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Abstract 

 

Camera model and its calibration are required in many applications for coordinate conversions between 

the two-dimensional image and the real three-dimensional world. Self-calibration method is usually 

chosen for camera calibration in uncontrolled environments because the scene geometry could be 

unknown. However when no reliable feature correspondences can be established or when the camera is 

static in relation to the majority of the scene, self-calibration method fails to work. On the other hand, 

object-based calibration methods are more reliable than self-calibration methods due to the existence of 

the object with known geometry. However, most object-based calibration methods are unable to work 

in uncontrolled environments because they require the geometric knowledge on calibration objects. 

Though in the past few years the simplest geometry required for a calibration object has been reduced 

to a 1D object with at least three points, it is still not easy to find such an object in an uncontrolled 

environment, not to mention the additional metric/motion requirement in the existing methods. 

Meanwhile, it is very easy to find a 1D object with two end points in most scenes. Thus, it would be 

very worthwhile to investigate an object-based method based on such a simple object so that it would 

still be possible to calibrate a camera when both self-calibration and existing object-based calibration 

fail to work. We propose a new camera calibration method which requires only an object with two end 

points, the simplest geometry that can be extracted from many real-life objects. Through observations 

of such a 1D object at different positions/orientations on a plane which is fixed in relation to the 

camera, both intrinsic (focal length) and extrinsic (rotation angles and translations) camera parameters 

can be calibrated using the proposed method. The proposed method has been tested on simulated data 

and real data from both controlled and uncontrolled environments, including situations where no 



explicit 1D calibration objects are available, e.g. from a human walking sequence. Very accurate 

camera calibration results have been achieved using the proposed method.  
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1. Introduction 

  

Camera calibration is an important component in computer vision applications that aims to extract 3D 

metric information of the camera from 2D images. Existing camera calibration methods can be 

classified into two main categories: self-calibration (a.k.a. 0D object-based calibration) and object-

based calibration (3D/2D/1D object-based).  

 

Self-calibration [1-6] is normally formed by moving a camera around an unknown static scene. The 

camera can be calibrated through point/line correspondences between images. The idea here is to find 

camera parameters that satisfy the pairwise epipolar constraints, e.g. Kruppa equations [2] and Huang-

Faugeras' constraints [6], which can be obtained from point/line correspondences. This approach can be 

applied easily to most pre-existing images. However, one significant limitation of this approach is that 

a sufficient number of correspondences between views must be established - which is impossible when 

the scene is featureless, the structure of the scene is dynamic, or the scene and the camera is relatively 

static. Another type of self-calibration is through the vanishing points [7-9], when there are some 

known artifacts (with edges that are parallel or perpendicular to each other, e.g. buildings) in the scene 

being observed. This type of calibrations attempts to find camera parameters to associate the vanishing 

points with some parallel lines. This approach can also be applied to many pre-existing images, as long 

as objects with visible parallel/perpendicular edges are present in the scene. While the existing self-

calibration methods are useful for calibrating the camera from many pre-recorded images, they cannot 

be used for camera calibrations in situations where the required features (e.g. point/line 

correspondences between images from the static scene, parallel/perpendicular lines) are unavailable in 

the observed scene, or when the camera model is relatively static to the majority of the scene features. 



 

Object-based calibration utilizes a calibration object whose geometric information is pre-known. The 

camera calibration process can thus become more reliable without involving a large number of 

uncertain features. The calibration objects may have a dimension of three, two or one. The 3D object-

based camera calibration [10-13] is a traditional calibration technique which requires the three-

dimensional geometric knowledge of a reference object prior to the calibration process. In this 

technique the 3D points and their 2D projections are associated through a projection matrix. When a 

sufficient number of 3D-2D correspondences are obtained, the projection matrix can be solved using 

Direct Linear Transformation (DLT). Subsequently the camera parameters can be computed. Very 

accurate results can be produced by this technique. The 2D object-based camera calibration [14-15] 

makes use of known planar patterns instead of a complex three-dimensional object which makes the 

calibration process more flexible. The user needs to paste some pre-known patterns on a cardboard and 

move the cardboard in front of a camera several (at least two) times for the camera to be calibrated. 

The idea behind this technique is to solve the camera parameters from the homography between the 

points on the pre-known plane pattern and the corresponding image points. Sufficiently accurate 

calibration results can be produced by the 2D object-based calibration, despite the simpler preparation 

process. The 1D object-based calibration [16-22] was proposed a few years ago, which only required a 

one-dimensional object consisting of at least three feature points. The motion of the 1D object is 

usually strictly constrained, e.g., moving around a fixed point [16-20] or moving under gravity only 

[21, 22]. Under such constraints, some approaches [17-22] try to calibrate all intrinsic parameters (focal 

length, pixel aspect ratio, skew, and an image principle point) with the known metric information on 

the object; while some other approaches [16] calibrates a simpler camera model (e.g. unit pixel aspect 

ratio, zero skew, etc.) by eliminating the need for knowing the metrics of the linear points. With the 

existing 1D object-based calibration techniques, it is possible to use a very simple calibration object (a 

1D object with three feature points) to calibrate a reasonably modeled camera without pre-

measurement.  

