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Abstract 
 
The loading of gold using strong base anion exchange resin in non-ammoniac resin-solution 
(NARS) systems has been studied. The loading of gold onto ion exchange resins is affected by 
polythionate concentration, and trithionate can be used as the baseline in the system. The 
results also show that resin capacity on gold loading increases due to the increase in the 
equilibrium thiosulfate concentration in the NARS system. Gold loading performances show 
the need of optimization the equilibrium concentrations of thiosulfate in the NARS system. 

 
Keywords: equilibrium, gold loading, resin capacity, thiosulfate, trithionate 

 
 
1. Introduction 
 
Cyanide process that relies on the fact that 
gold dissolves in aerated cyanide solution to 
produce the gold cyanide complex (MacArthur, 
1988), has significantly being used as a leach 
reagent at gold mines due to its high 
efficiency and has been the most important 
extraction process for the extraction of gold 
and silver for over 100 years (MacArthur, 
1988; Marsden and House, 1992; Logsdon, 
Hagelstein et al., 1999; Young, 2001). 
However, its use is becoming undesirable 
from an environmental perspective owing to 
the acute toxicity of cyanide (Korte and 
Coulston, 1995; Moran, 1998; Miller and 
Pritsos, 2001). Dealing with the problems and 
improving the process, additional treatments 
are incorporated into the process (Koslides 
and Ciminelli, 1992; La Brooy et al., 1994; 
Mosher and Figueroa, 1996; Linge and 
Welham, 1997). Among alternative 
replacements for cyanide (Hilson and 
Monhemius, 2006), thiosulfate is the most 
capable because it is environmentally friendly 
and relatively cheap reagent (Muir and 
Aylmore, 2004). 
 
There have been a number of extensive 
studies on the leaching of gold with 
thiosulafte (S2O3

2-), and the presence of 
ammonia and copper ions with copper(II) as 
oxidant (Hu et al., 1993; Abbruzzese et al., 
1995; Jeffrey, 2001; Breuer and Jeffrey, 
2002). The leach system with oxygen as the 
oxidant in the oxidation of copper ion (Inui et 
al., 1981; Lei et al., 1992; Miller et al., 1995; 
Breuer and Jeffrey, 2003), consumes 
thiosulfate leading to the generation of 
polythionates including tetrathionate (Wan, 
1997). It affects polythionates analysis and 

the gold recovery using ion exchange resins 
(Nicol and O'Malley, 2002). Interestingly, a 
reliable method was proposed to deal with 
the analysis of thiosulfate and polythionate in 
gold thiosulfate solution with the presence of 
ammonia and copper ions (Jeffrey and Brunt, 
2007). 
 
The presence of ammonia, copper and 
dissolved oxygen may change the reaction 
kinetics, mechanism and products of the 
leaching of gold with thiosulfate. There are 
limited studies on the leaching of gold using 
ion exchange resins with the absence of 
ammonia and copper. Therefore the aim of 
this work is to investigate the loading of gold 
on ion exchange resins at equilibrium for the 
resin-solution system in the absence of 
ammonia. 
 
 
2. Methodology 
 
2.1 Apparatus 
 
For the polythioates and thiosulfate and 
analysis of all samples, a Waters 2695 HPLC 
separation module was used with the 
separation being effected using a Dionex 
IonPac AS16 ion exchange column equipped 
with an IonPac AG16 guard column. The 
species analyses were conducted using Ion 
Chromatography (IC) with ultraviolet (UV) 
detection by means of a Waters 2996 
Photodiode Array Detector. A pump with the 
flow rate of 1 mL min− 1 was used, and the 
column temperature was 25°C. Empower 
software was used for the calculation of peak 
areas. The wavelength of peak UV adsorption, 
and the peak retention time, and lower 
detection limit measured for the species and 
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gold thiosulfate is described in the available 
literature (Jeffrey and Brunt 2007). For the 
gold analysis, an inductively coupled plasma-
optical emission spec-trometry (ICP-OES) 
method had been used. 
 
