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Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic
therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked
intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for
therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations
(SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly
subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene
associated with Parkinson’s disease, which is exquisitely restricted to Group 4a. Recurrent translocations of PVT1,
including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous
targetable SCNAs, including recurrent events targeting TGF-b signalling in Group 3, and NF-kB signalling in Group 4,
suggest future avenues for rational, targeted therapy.

Brain tumours are the most common cause of childhood oncological
death, and medulloblastoma is the most common malignant paediatric
brain tumour. Current medulloblastoma therapy including surgical
resection, whole-brain and spinal cord radiation, and aggressive
chemotherapy supplemented by bone marrow transplant yields five-
year survival rates of 60–70%1. Survivors are often left with significant
neurological, intellectual and physical disabilities secondary to the
effects of these nonspecific cytotoxic therapies on the developing brain2.

Recent evidence suggests that medulloblastoma actually comprises
multiple molecularly distinct entities whose clinical and genetic dif-
ferences may require separate therapeutic strategies3–6. Four principal
subgroups of medulloblastoma have been identified: WNT, SHH,
Group 3 and Group 4 (ref. 7), and there is preliminary evidence for
clinically significant subdivisions of the subgroups3,7,8. Rational,
targeted therapies based on genetics are not currently in use for
medulloblastoma, although inhibitors of the Sonic Hedgehog
pathway protein Smoothened have shown early promise9. Actionable
targets for WNT, Group 3 and Group 4 tumours have not been
identified4,10. Sanger sequencing of 22 medulloblastoma exomes
revealed on average only 8 single nucleotide variants (SNVs) per
tumour11. Some SNVs were subgroup-restricted (PTCH1, CTNNB1),
whereas others occurred across subgroups (TP53, MLL2). We pro-
posed that the observed intertumoural heterogeneity might have
underpowered prior attempts to discover targets for rational therapy.

The Medulloblastoma Advanced Genomics International
Consortium (MAGIC) consisting of scientists and physicians from
46 cities across the globe gathered more than 1,200 medulloblastomas
which were studied by SNP arrays (n 5 1,239; Fig. 1a, Supplementary
Fig. 1 and Supplementary Tables 1–3). Medulloblastoma subgroup
affiliation of 827 cases was determined using a custom nanoString-
based RNA assay (Supplementary Fig. 2)12. Disparate patterns of
broad cytogenetic gain and loss were observed across the subgroups
(Fig. 1b and Supplementary Figs 3, 7, 8, 10 and 11). Analysis of the
entire cohort using GISTIC2 (ref. 13) to discover significant ‘driver’
events delineated 62 regions of recurrent SCNA (Fig. 1c,
Supplementary Fig. 4 and Supplementary Tables 4 and 5); analysis
by subgroup increased sensitivity such that 110 candidate ‘driver’
SCNAs were identified, most of which are subgroup-enriched
(Fig. 1c–e and Supplementary Table 6).

Twenty-eight regions of recurrent high-level amplification (copy
number $ 5) were identified (Fig. 1d and Supplementary Table 7).
The most prevalent amplifications affected members of the MYC
family with MYCN predominantly amplified in SHH and Group 4,
MYC in Group 3, and MYCL1 in SHH medulloblastomas. Multiple
genes/regions were exclusively amplified in SHH, including GLI2,
MYCL1, PPM1D, YAP1 and MDM4 (Fig. 1d). Recurrent homozygous
deletions were exceedingly rare, with only 15 detected across 1,087
tumours (Fig. 1e). Homozygous deletions targeting known tumour
suppressors PTEN, PTCH1 and CDKN2A/B were the most common,
all enriched in SHH cases (Fig. 1e and Supplementary Table 7). Novel
homozygous deletions included KDM6A, a histone-lysine demethylase
deleted in Group 4. A custom nanoString CodeSet was used to verify 24
significant regions of gain across 192 MAGIC cases, resulting in a
verification rate of 90.9% (Supplementary Fig. 5). We conclude that
SCNAs in medulloblastoma are common, and are predominantly
subgroup-enriched.

