from the MINQUE and SMINQUE models. Although it was not as 

prominent at HOB2, an improvement in the resolution of the PWV estimates can be observed 

nonetheless.  

(a) (b) 

(c) 
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Table 4 RMSE (mm) of the PWV differences between GNSS and RS measurements at Alice Springs 
 

Window 

Size 
EADM MINQUE SMINQUE 

1 h 3.2 5.8 5.6 

2 h 2.2 3.0 4.1 

3 h 1.1 1.6 2.2 

 
Table 5 RMSE (mm) of the PWV differences between GNSS and RS measurements at Hobart 

 

Window 

Size 
EADM MINQUE SMINQUE 

1 h 2.3 3.7 2.2 

2 h 1.6 2.0 2.0 

3 h 2.2 2.4 2.2 

 

For the European campaign, the RMSE of the ZWD differences between the GNSS and WVR 

estimates for ONSA and WTZR are summarised in the Tables 6 and 7. For the ONSA-WTZR 

baseline campaign, the EADM outperformed the other stochastic models with the 1 h 

processing window as a result of better height estimates. Although the MINQUE and 

SMINQUE models yielded slightly better positional estimates for the 2 h and 3 h processing 

windows, this improvement was not evident in the subsequent ZWD estimates.  

 
Table 6 RMSE (cm) of the ZWD differences between GNSS and WVR measurements at Onsala 

 

Window 

Size 
EADM MINQUE SMINQUE 

1 h 2.4 2.8 2.8 

2 h 1.7 1.8 1.8 

3 h 1.4 1.7 1.7 

Table 7 RMSE (cm) of the ZWD differences between GNSS and WVR measurements at Wettzell 
 

Window 

Size 
EADM MINQUE SMINQUE 

1 h 3.0 3.2 3.5 

2 h 2.1 2.3 2.2 

3 h 1.9 2.0 2.0 

 

In fact, the EADM was the top-performer across all processing window sizes. On average, the 

EADM was able to resolve the ZWD with a 12.5% improvement in RMSE over MINQUE 

and SMINQUE at the Onsala stations. The advantage of using EADM was also evident at 

WTZR with the average improvements in RMSE of around 7% and 8% over MINQUE and 

SMINQUE. 

 

The favourable results for EADM in these campaigns can be attributed to the fact that the 

weights given by the model reflect the amount atmosphere experienced by GNSS signals. 

Furthermore, the EADM is a model that provides greater weights to the observations closer to 

the zenith, and de-weights observations at lower elevation angles and hence, reduces 

troposphere errors. In contrast, MINQUE is a model that only considers the spatial 

correlations among the satellites and it does not take into account location-dependent errors 

due to the troposphere. From results of the investigations in this paper, the use of EADM is 

therefore recommended for the purpose of estimating tropospheric delays. 
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Although the EADM is a conventional model that ignores any correlations among the 

undifferenced observations, it was shown in this study to be superior to MINQUE and 

SMINQUE, models that consider the spatial correlation among the GNSS observations in 

estimating the tropospheric delays. The computational power required by MINQUE is also a 

hindrance. Further studies are planned to determine if the results here are reflective of other 

spatial models such as Maximum Likelihood Estimator, Best Invariant Quadratic Unbiased 

Estimator and Lehmann-Scheffé Estimator (Amiri-Simkooei, 2007; Slanger, 1996). 

 

 

5 SUMMARY 

 

Changes in the stochastic model to include the correlations among the GNSS observations 

affect the estimation of heights and ZWD. In this paper, a study into the impact of MINQUE 

and SMINQUE over a medium length baseline of approximate length of 103 km was first 

presented. The baseline was processed with 1 h, a 2 h, a 3 h and a 6 h processing windows for 

a 3-week period. The results have shown that the MINQUE model was consistently 

outperformed by the EADM in resolving the Cartesian and height components by about 50% 

on average over the whole campaign.  

 

For the investigation of a long-baseline campaign in Australia, MINQUE and SMINQUE 

models were again outperformed by EADM. The accuracy of the corresponding tropospheric 

solutions suffers as a consequence and it was found that the EADM was able to resolve the 

PWV solutions on average 40% more accurately. Although the positional results for EADM 

in another baseline campaign between Onsala and Wettzell were mixed, it managed to 

provide the better set of tropospheric solutions in terms of smaller RMSE values. Overall, the 

study shows that the modelling of the correlation is not as significant in medium to long 

baselines. Thus, the use of EADM is recommended for the purpose of estimating positional 

solutions and tropospheric delays in these instances due to its simplicity. 
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