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ABSTRACT
By regularly monitoring the most stable millisecond pulsars over many years, pulsar timing
arrays (PTAs) are positioned to detect and study correlations in the timing behaviour of those
pulsars. Gravitational waves (GWs) from supermassive black hole binaries (SMBHBs) are
an exciting potentially detectable source of such correlations. We describe a straightforward
technique by which a PTA can be ‘phased-up’ to form time series of the two polarization modes
of GWs coming from a particular direction of the sky. Our technique requires no assumptions
regarding the time-domain behaviour of a GW signal. This method has already been used to
place stringent bounds on GWs from individual SMBHBs in circular orbits. Here, we describe
the methodology and demonstrate the versatility of the technique in searches for a wide variety
of GW signals including bursts with unmodelled waveforms. Using the first six years of data
from the Parkes Pulsar Timing Array, we conduct an all-sky search for a detectable excess of
GW power from any direction. For the lines of sight to several nearby massive galaxy clusters,
we carry out a more detailed search for GW bursts with memory, which are distinct signatures
of SMBHB mergers. In all cases, we find that the data are consistent with noise.
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1 IN T RO D U C T I O N

Pulsar timing arrays (PTAs) provide a unique means for detecting
gravitational waves (GWs) with frequencies between approximately
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10−9 and 10−6 Hz. Sensitivity at such frequencies makes PTAs key
for searching for and eventually studying GWs from supermassive
black hole binaries (SMBHBs) with masses greater than 107 M�
(Sesana & Vecchio 2010). PTAs are therefore indispensable for
understanding galaxy evolution over cosmological time-scales, for
investigating the mechanisms by which the final parsec problem
(Milosavljević & Merritt 2003) may be solved, and for probing
strong gravitational fields.

The PTA concept was initially conceived decades ago (Detweiler
1979; Hellings & Downs 1983; Foster & Backer 1990), and is now
being realized by several international collaborations. The Euro-
pean Pulsar Timing Array (EPTA; Kramer & Champion 2013), the
North American Nanohertz Observatory for Gravitational Waves
(NANOGrav; McLaughlin 2013), and the Parkes Pulsar Timing
Array (PPTA; Manchester et al. 2013) collaborations use sensitive
radio telescopes to observe the most rotationally stable millisecond
pulsars (MSPs) known and measure the highest-precision pulse
times of arrival (ToAs) possible on a regular basis. Measured ToAs
are compared to predictions of timing models that aim to account
for all of the known physical effects that modulate the regularity
with which pulses arrive at Earth-based observatories (Edwards,
Hobbs & Manchester 2006). After sufficiently long periods of time,
the differences between measured ToAs and model predictions, the
timing residuals, may begin to show structure indicative of errors in
terrestrial time standards (Hobbs et al. 2012), incorrect Solar system
ephemerides (Champion et al. 2010), or the influence of GWs on the
pulsar-Earth system. To analyse such effects, the various PTAs are
also combining their data and expertise in the International Pulsar
Timing Array (IPTA; Hobbs et al. 2010; Manchester 2013) which
is poised to become the most sensitive tool for such investigations.

The GW signals potentially detectable by PTAs fall into two
classes. First, individually resolvable sources such as SMBHBs in
circular (Arzoumanian et al. 2014; Zhu et al. 2014; Babak et al.
2015) or eccentric orbits (Ravi et al. 2014; Huerta et al. 2015), and
burst sources, especially so-called ‘bursts with memory’ (BWMs)
from the final merger of SMBHBs (van Haasteren & Levin 2010;
Cordes & Jenet 2012; Wang et al. 2015; Arzoumanian et al. 2015a)
or potentially from exotic sources like phase transitions in the early
Universe (Cutler et al. 2014). Secondly, an isotropic stochastic back-
ground (SB) of GWs created by the incoherent superposition of
many unresolved SMBHBs scattered throughout the Universe (van
Haasteren et al. 2011; Demorest et al. 2013; Shannon et al. 2013,
2015; Arzoumanian et al. 2015b; Lentati et al. 2015). An isotropic
SB is an idealization and recent work has begun to place limits
on anisotropic features of the background (Taylor et al. 2015). In
this paper, we are concerned primarily with individually resolvable
sources or small groups of bright sources clustered in a particular
direction, though our techniques may also prove useful in studies
of a SB.