 

Among the existing camera calibration techniques, the self-calibration methods are better suited for 

certain uncontrolled environments, while the object-based methods are more reliable but are only 

suitable for controlled environments. To our knowledge, there are no object-based camera calibration 



methods that can easily work in uncontrolled environments, due to their restrictions on the geometry of 

the calibration object. There is certainly a need to investigate an object-based camera calibration 

method, which could be an alternative choice especially in some uncontrolled situations where the self-

calibration methods fail to work. This paper proposes such a method that is able to calibrate both the 

intrinsic and extrinsic (in relation to the plane) parameters of an ideal pin-hole camera. To make it 

possible for the proposed method to be employed in uncontrolled environment, the calibration object is 

relaxed to ea 1D line segment consisting of two end points. This object is required to remain on a fixed 

plane whenever it is observed. The 1D object satisfying such a requirement can be easily identified by 

an ordinary user as follows. If there is a visible plane in the scene, such as a desk or a floor, it  can be 

easily perceived if there is a 1D object on the plane (e.g. a pen on the desk) or if a 1D object is in a 

plane parallel the plane (e.g. the bottom edge of a cabinet door which always remains parallel to the 

floor ). As a matter of fact, he 1D object  does not need to be remain on a fixed  plane all the time - it 

can move freely as long as at each observation it lies within the same plane that is relatively fixed to 

the camera. For example, the line from the tip to the toe of a human foot when it is on the floor could 

be used as a calibration object, although the foot can be lifted up from the floor from time to time.  

 

The proposed method differs from existing camera calibration techniques in the following aspects:  

 

1) Unlike the existing self-calibration technique, the proposed method does not concern whether the 

structure of the whole scene is artificial/natural or static/dynamic, as long as the two end points of a 1D 

object can be observed. The proposed method also does not require the camera to move around the 

scene, and is therefore suitable for applications with a fixed camera, e.g. surveillance camera. In 

particular, the self-calibration technique using line correspondences normally requires multiple 

observations of multiple line segments [1], while the proposed method only requires multiple 

observations of a single line segment.   

 

2) Unlike the existing object-based calibration technique, the proposed method does not require special 

preparations or measurements of the calibration object. Any object with a line segment will be 

sufficient. Though the proposed method requires the 1D object to remain on a 2D plane for every 

observation,   it is significant different from the traditional 2D object-based calibration methods. A 1D 



object with two end points cannot be considered a “pattern” on a plane, because observations of such 

an object do not provide enough 2D point correspondences for deriving the homography matrix 

required in 2D object-based methods. 

 

The rest of this paper is organized as follows: Section 2 provides the preliminary knowledge for this 

project; Section 3 introduces the proposed calibration algorithm; Section 4 describes the experimental 

results on both simulated and real data; and Section 5 concludes this paper. 

 

 

2. Preliminaries 

 

2.1 World-image projection 

 

 

An ideal pinhole camera is widely used in computer vision. It relates a 3D point [x,y,z,1]T and its 2D 

image point [u,v,1]T by a 3×4 projection matrix P: 

 

[u,v,1]T~P[x,y,z,1]T . (1) 

 

The matrix P is determined by an intrinsic parameter (focal length f) and six extrinsic parameters 

encoding the Camera Coordinate System (CCS) with respect to the World Coordinate System (WCS). 

The transformation between the WCS and CCS is defined as follows: CCS is initially aligned with 

WCS. It is then translated to [tX,tY,tZ,1]T, followed by a rotation about the Y-axis by pan angle α, then a 

rotation around the X-axis by tilt angle β, and finally, a rotation around the Z-axis by roll angle γ. 

Accordingly, the projection matrix P can be represented as: 
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Given a set of correspondences between image points and 3D points, the projection matrix P can be 

derived using DLT algorithm, and subsequently, the camera parameters can be calibrated. In this 

research the 3D coordinates of all observed points are unknown. However, they are assumed to lie on 

the same plane for all observations. The problem can then be simplified into the plane-image mapping. 

The specific plane containing the observed points will be referred to as “the reference plane” in the rest 

of this paper. 

 

2.2 Plane-image homography 

 

Assuming that all 3D points lie on the XZ plane, an arbitrary point [x,0,z,1]T can be represented as 

[x,z,1]T for simplification. Denoting the ith column of [RZRXRY | -RZRXRYT] as Ei, a point [x,z,1]T and 

its projection [u,v,1]T are related by a 3×3 homography H: 

 

[ ] [ ] [ ]431   ~      w h11 EEEKHH TT x , z ,u , v ,=  (3) 

 

If the homography can be obtained, the points on the planes can be calculated directly from [x,z,1]T=H-

1[u,v,1]T. The problem of obtaining the points on a plane from the images is often called plane 

rectification and will be discussed next. 