2.2 Experiments 
 
Solutions prepared from either analytical 
grade or synthesized reagents and Millipore 
water were used in the all experiments. 
Sodium trithionate, sodium tetrathionate, and 
synthesized polythionates were prepared 
using the methods outlined in the literature 
(Kelly and Wood 1994). Loading solution was 
prepared in a conical flask by mixing 0.124 
mg of gold thiosulfate with 210 mL of 5 mM 
sodium thiosulfate and 5 mM sodium 
trithionate, and to make initial gold 
concentration of 0.2 mg/L in a non-
ammoniacal  resin-solution (NARS) system  
with 0.5 g Purolite A500/2788 strong base 
anion exchange resin. 10 mL sample of 
loading solution at t = 0 h was taken for the 
gold analysis using  an inductively coupled 
plasma-optical emission spectrometry (ICP-
OES) method followed by taking 1 mL sample 
of the loading solution for HPLC. After 5 h 
loading, 10 mL sample and 1 ml sample were 
taken for ICP-OES and HPLC, respectively as 
the equilibrium condition samples. 
 
The resins of loading system were decanted 
and washed 4 times into large vial using DI 
water. Suck remain the water, add 50 mL 
sodium perchlorate (0.5 M) and shack it (150 
U/min) using Jubalo SW-20C for 30 minutes 
at the room temperature (25 0C) for the 1st 
strip.  The 2nd stripping was done as well as 
the 1st stripping. Then, the resins were 
washed 4 times, put in a vial and dried for 
about 17 h. It was weighted to measure the 
dried resin. Samples of 10 and 1 ml were 
taken for ICP-OES and HPLC, respectively 
after the 1st striping and the 2nd stripping. All 
the samples with gold were added with 0.5 
CN+OH solution to its stability. For the 
matrices, 10 mL loading solution without 
addition of gold was prepared for ICP-OES. 
The experiment was repeated for various 
initial gold concentration of 0.2-9.5 mg/l. 
 
3. Results and Discussion 
 
In general, the loading of gold onto ion 
exchange resins is affected by polythionate 
concentration. As defined by the six 
experiments in Table 1, the concentrations of 
thiosulfate, trithionate, and tetrathionate are 
fairly consistent, and gold concentration is 
varied from 0.262 mg/l to 10.476 mg/l. The 

concentration of polythionate and gold after 5 
h loading in the experiments can be 
calculated using related species and gold in 
Tables 2 where the average concentration 
change of thiosulfate, trithionate, 
tetrathionate and gold are approximately 1.8, 
45.3, 56.9 and 86.4%, respectively. From 
these, the amount of thiosulfate loaded on 
the resins is very small compared to the 
trithionate concentration, which is at the 
concentration of 20.754-25.144 mM based on 
the loading (see Table 3) and 14.317-39.284 
mM based on the stripping solution volume. 
 
Table 1. The initial concentrations of gold and 

species in loading solutions without 
resins. 

  Concentrations 
Exp. Gold S2O3

2- S3O6
2- S4O6

2-

  (mg/l) (mM) (mM) (mM) 
1 0.262 5.322 5.153 0.018 
2 0.480 5.300 5.156 0.015 
3 0.713 5.268 5.168 0.018 
4 2.025 5.127 4.911 0.020 
5 5.109 5.164 4.960 0.015 
6 10.476 5.172 4.913 0.016 

 
Table 2.  The concentrations of gold and species 

in loading solutions with resins. 
  Concentrations 
Exp. Gold S2O3

2- S3O6
2- S4O6

2-

  (mg/L) (mM) (mM) (mM) 
1 0.044 5.269 2.751 0.006 
2 0.064 5.227 2.774 0.008 
3 0.093 5.188 2.712 0.006 
4 0.258 4.981 2.732 0.008 
5 0.645 5.068 2.805 0.008 
6 1.362 5.044 2.768 0.007 

 
Table 3. The measured speciation of the six 

loading solutions at equilibrium with 
resins. 

  Solution concentrations 
Exp. Gold S2O3

2- S3O6
2- S4O6

2-

  (mg/L) (mM) (mM) (mM) 
1 0.219 22.251 629.452 6.097 
2 0.415 21.893 617.020 5.485 
3 0.621 20.754 619.235 6.015 
4 1.767 20.804 615.535 5.798 
5 4.463 24.171 606.851 5.083 
6 9.115 25.144 606.276 5.007 