Subgroup-specific SCNAs in medulloblastoma
WNT medulloblastoma genomes are impoverished of recurrent focal
regions of SCNA, exhibiting no significant regions of deletion and
only a small subset of focal gains found at comparable frequencies in
non-WNT tumours (Supplementary Figs 4, 6 and Supplementary
Table 8). CTNNB1 mutational screening confirmed canonical exon
3 mutations in 63 out of 71 (88.7%) WNT tumours, whereas monosomy
6 was detected in 58 out of 76 (76.3%) (Supplementary Fig. 6;
Supplementary Table 9). Four WNT tumours (4/71; 5.6%) had neither
CTNNB1 mutation nor monosomy 6, but maintained typical WNT
expression signatures. Given the size of our cohort and the resolution
of the platform, we conclude that there are no frequent, targetable
SCNAs for WNT medulloblastoma.

SHH tumours exhibit multiple significant focal SCNAs (Fig. 2a,
Supplementary Figs 12, 15, 16 and Supplementary Tables 10 and 11).
SHH enriched/restricted SCNAs included amplification of GLI2 and
deletion of PTCH1 (Fig. 2a, e, f)10. MYCN and CCND2 were among
the most frequently amplified genes in SHH (Supplementary
Table 6), but were also altered in non-SHH cases. Genes upregulated
in SHH tumours (that is, SHH signature genes) are significantly over-
represented among the genes focally amplified in SHH tumours
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Figure 2 | Genomic alterations affect core signalling pathways in SHH
medulloblastoma. a, GISTIC2 significance plot of amplifications (red) and
deletions (blue) observed in SHH. The number of genes mapping to each
significant region are included in brackets and regions enriched in SHH are
shaded red. b, c, Recurrent amplifications of PPM1D (b) and PIK3C2B/MDM4
(c) are restricted to SHH. d, Fluorescence in situ hybridization (FISH)
validation of MDM4 amplification. e, SHH signalling, TP53 signalling and

RTK/PI3K signalling represent the core pathways genomically targeted in
SHH. P values indicate the prevalence with which the respective pathway is
targeted in SHH versus non-SHH cases (Fisher’s exact test). Frequencies of
focal and broad (parentheses) SCNAs are listed. f, Mutual exclusivity analysis of
focal SCNAs in SHH. g, Clinical implications of SCNAs affecting MYCN, GLI2
or PTCH1 in SHH (log-rank tests).
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Figure 1 | Genomic heterogeneity of medulloblastoma subgroups. a, The
medulloblastoma genome classified by subgroup. b, Frequency and significance
(Q value # 0.1) of broad cytogenetic events across medulloblastoma subgroups.
c, Significant regions of focal SCNA identified by GISTIC2 in either pan-cohort
or subgroup-specific analyses. d, e, Recurrent high-level amplifications

(d, segmented copy number (CN) $ 5) and homozygous deletions
(e, segmented CN # 0.7) in medulloblastoma. The number of genes mapping to
the GISTIC2 peak region (where applicable) is listed in brackets after the
suspected driver gene, as is the frequency of each event.
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(P 5 0.001–0.02, permutation tests; Supplementary Fig. 9). Recurrent
amplification of SHH signature genes has clinical implications, as
amplification of downstream transcriptional targets could mediate
resistance to upstream SHH pathway inhibitors14.

Novel, SHH-enriched SCNAs included components of TP53 sig-
nalling, including amplifications of MDM4 and PPM1D, and focal
deletions of TP53 (Fig. 2a–e). Targetable events, including amplifica-
tions of IGF signalling genes IGF1R and IRS2, PI3K genes PIK3C2G
and PIK3C2B, and deletion of PTEN were restricted to SHH tumours
(Fig. 2a, c, e). Importantly, focal events affecting genes in the SHH
pathway were largely mutually exclusive and prognostically signifi-
cant (Fig. 2f, g). Many of the recurrent, targetable SCNAs identified in
SHH medulloblastoma (IGF1R, KIT, MDM4, PDGFRA, PIK3C2G,
PIK2C2B and PTEN) have already been targeted with small molecules
for treatment of other malignancies, which might allow rapid trans-
lation for targeted therapy of subsets of SHH patients (Supplementary
Table 16). Novel SHH targets identified here are excellent candidates
for combinatorial therapy with Smoothened inhibitors, to avoid the
resistance encountered in both humans and mice9,14,15.