 

2.3 Plane rectification 

 

The image-plane homography, H-1, can be decomposed uniquely into a concatenation of three matrices: 

namely, the similarity transformation matrix Sk, the affine transformation matrix Ak, and the projective 

transformation matrix Pk: 

 

 1
hhh

- PASH =  (4) 

 

The projective transformation matrix Pk is required for the affine rectification of the image. It is defined 

as: 
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The parameters l1, l2, and l3 form a homogeneous vector l∞=[l1, l2, l3]T, which defines the vanishing line 

of the plane on the image. If the vanishing line of the plane can be identified, the matrix Pk can be 

obtained. The vanishing line can be determined by two or more vanishing points, which lie on the 

vanishing line. A vanishing point can be conventionally obtained as the intersection of projections from 

two parallel lines in the reference plane. When there are no pre-known parallel lines in the reference 

plane, it is still possible to obtain the vanishing point in some specific cases. Reference [23] proposes a 

way to obtain the vanishing point from an object with uniform linear motion: a point p on the world 

path and the point p’ on the projection can be related by a 1D homography G: p=Gp’. The matrix G 

can be estimated by the DLT algorithm when there are sufficient correspondences on the same path. 

The vanishing point pv’ can then be computed as pv’=G-1[1,0]T. With the vanishing points obtained, the 

matrix Pk can be computed. The image geometry is affine-rectified by applying the matrix Pk, i.e., 

affine properties such as length ratios etc. are restored on parallel segments. In order to restore the 

length ratios on non-parallel segments, a further rectification – metric rectification is required. The 

affine transformation matrix Ak is used to perform metric rectification from affine-rectified geometry 

and is defined as: 
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The parameters α’ and β’ are used to represent circular points. The circular points are a pair of complex 

conjugate points on the line at infinity and are invariant to similarity transformation. They are 

transformed from metric coordinates [1, ±i, 0]T to affine coordinates [α’ iβ’, 1, 0]T. These two 

parameters can be estimated from images under three types of constraints as proposed in [24]: (1) a 

known angle on the reference plane; (2) equal but unknown angles on the reference plane; and (3) 

known length ratio of two non-parallel segments on the reference planes. The angle constraints are not 

applicable in this research since a single 1D object does not provide any information on angles. Only 

the third type of constraints is of interests in this project. Assume that there are two non-parallel 



segments in the world plane and their projections on the image are l1 :(u11, v11)-(u12, v12) and l2 :(u21, 

v21)-(u22, v22). Denoting ∆ui for un1-un2 and ∆vi for vn1-vn2, the point (αi, βi) lies on a circle with centre 

(cα’, cβ’) on the axis and radius r: 
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Thus, (α’, β’) can be solved as the intersection of at least two such circles. With α’ and β’ computed, 

the affine-rectified plane can be metric-rectified using the matrix Ak. The final matrix is a similarity 

transformation: 
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where s is a scaling parameter, R is a 2D rotation matrix, and t is a translation vector. 

 

It can be seen from above that only matrix AhPh needs to be estimated if the reference plane geometry 

is to be recovered from the image points. The existing methods cannot recover the vanishing points 

when no parallel lines on world plane are pre-known or a 1D object with metric information of three or 

more feature points (the object with uniform linear motion in [23] can in fact be treated as an object 

with three or more points) is unavailable. Nevertheless, it has been proven that the world plane pattern 

can be recovered from the image points of line segments if vanishing lines on the plane can be 

estimated. 

 

In the next section, the proposed calibration algorithm is introduced, which is able to calibrate the 

camera and rectify the image using only a 1D object with two end points, without the need to recover 

the vanishing points. 

 

3. Proposed Calibration Algorithm 



 

As discussed above, if the vanishing line can be determined, a 2D pattern on the reference plane can be 

recovered. Due to the existence of noises, both the affine and metric rectifications require non-linear 

optimizations after initiations [23]. The vanishing line has three degrees of freedom: two parameters for 

a 2D point on the vanishing line and one parameter for the rotation around this point. One way to 

estimate these parameters is through non-linear optimizations. However, the first two parameters are 

not bounded. It is difficult to perform non-linear optimizations on them. The idea of the proposed 

algorithm is to work directly on the camera parameters themselves, rather than deriving them through 

the vanishing line. The details of the proposed algorithm are introduced in the following sections. 

 

3.1 Camera model 

 

We adopt the pin-hole camera model introduced in Section 2.1. There are seven camera parameters to 

calibrate: focal length f, tilt angle β, roll angle γ, pan angle α and camera displacement parameters tX, tY, 

and tZ. The origin of WCS is placed on the fixed reference plane and the Y-axis of WCS is set to be 

perpendicular to the plane pointing downwards. Since some users may prefer to use their own WCS, 

two WCSs are presented here: the pre-defined WCS and the user-specified WCS. With the pre-defined 

WCS, pre-define values are given to some camera parameters while preserving the relationship 

between the image plane and the reference plane up to a scale factor.  Not all camera parameters need 

to be calibrated in this case. With the user-specified WCS, all camera parameters need to be calibrated. 

The pre-defined WCS and user-specified WCS used in this project are illustrated in Figure 1. 
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(a)                                                                                       (b) 

Figure 1: Image plane, CCS, pre-defined WCS with reference plane, user-specified WCS with 

reference plane: (a) CCS and the pre-defined WCS; (b) Pre-defined WCS and user-specified WCS. 