When GWs from a single direction interact with the Earth, regard-
less of their detailed waveforms, they produce a distinctly quadrupo-
lar correlation pattern in the timing residuals of the pulsars in a PTA.
By exploiting this fact, pulsar timing data sets from many different
pulsars can be coherently combined, or ‘phased-up’, so as to en-
hance a PTA’s sensitivity to GWs from particular directions. Here,
we develop a formalism that enables this procedure. The strengths
of this technique include the following.

(i) GW signals are included as part of the pulsar timing model.
This means that all the issues relating to actual data sets (uneven
observing cadence, different pulsars having different data spans and
noise properties, the necessity to fit for pulsar parameters, etc.) are

modelled simultaneously with the GW search using standard pulsar
timing techniques.

(ii) As part of the timing model, the covariances between the GW
signal and the other timing model parameters are easily obtained.

(iii) The algorithms underlying our technique are fast, so they do
not require large computing resources. The GW signal is condensed
out of the raw observations into a much smaller data volume.

(iv) The technique makes no assumption about the actual form of
the GW and so is useful for detecting unexpected GW signals as well
as anticipated signals like BWMs or continuous waves (CWs) from
SMBHBs in circular orbits. Inspection of the GW signal stream
produced with our technique can help to determine what type of
optimized signal detection schemes to implement.

In Section 2, we discuss how GWs manifest themselves in pul-
sar timing measurements and introduce our so-called Â+ and Â×
technique. In Section 3, we describe how Â+ and Â× can be used
in matched-filter searches for specific gravitational waveforms. In
Section 4, we describe the PPTA Data Release 1 (DR1) and the
simulated data sets we analyse for the remainder of the paper and
indicate where these publicly available data can be accessed. In
Section 5, using Â+ and Â×, we conduct an all-sky search for
detectable GW power from any direction with any time-domain be-
haviour. In Section 6, we study in greater detail the lines-of-sight
to the Virgo, Fornax, Norma, Perseus, and Coma galaxy clusters,
nearby massive clusters that are likely origins for the first detection
by PTAs of an isolated GW source; for each of these special direc-
tions, we conduct a search for BWMs, clear indicators of the final
merger of an SMBHB. In Section 7, we demonstrate that the corre-
lations induced in PTA residuals from clock errors, inaccuracies in
Solar system ephemerides, and GWs can be measured simultane-
ously without confusion. Finally, in Section 8, we summarize and
conclude our work with some final remarks.

2 PL A NA R G R AV I TAT I O NA L WAV E S
A N D P U L S A R T I M I N G

A planar GW, hij(t), coming from the direction n̂, can be expressed
as

hij (t) = a+(t)ε+
ij + a×(t)ε×

ij , (1)

where a+(t) and a×(t) describe the time dependence of the two
polarization modes of the GW and ε+

ij and ε×
ij are the relevant

polarization tensors. Explicit representations of ε+
ij and ε×

ij in ecliptic
longitude and latitude are given in Lee et al. (2011). For a PTA with
NP pulsars, the apparent pulsation frequency of the Kth pulsar in
direction n̂K is influenced by the GW as

�νK

νK

= −1

2

n̂i
K n̂

j
K

(1 − cos θK )

×
[
hij (t)|E − hij

(
t − DK

c

)
|rK

]
, (2)

where cos θK = n̂ · n̂K , the |E and |rK
notation indicates that the

strain field is to be evaluated at the location of the Earth and
the Kth pulsar, respectively, and DK is the distance from the Earth
to the pulsar (Estabrook & Wahlquist 1975; Lee et al. 2011). Despite
the (1 − cos θK) dependence in the denominator of equation (2), the
fractional frequency shift does not diverge as θK approaches zero be-
cause the metric perturbation is transverse to the wave propagation
direction, i.e. n̂i

Khij n̂
j
K ∼ sin2 θK . The perturbation to ToAs from

the Kth pulsar caused by this GW, δth
K (t), is given by the integral of
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the fractional frequency change in equation (2):

δth
K (t) = −1

2

n̂i
K n̂

j
K

(1 − cos θK )
× [

ε+
ij A+(t) + ε×

ij A×(t)
]
,

≡ G+
KA+(t) + G×

KA×(t), (3)

where

A�(t) =
∫ t

0

[
a�(t ′)|E − a�(t ′ − DK/c)|rK

]
dt ′. (4)

The ‘�’ subscript acts as a placeholder for either ‘+’ or ‘×’. The
factors G�

K depend on the relative angle between the GW source
and the pulsar; they are maximized when the pulsar and GW source
are in approximately the same direction of the sky and minimized
when they are on opposite sides of the sky. This means that PTA
sensitivity to point sources is best in the directions of the sky with
the highest concentration of well-timed pulsars.