Group 3 and Group 4 medulloblastomas have generic names as
comparatively little is known about their genetic basis, and no targets
for rational therapy have been identified7. MYC amplicons are largely
restricted to Group 3, whereas MYCN amplicons are seen in Group 4
and SHH tumours (Fig. 1d)3,4. Indeed, MYC and MYCN loci comprise
the most significant regions of amplification observed in Group 3 and
Group 4, respectively (Fig. 3a, b, Supplementary Figs 13, 14, 17–20
and Supplementary Tables 12–15). Group 3 MYC amplicons were
mutually exclusive from those affecting the known medulloblastoma
oncogene OTX2 (ref. 16) and were highly prognostic (Supplementary
Fig. 21)3,16. Type II activin receptors, ACVR2A and ACVR2B and
family member TGFBR1 are highly amplified in Group 3 tumours,
indicating deregulation of TGF-b signalling as a driver event in Group
3 (Fig. 3c–e and Supplementary Fig. 22). The Group 3-enriched

medulloblastoma oncogene OTX2 is a prominent target of TGF-b
signalling in the developing nervous system17 and TGF-b pathway
inhibitors CD109 (ref. 18), FKBP1A (refs 19 and 20) and SNX6 (ref.
20) are recurrently deleted in Group 3 (Fig. 3a, d). SCNAs in TGF-b
pathway genes were heavily enriched in Group 3 (P 5 5.37 3 1025,
Fisher’s exact test) and found in at least 20.2% of cases, indicating that
TGF-b signalling represents the first rational target for this poor
prognosis subgroup (Fig. 3d). Similarly, novel deletions affecting
regulators of the NF-kB pathway, including NFKBIA (ref. 21) and
USP4 (ref. 22) were identified in Group 4 (Supplementary Fig. 23),
proposing that NF-kB signalling may represent a rational Group 4
therapeutic target.

Network analysis of Group 3 and Group 4 SCNAs illustrates the
different pathways over-represented in each subgroup. Only TGF-b
signalling is unique to Group 3 (Fig. 3e). In contrast, cell-cycle control,
chromatin modification and neuronal development are all Group
4-enriched. Cumulatively, the dismal prognosis of Group 3 patients,
the lack of published targets for rational therapy, and the prior
targeting of TGF-b signalling in other diseases suggest that TGF-b
may represent an appealing target for Group 3 rational therapies
(Supplementary Table 16).

SNCAIP tandem duplication is common in Group 4
Although Group 4 is the most prevalent medulloblastoma subgroup,
its pathogenesis remains poorly understood. The most frequent
SCNA observed in Group 4 (33/317; 10.4%) is a recurrent region of
single copy gain on chr5q23.2 targeting a single gene, SNCAIP
(synuclein, alpha interacting protein) (Fig. 4a and Supplementary
Fig. 24). SNCAIP, encodes synphilin-1, which binds to a-synuclein
to promote the formation of Lewy bodies in the brains of patients with
Parkinson’s disease23,24. Additionally, rare germline mutations of
SNCAIP have been described in Parkinson’s families25. Large insert,
mate-pair, whole-genome sequencing (WGS) demonstrates that
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Figure 3 | The genomic landscape of Group 3 and Group 4
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SNCAIP copy number gains arise from tandem duplication of a
truncated SNCAIP (lacking non-coding exon 1), inserted telomeric
to the germline SNCAIP allele (Fig. 4b, c and Supplementary Fig. 25).
Affymetrix SNP6 array profiling of patient-matched germline material
confirmed that SNCAIP duplications are somatic (Supplementary Fig.
26), and subsequent whole-transcriptome sequencing (RNA-Seq) of
select Group 4 cases (n 5 5) verified that SNCAIP is the only gene
expressed in the duplicated region (Supplementary Fig. 27). Analysis
of published copy number profiles for 3,131 primary tumours26 and
947 cancer cell lines27 (total of 4,078 cases) revealed only four cases with
apparent duplication of SNCAIP, all of which were inferred as Group 4
medulloblastomas (data not shown). We conclude that SNCAIP duplica-
tion is a somatic event highly specific to Group 4 medulloblastoma.

Re-analysis of 499 published medulloblastoma expression profiles
confirmed that SNCAIP is one of the most highly upregulated Group 4
signature genes (Fig. 4d and Supplementary Fig. 28). Profiling of 188
Group 4 tumours on expression microarrays followed by consensus
non-negative matrix factorization (NMF) clustering delineates two
subtypes of Group 4 (4a and 4b; Fig. 4e and Supplementary Fig. 29).
Strikingly, 21 out of 22 SNCAIP duplicated cases belonged to Group 4a
(P 5 3.12 3 1028, Fisher’s exact test). SNCAIP is more highly
expressed in Group 4a than 4b (Fig. 4f), and 4a samples with tandem
duplication showed approximately 1.5-fold increased expression, con-
sistent with gene dosage (Fig. 4g and Supplementary Figs 35 and 36).
Group 4a exhibits a relatively balanced genome compared to 4b
(Supplementary Figs 30–32), and several 4a cases harbour SNCAIP
duplication in conjunction with i17q and no other SCNAs (Sup-
plementary Fig. 33). Importantly, SNCAIP duplications are mutually
exclusive from other prominent SCNAs in Group 4, including MYCN
and CDK6 amplifications (Supplementary Fig. 34).