 

We divide these parameters into two groups: critical parameters (f, β, and γ) which can uniquely 

represent the relationship between the camera and the plane up to a scale factor, and non-critical 

parameters (α, tX, tY, and tZ) which metrically relate the camera model with the plane. Our attempt to 

calibrate these parameters can be simply summarized as follows. If a pre-defined WCS is assumed by 

setting the non-critical parameters with pre-defined values (α=0 and TS=[0,-1,0]T) , only the critical 

parameters are calibrated based on these values. If the user specifies some relevant information about 

the WCS on the image as detailed later in Section 3.3, all non-critical parameters will be calibrated, in 

addition to the critical parameters, to satisfy the preferences of the user. 

 

3.2 Computation of Critical Parameters 

 

As introduced in Section 2.2, any arbitrary point on the reference plane can be represented as 

[xS,0,zS,1]T and can be simplified as [xS,zS,1]T since y coordinate is always zero. A point [xS,zS,1]T on 

the reference plane and its projection [u,v,1]T are related by a homography as shown in Equation (3). 

[xS,zS,1]T can be computed from Equation (3) as: 

 










++−
+−

=

++−
+

=

βγβγβ
βγβγβ
βγβγβ

γγ

s i nc o sc o ss i nc o s
c oc o ss i ns i ns i n

s i nc o sc o ss i nc o s
s i nc o s

S

S

fvu
fvuz

fvu
vux

 (10) 

 

We denote the two end points of a 1D object as A and B and let the image points of A and B at the ith 

observation be [uAi,vAi,1]T and [uBi,vBi,1]T respectively. Since the 1D object is always on the reference 

plane at the time of observations, by denoting the corresponding end point positions on the plane as 

[xAi,zAi,1]T  and [xBi,zBi,1]T, we can define a function to compute the back-projected length of the line 

segment as: 
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where xA, zA, xB and zB can be derived using Equation (6). 

 

Denoting the length of a 1D object as L, it can be obtained as: 
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where k is an arbitrary scaling factor. 

 

If there are N observations of the 1D object at different positions/orientations, and since L is constant 

for the same 1D object and k is invariant for the same camera settings, a set of (N-1) equations can be 

derived as: 
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By stacking three such equations, it is theoretically possible to solve for the three camera parameters (f, 

β, and γ). However, the computation efforts of solving for these unknowns are very huge due to the 

high complexity of the equations. Fortunately, all these three camera parameters are bounded. The 

normal range of the angle of view of a lens is between 10° and 100°.  The range of focal length (f) for 

an image with the dimension of W×H can be computed as between D*cot(100°/2)/2 and D*cot(10°/2)/2 

where D=(W2+H2)1/2. The normal range of the tilt angle (β) is between -60° and 60° while the normal 

range of the roll angle (γ) is between -15˚ and 15˚. Hence the parameters can be obtained through 

optimization. 

 

An object function needs to be derived for the optimization process to evaluate the fitness of the given 

parameters. The minimum input error tolerance required for the successful reconstruction from at least 

a specified percentage of all input observations of the calibration object is also reflected in the object 

function. This percentage, denoted as λ, is normally set at 90% to accommodate occasional extraction 

error of the calibration object while maintaining the reconstruction accuracy. Defining δ as the input 

error tolerance for the image points and ωλ(f, β, γ, δ) as the minimum back-projected length discrepancy 

tolerance for a subset of image point pairs, the object function is constructed as: 
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Defining M as the complete set of the input line segments, qλ(f, β, γ, δ) as a subset of M such that |qλ(f, 

β, γ, δ)|≥λ|M| and all its element image points are able to be reconstructed within the tolerance δ under 

the given camera model, and Ψ(Q, f, β, γ, δ) as the minimum back-projected length discrepancy 

tolerance for the set Q, the function ωλ(f, β, γ, δ) is defined as: 
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It is assumed that there are n observations of the 1D object in the set Q, and the image points of the 1D 

object in the ith observation are denoted as mAi=[uAi,vAi,1]T and mBi=[uBi,vBi,1]T. Function φ(mA, mB, f, β, 

γ, δ) is defined to represent the back-projected length interval of the line segment under the given 

camera parameters and the given input image noise tolerance, and ψ(δ, φa, φb) is defined to determine 

whether φa and φb overlap  under the given noise tolerance δ. The function Ψ(Q, f, β, γ, δ) can then be 

defined as: 
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The function ψ(δ, φa, φb) is defined as: 
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Denoting ε=[uε,vε,0]T as the vector of an input noise, the function φ(mA, mB, f, β, γ, δ) is constructed as: 
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When using Equation (14) for optimization, it is desirable to compute ε1, ε2, ε3, and ε4 directly, or even 

better, to compute lmin and lmax directly, especially when δ is non-zero. The following method is 

proposed for computing lmin and lmax directly. 



 

● Computation of lmin: 

 

1) When ||mA-mB||∞≤2δ, which indicates that two end points can overlap under the input noise 

tolerance, lmin=0; 

 

2) When all of mA±[δ, ±δ, 0]T or all of mB±[δ, ±δ, 0]T are back-projected to invalid positions (infinity or 

positions that are behind the camera), lmin=∞; 

 

3) In other cases, the four sides of the polygon back-projected from mA±[δ, ±δ, 0]T  (or mB±[δ, ±δ, 0]T) 

are denoted as SAi (or SBi) with i=1, 2, 3, and 4. The shortest distance between each line segment pair of 

SAi and SBi can be easily obtained. This shortest distance among all pairs is chosen as lmin. 