2.1 Timing model development and noise

We can express the nK timing residuals for the Kth pulsar in vector
form as

δ tK = MKδ pK + δ th
K + δ tn

K . (5)

The first term on the right side of equation (5) describes any structure
in the residuals from inaccuracies in the timing model parameters. In
this linearized approximation, δ pK , a vector describing how much
the mK timing model parameters deviate from their true values, is
assumed to be small. The design matrix, MK , is the nK × mK matrix
describing how changes in the timing model parameters influence
the residuals. The second term describes any structure in the resid-
uals induced by the GW. The third term, δ tn

K , describes any noise
that influences the residuals. This may consist of white radiometer
and pulse-phase-jitter noise, red spin noise, and a variety of addi-
tional sources (Cordes & Shannon 2010; Shannon & Cordes 2010).
Additional correlated timing structure can be caused by things like
inaccuracies in terrestrial time standards or errors in the position
of the Solar system barycentre (SSB). We discuss these issues in
Section 7. For our purposes here, these effects can be subsumed
into the noise term of equation (5), δ tn

K .
If we temporarily neglect the influence of GWs on the timing

residuals, δ th
K , with the noise covariance matrix CK = 〈(δ tn

K ) ·
(δ tn

K )T 〉, we can estimate the maximum-likelihood corrections to
the timing model parameters, δ p̂K , and the parameter covariance
matrix, CP

K (Gregory 2010):

CP
K = (

MT
K C−1

K MK

)−1
, and (6)

δ p̂K = CP
K MT

K C−1
K δ tK. (7)

The use of a general noise model, first utilized by the pulsar tim-
ing community in Coles et al. (2011), is now commonly used for
iteratively refining timing models as additional ToAs are acquired.
Coles et al. (2011) demonstrated spectral methods for adequately
estimating the noise covariance matrix and showed that properly
modelling the noise, especially the highly temporally correlated red
spin noise seen in some pulsars, is crucial for mitigating biases in
timing model parameter estimation. However, if the residuals are
being influenced by GWs, failing to account for them can lead to
improper noise modelling and biased parameter estimation. With
the many PTA data sets currently available, the influence of GWs
in the vicinity of Earth, which causes correlated residual structure
across all timing data sets with a distinct quadrupolar pattern, can

be disentangled from noise processes specific to single pulsars or
errors in individual timing models.

As equation (4) indicates, A� is an integral of the difference in
two terms: an ‘Earth term’ common to all pulsar timing data sets
and a ‘pulsar term’ that differs between data sets owing to the
different positions and distances of the pulsars. For burst GWs with
durations much shorter than the light travel times between Earth
and the pulsars in a PTA (thousands of years, typically), when
the Earth term is active the various pulsar terms are all quiescent
and the pulsar terms are negligible. However, the GWs from a
SMBHB will be in the band of frequencies potentially detectable
by PTAs for the order of millions of years. If we treat a SMBHB as
a monochromatic source of sinusoidal GWs (i.e. ignore the secular
frequency evolution of the source over thousand-year time-scales),
then each pulsar term will be a sinusoid of the same frequency as the
Earth term, a nearly identical amplitude, and an essentially random
and uniformly distributed phase. The pulsar term can perfectly add
to the Earth term, perfectly cancel it, or anything in-between. The
pulsar terms are uncorrelated in different pulsar timing data sets. If
NP pulsars with approximately equal timing precision are analysed
and their residuals coherently combined, the self-noise from these
pulsar terms is suppressed by N

1/2
P (Hellings & Downs 1983). For

discussion of frequency evolution anticipated from SMBHBs and
prospects for including pulsar terms in the signal model rather than
treating them as sources of noise, see e.g. Arzoumanian et al. (2014)
and Wang, Mohanty & Jenet (2014).