PVT1 fusions arise via chromothripsis in Group 3
Although recurrent gene fusions have recently been discovered in solid
tumours, none have been reported in medulloblastoma. RNA-Seq of

Group 3 tumours (n 5 13) identified two independent gene fusions in
two different tumours (MB-182 and MB-586), both involving the 59

end of PVT1, a non-coding gene frequently co-amplified with MYC in
Group 3 (Fig. 5a, b, Supplementary Fig. 37 and Supplementary Tables
17 and 18). Sanger sequencing confirmed a fusion transcript consisting
of exons 1 and 3 of PVT1 fused to the coding sequence of MYC (exons 2
and 3) in MB-182, and a fusion involving PVT1 exon 1 fused to the 39

end of NDRG1 in MB-586 (Fig. 5a, b).
Group 3 copy number data at the MYC/PVT1 locus indicated that

additional samples might harbour PVT1 gene fusions (Fig. 5c). PCR
with reverse transcription (RT–PCR) profiling of select Group 3 cases
confirmed PVT1-MYC fusions in at least 60% (12/20) of MYC-
amplified cases (Fig. 5d and Supplementary Table 19). Fusion
transcripts included many other portions of chr8q, with up to four
different genomic loci mapping to a single transcript, a pattern remin-
iscent of chromothripsis28,29 (Fig. 5d). WGS performed on four MYC-
amplified Group 3 tumours harbouring PVT1 fusion transcripts
identified a series of complex genomic rearrangements on chr8q
(Fig. 5e, f, Supplementary Fig. 38 and Supplementary Tables 20 and
21). Chromosome 8 copy number profile for MB-586 (PVT1-
NDRG1) derived from WGS showed that PVT1 and NDRG1 are
structurally linked, as predicted by RNA-Seq, and several adjacent
regions of 8q24 were extensively rearranged (Fig. 5e, f and Sup-
plementary Table 21). Monte Carlo simulation suggests that this
fragmented 8q amplicon arose through chromothripsis, a process of
erroneous DNA repair following a single catastrophic event in which a
chromosome is shattered into many pieces (Supplementary Fig. 39).
Further examination of our copy number data set revealed rare
examples of chromothripsis across subgroups (Supplementary Fig. 40),
with only chr8 in Group 3 demonstrating statistically significant, region-
specific chromothripsis (Q 5 0.0004, false discovery rate (FDR)-
corrected Fisher’s exact test). Among Group 3 tumours, the occurrence
of chr8q chromothripsis is correlated with deletion of chr17p (location
of TP53; data not shown), in keeping with the association of loss of
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TP53 and chromothripsis recently described in medulloblastoma
(P 5 0.0199, Fisher’s exact test)28. Whereas the PVT1 locus has been
suggested to be a genomically fragile site, we observe that the majority
of MYC-amplified Group 3 tumours harbour PVT1 fusions that arise
through a process consistent with chromothripsis.

PVT1 is a non-coding host gene for four microRNAs, miR-1204–
miR-1207. Previous studies have implicated miR-1204 as a candidate
oncogene that enhances oncogenesis in combination with MYC30,31.
PVT1 fusions identified in this study involve only PVT1 exon 1 and
miR-1204. Importantly, miR-1204, but not the adjacent miR-1205 and
miR-1206, is expressed at a higher level in PVT1-MYC fusion (1)
Group 3 tumours compared to fusion (2) cases (P 5 0.0008, Mann–
Whitney test; Fig. 6a). To evaluate whether aberrant expression of
miR-1204 contributes to the malignant phenotype, we inhibited miR-
1204 in MED8A cells, a Group 3 medulloblastoma cell line with a
confirmed PVT1-MYC fusion (Fig. 5d). Antagomir-mediated RNA

interference of miR-1204 had a pronounced effect on MED8A growth
(Fig. 6b). A comparable reduction in proliferative capacity was
achieved with knockdown of MYC. Conversely, the medulloblastoma
cell line ONS76 exhibits neither MYC amplification nor a detectable
PVT1-MYC fusion gene, and knockdown of miR-1204 had no effect in
this line (Fig. 6c).