 

●  Computation of lmax: 

 

1) When any of mA±[δ, ±δ, 0]T or any of mB±[δ, ±δ, 0]T is back-projected to an invalid position, lmax=∞; 

 

2) In other cases, the longest distance between each line segment pair of SAi and SBi can be obtained.  

This longest distance among all pairs is chosen as lmax. 

 

With the object function defined and the bounded search spaces for all parameters specified, the 

dynamic hill climbing (DHC) method [25] is implemented for non-linear optimization. The basic idea 

of the optimization process using DHC is to randomly generate an initial 3-tuple (f, β, γ) within the 3D 

searching space for n times in the outer loop of DHC. With every randomly generated starting value, 

the inner loop of the DHC algorithm will be executed. The inner loop will stop if a solution has been 

found or the local minimum has been reached (no hill to climb). The outer loop will terminate if a 

solution has been found or n times of retry have been performed. If no solution can be found, the 3-

tuple producing the best local minima will be returned. 

 

3.3 Computation of Non-Critical Parameters 



 

The user can specify his/her preferences for defining the WCS. Such specification should be made as 

follows: First of all, the user specifies a 2D point O=[uo,vo,1]T on the image to be the projection of the 

WCS origin. Next, the user specifies a 2D point P=[up,vp,1]T in the image such that OP is the projection 

of a positive unit vector on the Z-axis. The definition of “a unit” here is up to the user. E.g., if the user 

specifies the unit vector OP as the projection of a pen, any metric measurement is base on the length of 

the pen. In that case, if the camera displacement in the X direction is 20 units, it means that this 

displacement is 20 times of the length of the pen. With the user specified OP, the proposed algorithm 

can construct the user-specified WCS based on the pre-defined WCS.  

 

Denoting the ith column of [RZRXRY|-RZRXRYT] as Ei, a point [x,z,1]T on the reference plane and its 

projection [u,v,1]T are related by a 3×3 homography H: 

 

[u,v,1]T =H[x,z,1]T, where H~K[E1 E3 E4]. (19) 

 

The homography HU relating the coordinates of the same point represented in user-specified WCS 

([x,z,1]T) and the pre-defined WCS ([xS,zS,1]T) can be computed as: 
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According to the user-specified position of points O and P, it can be obtained that: 
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All non-critical parameters can then be derived as: 
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where  xo, zo, xp and zp can be computed using Equation (6). 

 

4. Results 

 

The proposed camera calibration algorithm has been tested on both simulated data and real data, 

including data from both controlled and uncontrolled environments. 

 

4.1 Experiments on Simulated Data 

 

Simulated data are used to test the accuracy of the proposed method under different circumstances. In 

the experiments, the image resolution is set to be 640 (pixel) × 480 (pixel). The ground true values for 

the camera parameters are set as follows: the tilt angle β is 25°, the roll angle γ is 10°, the focal length f 

is 1000 pixel, and α=59.1°, tx=8.2 mm, ty=-14.9 mm, and tz=-12.7 mm. Under this settings, the 

projection of the WCS origin is (280.0, 475.0) and the projection of a 3D point (1000mm, 0, 0) on X 

axis is (319.5, 460.0). 

 

Figure 2: Image of 100 observations of a 1D object. 

 

 



Two individual tests are conducted on the simulated data. The first one tests the calibration accuracy 

relative to the input noise level. The second one tests the calibration accuracy relative to the number of 

observation. 

 

In Test 1, for each input noise level, 100 independent trials are performed. In each trial 20 observations 

of a 1D object is randomly generated. An example is shown in Figure 2 which blends all the 

observations together. Gaussian noise with 0 mean and σ standard deviation is added to the image 

points, where σ is varied from 0 to 2.5 pixels with the step length of 0.1 pixel.  Based on the randomly 

generate video clips with the specified input noise, camera calibration is performed using the proposed 

technique. After calibrating the critical parameters, namely the focal length, the tilt angle and the roll 

angle, the non-critical parameters do not need to be calibrated if the pre-defined WCS is used. 

However, for the convenience of verifying the accuracy of non-critical parameter calibrations in the 

same scale as the ground truths, the user-specified WCS is used by giving the preference that a 2D 

vector from the image point (280.0, 475.0) to the image point (319.5, 460.0) is the projection of a 3D 

vector from the WCS origin to a point on X axis with the magnitude of 1000mm. The calibrated 

parameters are compared with the ground truths. The accuracies of the calibrated parameters are 

measured in different ways. For focal length, the relative error with respect to the ground truth (|∆f|/f) is 

measured; For pan (α), tilt (β), and roll (γ) angles, the absolute errors (|∆α|, |∆β|,|∆γ|) are measured; For 

the translation parameters, the ground true magnitude of the vector from the camera center to WCS 

origin is first computed. The difference in each of the translational parameters is then computed in 

relation to this magnitude to obtain the relative error (|∆tx|/l, |∆ty|/l, |∆tz|/l, where l=(tx
2+ ty

2+ tz
2)0.5).  