2.2 Building GWs into timing models

We model A+(t) and A×(t) as linearly interpolated functions on a
grid of Nτ times τμ. In principle, different grids could be used
for the + and × polarizations, but for simplicity, we will use an
identical grid for each of them. The grid does not need to be evenly
spaced; for some pulsar timing data sets where the ToA sampling
is sparse in decades-old data but relatively uniform and dense in
more modern data, variable spacing in the interpolation grid may be
appropriate. An advantage to modelling A+(t) and A×(t) as linear
interpolants rather than a higher-order polynomial or Fourier series
is that individual bad ToAs or small time-spans of bad ToAs, either
with large uncertainties or apparent biases, mainly influence the
estimates of A+(t) and A×(t) locally rather than over larger spans of
data or the whole data set.

These models for A+ and A×, which we refer to as A+ and A×,
are incorporated into a global fit to the full set of ToAs that is carried
out simultaneously with all the timing models for all the pulsars in
the array. The A+(t) and A×(t) time series must be constrained so
that they are not covariant with the astrometric or spin parameters
of the individual pulsar timing models. The products of this fitting
procedure are Â+ and Â×, the maximum-likelihood estimators of
A+ and A×, and a matrix, C+×, describing covariances in Â+
and Â×.

The Â+ and Â× time series are a complete representation of the
GWs coming from a particular direction in that they carry all the
information with respect to such GWs that is contained in the ToAs.
One cannot obtain a better signal estimator using the ToAs than
can be done with the auxiliary time series alone. Full details of the
implementation of the global fit and the constraints that need to be
applied to A+(t) and A×(t) during the fitting procedure are given
in Appendix A. These algorithms have been implemented in the
TEMPO2 software package (Edwards et al. 2006, see appendix B for
usage details).
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3 SE A R C H I N G Â+ A N D Â× FOR ANTICIPATED
G W WAV E F O R M S

Although one of the great strengths of the Â+ and Â× time series
is that it can be used to study GWs without an underlying signal
model, we demonstrate here how searches for specific waveforms
can be implemented directly in the Â+ and Â× time series after they
have been computed. Zhu et al. (2014) developed a procedure for
conducting a matched-filter search for a specific waveform in Â+
and Â× and applied it to DR1 from the PPTA in a search for CWs.
The upper limit on the amplitude of CWs derived in that paper is
among the most stringent achieved to date (for competitive limits,
see Arzoumanian et al. 2014; Babak et al. 2015). Here, we will
review the essential elements needed to carry out a matched-filter
search in Â+ and Â× and elaborate on certain points, but will focus
on a different, simpler signal model: a BWM. We will apply these
methods in a small targeted search for BWMs from nearby massive
galaxy clusters using DR1 later in this paper. Wang et al. (2015)
searched DR1 for BWMs but did not utilize Â+ and Â× time series.
Our search is different and complementary to the work described
in that paper; Â+ and Â× techniques produce consistent results
with Wang et al. (2015) and are ultimately more computationally
efficient.

In conducting the global fit that generates Â+ and Â×, we must
compute a global parameter covariance matrix (see Appendix A
for a detailed discussion). A 2Nτ × 2Nτ sub-block of this matrix
describes the correlated uncertainties in Â+ and Â×; we call this
sub-block C+×. As discussed in Zhu et al. (2014), C+× is not
a full-rank matrix because of the constraints applied to Â+ and
Â× and is thus non-invertible. We define C̃+× = EFET where
E is a matrix containing the eigenvectors of C+× associated with
non-null eigenvalues and F is a square diagonal matrix containing
those non-null eigenvalues. This generalized covariance matrix is
the covariance matrix on the subspace orthogonal to the constraints
and is manifestly invertible: C̃

−1
+× = EF−1 ET . Also, we define the

projection operator P = EET .
We define a vector ÂT = [ÂT

+, ÂT
×], i.e. Â+ and Â× stacked into

a single vector. If we assume that the structure in Â is due to a
BWM occurring at tinj, if constraints had not been applied, Â could
be expressed as a linear combination of two basis elements:

β+ =
[

(τ − tinj)
(τ − tinj)

0 · τ

]
, (8)

β× =
[

0 · τ

(τ − tinj)
(τ − tinj)