 
Table 4.  The measured speciation of the resin in 

equilibrium with loading solution. 
  Resin concentrations 
Exp. Gold S2O3

2- S3O6
2- S4O6

2-

  (mg/L) (mM) (mM) (mM) 
1 77.357 14.317 644.596 3.226 
2 150.778 19.762 649.759 1.934 
3 237.688 21.638 665.122 3.213 
4 714.625 39.284 589.815 3.301 
5 1695.136 25.923 586.519 1.899 
6 3510.550 34.921 586.932 2.452 
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Interestingly, the tetrathionate concentration 
change (73.8%) is much larger than 
trithioante concentration (13.4%), as 
revealed in Table 4. However, with the very 
small initial concentration of tetrathionate, 
the amount of tetrathionate loaded on the 
resins is also very small which is varied at the 
concentration of 1.899-3.301 mM based on 
the stripping. Meanwhile, the trithionate 
concentration is from 586.519 mM to 
665.122 mM based on the stripping. 
 
It is also important to note that thiosulfate 
degradation in the previous studies (Wan, 
1997; Nicol and O'Malley, 2002; Jeffrey and 
Brunt, 2007) with tetrathionate as the one of 
the principle product in ammoniacal 
thiosulfate solution, might not occur in the 
NARS system, since there is very small 
decrease in thiosulfate concentration during 5 
h loading.  It could be because of the loading 
of thiosulfate on the resins, not due to its 
degradation to form tetrathionate. In addition, 
there is no significant decrease in the 
stripping-based thiosulfate concentration 
compared to the loading-based concentra-
tion. 
 
As predicted, trithionate which could be used 
as the baseline in the multiple component 
NARS system with gold is loaded on the 
resins very well together with gold. It could 
be true because the amount of trithionate 
loaded on resins is in certain proportion to 
the amount of resins in the solution. The 
reason is the amount of trithionate loaded on 
resins is almost constant even if there is 
small decrease; 619.235, 615.535, 606.851 
and 606.276 mM (loading-based in Table 3); 
and 665.122, 589.815, 586.519 and 586.932 
mM (stripping-based in Table 4), for the 
increased gold concentration in solution of 
0.621, 1.767, 4.463 and 9.115 mg/l, and for 
the increased gold concentration in resins of 
237.688, 714.625, 1695.136 and 3510.550 
mg/l, respectively. 
 
Figures 1 show the gold loading vs gold in 
solution in the systems with the equilibrium 
concentrations thiosulfate, thrithionate and 
tetrathionate being 1.46, 0.76 and 0.138 mM, 
respectively (Figure 1.a); with the equilibrium 
concentrations thiosulfate, thrithionate and 
tetrathionate being 5.04, 2.77 and 0.01 mM, 
respectively (Figure 1.b); and with the 
equilibrium concentrations thiosulfate only 
being 98.30 mM (Figure 1.c). As can be seen 
in Figures 1, the gold loading linearly 
increases with the increase in the gold 
concentration in solution. It is reasonable 
because small amount of gold in solution 

leads to the low loading of gold. But, 
something important to note that the change 
in the equilibrium thiosulfate concentration in 
the systems contributes to change in the gold 
loading per 1 mL gold in solution. As shown 
in Figures 1, the slope of gold loading curve 
is correspondently increased from about 0.83 
to 2.37 for the increase in the equilibrium 
thiosulfate concentration from 1.46 to 5.04 
mM. It becomes much higher which is 11.29 
when the equilibrium thiosulfate concentra-
tion was 98.30 mM. 
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Figure 1.  Gold loading vs gold in solution in the 

NARS systems without ammonia and 
copper based on stripping processes 
(a,b,c). 
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In terms of the gold loadings, the equilibrium 
thiosulfate concentration in the loading 
solution also affects the gold loading 
performance. The relationship within the gold 
loading and the equilibrium thiosulfate 
concentration in solution tends to be a first 
order system, shown in Figure 2. Therefore, 
the optimization of equilibrium thiosulfate 
concentration in the NARS system is badly 
needed to consider in minimizing the 
thiosulfate reagent in the recovery of gold. 

 
 
4. Conclusion 
 
Experiments on the loading of gold on using 
ion exchange resins at equilibrium in non-
ammoniacal resin-solution (NARS) system 
has been conducted where IC with UV 
detection is used for the analysis of species 
and ICP-OES was used to measured gold 
loaded on resins. Isotherm for gold on resin 
versus gold in solution shows that the low 
gold loading results in linear relationship 
between the mass of gold per kg resin and 
gold in solution. Gold loading performances 
show the need of optimizing the equilibrium 
concentrations of in the recovery of gold. 
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