Figure 3(a) shows the mean value of the relative errors of the focal length and the absolute errors of the 

tilt/roll angle from the 100 independent trials.  

 

In Test 2, similar ground truth settings as Test 1 are used. The input noise level of 0.5 pixel (a.k.a. 

standard input noise level) is assumed. The number of observations varies, ranging from 4 to 100. For 

each number of observations, 100 independent trials are performed. The accuracy of the calibrated 

parameters is measured in the same way as in Test 1. The results of Test 2 are shown in Figure 3(b).  
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Figure 3: Experimental results on simulated data: (a) Calibration error with regards to input noise 

level; (b) Calibration error with regards to number of observations. 

 

 



It can be seen from the results shown Figure 3(a) that the errors of all calibrated parameters are 

generally proportional to the input noise level. When the input noise level increases from 0 to 2.5 pixel, 

the mean relative error of focal length increases from 0 to about 11%, the absolute error of pan/tilt/roll 

angle increases from 0 to about 2.5° (shown in the secondary y-axis). The relative error of each 

translation parameter increases from 0 to less than 7%. From the results shown Figure 3(b) it can be 

seen that the errors of all calibrated parameters decreases as the number of observation increases. When 

the number of observations is 4, the relative error of every parameter is very large.  When the number 

of observation is around 15, the relative error of each parameter is acceptable, with the mean relative 

error of the focal length at about 5%, the mean absolute error of rotation angles are less than 1.5°, and 

the mean relative error of each translation factor under 4%. When the number of observation reaches 

100, the mean relative error of the focal length drops to 2%, the mean absolute error of rotational 

angles drops to under 0.5° and the mean relative error of each translation factor is decreased to be 

under 2%. 

 

The experiments on simulated data demonstrate that the proposed calibration algorithm can produce 

very high accuracy on both intrinsic and extrinsic parameters under the standard input noise level 

(which sufficiently models the noise in most real data), if the number of observations can be more than 

10. 

 

4.2 Experiments on Real Data 

 

After the successful experiments on simulated data, the proposed method is tested against some real 

video data, which are acquired from both controlled and uncontrolled environments. An explicit 

calibration object for the proposed method can be an explicit 1D object, or an object with an explicit 

1D segment. These kinds of objects are very easy to find in the real world, which means that the 

proposed camera calibration method can be widely used for real videos. Since no ground true camera 

parameters are available in the tests for real videos, a popular plane-based camera calibration toolbox 

[26] is used to provide the reference value for all parameters. In the plane-based calibration cases, the 

user is required to specify the projection of the WCS origin and two axes on the plane with metric 

information for the purpose of constructing the WCS. Because the camera model defined in this camera 



calibration toolbox is different from the one in this project, some parameter conversions are preformed 

as follows. The reference focal length f is approximated by averaging the two calibrated focal lengths 

(represented in pixel width and pixel height respectively). The other parameters α, β, γ , tX, tY, and tZ are 

derived from the calibrated rotation matrix and translation vector. With these values derived, all camera 

parameters calibrated using the proposed method can be compared with the reference values.  

 

For real data, if the user does not specify the WCS information, the non-critical parameters will be 

derived using the pre-defined WCS. The accuracy of the non-critical parameters derived this way 

cannot be compared with those calibrated using the plane-based method. In order to evaluate the 

accuracy of all camera parameters, the user must provide input for the specifications of the WCS. The 

same user input will be used for the plane-based calibration method and the proposed method with the 

exception that only one axis with metric information is required in the proposed method. Please note 

that in actual application of the proposed method, the users do not have to provide WCS specifications 

if they choose not to. In that case the non-critical camera parameters will be derived based on the pre-

defined WCS, rather than calibrated (i.e.  α=0 and TS=[0,-1,0]T  as described in Section 3.1). Again 

different schemes are used for measuring the accuracy of different parameters. For the focal length f, it 

is compared with respect to the reference focal length. For α, β, and γ, the absolute error is measured. 

For tX, tY, and tZ, they are measured relatively with respect to the distance between the origins of CCS 

and the reference WCS, calibrated using the plane-based method. 

 

4.2.1 Real data from the controlled environment 

 

In the controlled environment, an object with 1D information is directly used as the calibration object. 

First, the algorithm is tested using a chopstick– which is an explicit 1D calibration object; next, the 

algorithm is tested using a piece of paper, one edge of which is treated as a calibration object.  

 

• Calibration using an explicit 1D object – a chopstick 

 

A chopstick is an explicit 1D object, since it can be represented as a line segment with two end points. 

22 observations of a single chopstick are recorded by randomly placing it on the ground. A sample 



image is shown in Figure 4(a1). The chopstick is detected automatically from each image using simple 

image processing techniques, e.g., background subtraction and Hough transformation. From the 2D end 

points of a chopstick, three camera parameters are obtained through DHC optimization as described in 

Sec. 3. In order to evaluate the accuracy of  the calibrated non-critical parameters, the same input for 

the plane-based calibration method, i.e., the 2D positions of O (for WCS origin) and P as shown in 

Figure 4(a4) and the measured distance (28mm×7 grids) between them, are used to compute the rest of 

the extrinsic parameters. 