PVT1 has been reported previously in fusion transcripts with a
number of partners30,32,33. The most prevalent form of the PVT1-
MYC fusion in Group 3 tumours lacks the first, non-coding exon of
MYC, similar to forms of MYC that have been described in Burkitt’s
lymphoma34 (Fig. 5a, d). The PVT1 promoter contains two non-
canonical E-boxes and can be activated by MYC31. This indicates a
positive feedback model where MYC can reinforce its own expression
from the PVT1 promoter in PVT1-MYC fusion (1) tumours. Indeed,
knockdown of MYC alone in MED8A cells resulted in diminished
expression of both MYC and miR-1204, suggesting MYC may positively
regulate PVT1 (that is, miR-1204) expression in medulloblastoma cells
(Supplementary Fig. 41).

Discussion
Medulloblastomas have few SNVs compared to many adult epithelial
malignancies11, whereas SCNAs seem to be quite common.
Medulloblastoma is a heterogeneous disease7, thereby requiring large
cohorts to detect subgroup-specific events. Through the accumula-
tion of .1,200 medulloblastomas in MAGIC, we have identified
novel and significant SCNAs. Many of the significant SCNAs are
subgroup-restricted, highly supporting their role as driver events in
their respective subgroups.

Expression of synphilin-1 in neuronal cells results in decreased cell
doubling time35, decreased caspase-3 activation36, decreased TP53
transcriptional activity and messenger RNA levels, and decreased
apoptosis37. Synphilin-1 is ubiquitinated by parkin, which is encoded
by the hereditary Parkinson’s disease gene PARK2 (ref. 24), a candidate
tumour suppressor gene38. Whereas patients with Parkinson’s disease
have an overall decreased risk of cancer, they may have an increased
incidence of brain tumours39,40. As tandem duplications of SNCAIP are
highly recurrent, stereotypical, subgroup-restricted, affect only a single
gene, and as SNCAIP-duplicated tumours have few if any other
SCNAs, SNCAIP is a probable driver gene, and merits investigation
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as a target for therapy of Group 4a. Similarly, PVT1 fusion genes are
highly recurrent, restricted to Group 3, arise through a chromothripsis-
like process, and are the first recurrent translocation reported in
medulloblastoma.

We identify a number of highly targetable, recurrent, subgroup-
specific SCNAs that could form the basis for future clinical trials (that
is, PI3K signalling in SHH, TGF-b signalling in Group 3, and NF-kB
signalling in Group 4). Activation of these pathways through alterna-
tive, currently unknown genetic and epigenetic events could increase
the percentage of patients amenable to targeted therapy. We also
identify a number of highly ‘druggable’ events that occur in a minority
of cases. The cooperative, global approach of the MAGIC consortium
has allowed us to overcome the barrier of intertumoural heterogeneity
in an uncommon paediatric tumour, and to identify the relevant and
targetable SCNAs for the affected children.

METHODS SUMMARY
All patient samples were obtained with consent as outlined by individual
institutional review boards. Genomic DNA was prepared, processed and
hybridized to Affymetrix SNP6 arrays according to manufacturer’s instructions.
Raw copy number estimates were obtained in dChip, followed by CBS segmenta-
tion in R. SCNAs were identified using GISTIC2 (ref. 13). Driver genes within
SCNAs were inferred by integrating matched expressions, literature evidence and
other data sets. Pathway enrichment of SCNAs was analysed with g:Profiler and
visualized in Cytoscape using Enrichment Map. Fluorescence in situ hybridiza-
tion (FISH) was performed as described previously8,10. Medulloblastoma
subgroup was assigned using a custom nanoString CodeSet as described previ-
ously12. Tandem duplication of SNCAIP was confirmed by paired-end mapping
as previously reported28. RNA was extracted, processed and hybridized to
Affymetrix Gene 1.1 ST Arrays as recommended by the manufacturer.
Consensus NMF clustering was performed in GenePattern. Gene fusions were
identified from RNA-Seq data using Trans-ABySS. Medulloblastoma cell lines
were maintained as described10. Proliferation assays were performed with the
Promega CellTiter 96 Assay. Additional methods are detailed in full in
Supplementary Methods.
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69336Lyon, France. 38Centre dePathologie EST,GroupementHospitalier EST, Université
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