 

These errors are within very reasonable ranges, considering the existence of input noises in the real 

video. Other extrinsic parameters are calibrated based on the critical parameters and user’s preference.  

It can be seen that the angle α can be quite accurately calibrated with error of about 1.5°, and the 

relative errors of tX, tY and tZ are under 5%.  

 

Based on the three calibrated critical camera parameters (f, β, and γ), the 2D homography matrix can be 

computed using Equation (3). In order to have an overview of all observations of the chopstick, we 

stacked all images into a single image shown in Figure 4(a2). The computed homography matrix is 

applied to this image and the recovered ground plane pattern is shown in Figure 4(a3). It can be seen 

that all appearances of the chopstick show a very similar length in the recovered image which confirm 

in another way the accuracy of the camera calibration. 

 

• Calibration using an object with an explicit 1D segment - a paper edge 

A piece of print/copy paper can be easily found in the office environment. It can be used straight away 

in the proposed algorithm, no matter whether it is blank or printed, without any specific patterns on it, 

because any edge of the paper is an explicit 1D segment. In this experiment a piece of A4 paper is 

moved randomly on a desk in front of the fixed camera. One of its long edges is chosen as the 1D 

calibration object, which is illustrated as a black line segment with green end points in Figure 4(b1). 20 

observations of the A4 paper are used to calibrate the three critical camera parameters using the 

proposed method. The user’s input is taken from the plane-based calibration method: the 2D positions 

of O and P as shown in Figure 4(b4) and the measured distance (28mm×5) between them. These inputs 

are used to compute the remaining extrinsic parameters. The experiment results in Table 1 show very 



high accuracy with the relative differences for f at about 2%, for β, γ and α at under 2.5°, and for tX, tY 

and tZ at under 2%. Figure 4(b2) and Figure 4(b3) show the extracted paper edges and their positions 

after plane rectification. 

 

The experiments with an explicit calibration object have demonstrated the high accuracy and high 

flexibility of the proposed method. Compared with the traditional plane-based method, no specific 

preparation is required for the calibration object while the same level of calibration accuracy is 

achieved. Next, we will demonstrate even higher flexibly of the proposed method when the input data 

is captured from uncontrolled environment, where no specific object is prepared to be the calibration 

object. 

  

(a1)                                                                           (b1) 

  

(a2)                                                                           (b2) 



  

(a3)                                                                           (b3) 

  

(a4)                                                                           (b4) 

Figure 4: Real data with an explicit calibration object: (a) Explicit 1D object (chopstick), (b) Explicit 

1D segment (paper edge): (1) Sample image; (2) Blended image; (3) Rectified plane; (4) Reference for 

extrinsic parameters.  

 

 

4.2.2 Real data from the uncontrolled environment 

 

In many circumstances, it is desirable to perform camera calibration from some pre-input data with no 

explicit calibration object present in them. In this kind of cases, if some information contained in the 

real data can be interpreted as a 1D object that satisfies the assumptions, the proposed method can be 

used for camera calibration. Three examples are presented here to show that the 1D calibration object 

satisfying our requirement can be either identified, or created in many uncontrolled environment. In the 



first example the calibration object is identified from a cabinet door, which is an object with an explicit 

1D segment. In the second example the calibration object is identified from a moving toy car, which is 

an object with no explicit 1D segment but containing explicit 1D information. The last example shows 

that it is even possible to create the calibration object from human walking motion, which contains 

implicit 1D information over time. In these examples, the plane-based calibration method is again used 

but is only for the purpose of providing reference values in each experiment. In these tests, only the 

critical parameters are compared because it is generally difficult for an user to specify preferences in 

pre-recorded video and thus the pre-defined WCS is used where the non-critical parameters are fixed 

(α=0 and TS=[0,-1,0]T). 

 

• Calibration from an object with an explicit 1D segment – a cabinet door 

 

Figure 5(a1) shows an image in which a person is opening the cabinet door in the office. The bottom 

edge of a cabinet door (illustrated in a red line segment) is an explicit 1D segment and is always 

parallel to the floor when moving. We can safely identify it as a 1D calibration object for the proposed 

method although it is not contained in a visible plane. 30 observations are obtained for the calibration 

and the corresponding “1D object” is illustrated in Figure 5(a2). The calibration results in Table 1 have 

shown that the relative error of focal length is about 10%, and the absolute error of tilt and roll angles 

are under 0.5°. It can be seen from Figure 5(a3) that on the reference plane rectified based on the 

calibrated camera parameters, all 1D segments have a consistent length validating that they are from 

the same object. 

 

•  Calibration from an object with no explicit 1D object but explicit 1D information – a moving 

toy car 

 

The motion of a moving toy car with head lights on is captured. From the sample frame shown in 

Figure 5(b1), it can be noticed that a segment connecting the two head lights has fixed length and is 

always parallel to the floor. The two head lights can hence be treated as the two end points of a 1D 

calibration object, though there is not such an explicit 1D segment between them. Table 1 shows the 

calibration results (from 15 observations illustrated in Figure 5(b2)) for this experiment. The relative 



error of focal length is about 8% and the absolute error of tilt and roll angles are under 2°. The rectified 

plane in Figure 5(b3) has shown the consistency. 

 

• Calibration from implicit 1D information without an explicit object – human walking 

 

Human walking is a very common scene in the daily life. It may not be possible to find any explicit 

information to represent a 1D object in images containing human walking. However, when a motion 

sequence is captured, the foot step (from left/right stance foot to right/left stance foot) can be treated 

roughly as a 1D calibration object if the person is walking on a relatively leveled ground, because the 

length of foot step is roughly constant for a uniformly moving person. Figure 5(c1) shows such a 

motion sequence, with all extracted footsteps shown in Figure 5(c2). Using the extracted 1D 

information (23 line segment observations), the proposed method can be applied. The calibration 

results are shown in Table 1. It can be seen that the relative error of the focal length is about 6%, while 

the absolute error of tilt/roll angle is about 1.5°.  Similarly, Figure 5(c3) shows that the footsteps on the 

rectified plane (can be considered as viewing from the top) have consistent lengths.  

 

   

(a1)                                                (b1)                                                 (c1) 

   

(a2)                                                (b2)                                                 (c2) 



   

(a3)                                                (b3)                                                 (c3) 

Figure 5: Real data without an explicit calibration object: (a) Explicit 1D segment (cabinet door edge), 

(b) Explicit 1D information (toy car headlights), (c) Implicit 1D information (footstep): (1) Sample 

image; (2) Blended image; (3) Rectified plane.  

 

Table 1. Calibration results on real data 

   f β γ° α° tX  tY  tZ  

Controlled 

environment 

Explicit 1D 

object  

(chopstick) 

 

Reference 
1332.4 pixel 22.9° -6.7° -2.1° 273.6 mm -783.4 mm -1242.2 mm 

Result 1273.8 pixel 25.1° -7.3° -0.6° 272.8 mm -810.6 mm -1311.1 mm 
Error 

 

4.40% 2.2° 0.6° 1.5° 0.05% 1.82% 4.61% 

Explicit 1D 

segment  

(paper 

edge) 

 

Reference 
789.8 pixel 23.4° -2.2° -32.2° -214.5 mm -333.9 mm -468.6 mm 

Result 773.9 pixel 22.5° -1.1° -34.7° -225.4 mm -342.0 mm -470.9 mm 
Error 

 

2.01% 0.9° 1.1° 2.5° 1.77% 1.32% 0.37% 

Uncontrolled 

environment 

Explicit 1D 

segment 

 (cabinet 

door edge) 

 

Reference 
831.5 pixel 12.6° -0.7° N/A N/A N/A N/A 

Result 750.8 pixel 12.6° -0.3° 0 0 -1 unit 0 
Error 

 

9.70% 0.0° 0.4° N/A N/A N/A N/A 

Explicit 1D 

information 

(toy car 

headlights) 

 

Reference 
749.8 pixel 33.5° -2.5° N/A N/A N/A N/A 

Result 809.3 pixel 33.3° -0.8° 0 0 -1 unit 0 
Error 

 

7.94% 0.2° 1.7° N/A N/A N/A N/A 

Implicit 1D 

information 

 

Reference 
2629.6 pixel 7.9° -0.5° N/A N/A N/A N/A 

Result 2779.1 pixel 8.3° 0.6° 0 0 -1 unit 0 



 (footstep) Error 

 

5.69% 0.4° 1.1° N/A N/A N/A N/A 

 

From the experiments in real data, great application potentials of the proposed method have been 

demonstrated. In Section 4.2.1, it has been demonstrated that the proposed calibration method can work 

well in controlled environments and can served as an alternative to the plane-based method. In Section 

4.2.2, it has been shown that the proposed calibration can also work in uncontrolled environments 

where other object-based methods would fail due to the absence of explicit calibration objects and the 

self-calibration methods would also fail due to insufficient number of point correspondences and the 

relatively static scene structure.  

 

Through the experiments on both the simulated and real data, it can be seen that the proposed camera 

calibration method produce highly satisfactory results. One disadvantage of the proposed calibration 

method is that it could not recover comprehensive camera parameters, unlike some existing calibration 

methods. However, the benefits of the proposed method significantly outweigh this drawback.  The 

proposed method can handle many cases where existing methods fail to work due to the absence of 

required information. In addition, the camera model calibrated using the proposed method is sufficient 

for most practical applications. 

 

5. Conclusions and Future Work 

 

In this paper, we proposed a novel approach to calibrate both the focal length and extrinsic parameters 

of a fixed ideal pin-hole camera from observations of a moving 1D object on a fixed plane. The 

proposed method does not require the traditional 3D object, 2D pattern or 1D object containing three or 

more collinear points, instead, only the simplest geometry of a 1D object with two end points is 

required. The object motion required by the proposed method is also less restricted than existing 1D 

object-based methods. The experimental results show that camera parameters can be calibrated with 

high accuracy from both simulated and real data. Another significant feature of the proposed algorithm 

is that it shows great potential on camera calibration based on a wide range of everyday videos, 

including those with no explicit 1D object. The proposed method is only a small step away from 

making object-based calibration employable in most uncontrolled environments. The motion required 



for the 1D object still need to be further investigated so that more situations can be handled especially 

for those where self-calibration fails to work. 
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