]
, (9)

where τ is the vector of Nτ times at which the Â+ and Â× time
series are sampled and 
 is the Heaviside step function. This signal
model for a BWM is discussed by, e.g. Pshirkov, Baskaran & Post-
nov (2010), van Haasteren & Levin (2010), Cordes & Jenet (2012),
and Madison, Cordes & Chatterjee (2014). The appropriately con-
strained version of Â can be expressed as a linear combination of
these basis elements after they have been projected into the sub-
space orthogonal to the constraints, i.e. as a linear combination of
β̃+ = Pβ+ and β̃× = Pβ×. We can say

Â = α+β̃+ + α×β̃×, (10)

and we can compute maximum-likelihood estimates of the coeffi-
cients, α̂+ and α̂×, as follows:

α̂ =
(

BT C̃
−1
+× B

)−1
BT C̃

−1
+×Â, (11)

where αT = [α+, α×] and B = [β̃+, β̃×]. The uncertainties on the
estimates α̂+ and α̂× are encoded in the 2 × 2 matrix

� =
(

BT C̃
−1
+× B

)−1
. (12)

This signal parameter estimator, α̂, is biased. The bias is a con-
sequence of the constraints applied to Â+ and Â×. As an extreme
example, if a GW signal was purely quadratic, that signal would be
entirely filtered out of Â+ and Â× by the constraints and the GW
signal could never be reconstructed. Blandford, Narayan & Romani
(1984) and Madison, Chatterjee & Cordes (2013) describe the pro-
cedure of fitting certain functional forms out of timing residuals
as equivalent to applying a frequency-domain filter to the residual
fluctuation spectrum. Analogously, the constraints applied to Â+
and Â× destructively filter out some features of the GW signal.
However, the spectral shape of constraint-induced filters depends
upon the time-span of the data set. As more data are gathered, the
constraints and the GW signal become less covariant, less of the
GW signal is filtered out, and the bias in estimation of the signal
parameters is reduced. Furthermore, through simulations, the bias
can be quantified, allowing for robust and trustworthy parameter
estimation.

4 R EAL AND SI MULATED DATA SETS

For much of the remainder of this paper, we work with both sim-
ulated and real data sets. Our simulated data sets were produced
using a newly developed software package called PTASIMULATE.1

The simulated data sets we analyse are as follows.2

(i) SIM1: 20 synthetic pulsars are generated with random sky
positions (statistically uniform on the sphere). We assume weekly
ToA measurements with 50 ns timing precision. The timing models
for each pulsar only include fits for three spin parameters (rotational
phase, frequency, and frequency derivative). The timing residuals
for each pulsar are consistent with 50 ns rms white Gaussian noise.

(ii) SIM2: as in SIM1, but a bright GW burst has been injected into
both GW polarization channels of the simulation from a source at
right ascension 0 h and declination 0◦. The pulsar locations differ
from those in SIM1, but are again drawn from a distribution that
is uniform on the sphere. The white Gaussian noise added to each
ToA again has an rms of 50 ns, but we use a different realization of
noise from that in SIM1.

(iii) SIM3: we have generated 20 simulated pulsars with the same
positions as the 20 pulsars comprising the PPTA DR1. We have
assumed these pulsars are observed every two weeks and have ToA
uncertainties consistent with 100 ns rms Gaussian white noise. In
each pulsar timing model, we fit only for rotational phase, fre-
quency, and frequency derivative. We have simulated a clock error
by generating the simulated data with TAI and reprocessing them
with BIPM2013, two different realizations of terrestrial time. We
have simulated an ephemeris error by using Jet Propulsion Labo-
ratory ephemeris DE414 (Standish 2006) to generate the simulated
data and DE421 (Folkner, Williams & Boggs 2008) to reprocess it.

(iv) SIM4: as in SIM3, but a GW burst has also been injected into
the simulated timing data. The realization of 100 ns rms Gaussian
white noise in SIM4 differs from that in SIM3.

1 PTASIMULATE and documentation for it can be accessed at (https://
bitbucket.org/psrsoft/ptasimulate).
2 All the data sets (real and simulated) used in this paper are available from
http://dx.doi.org/10.4225/08/560A00E2036F6
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We analyse a version of the PPTA DR1 (Manchester et al. 2013)
that has been updated to include detailed noise models developed
and used by Wang et al. (2015) and Zhu et al. (2014). The noise
models account for additional white noise in the data beyond that
anticipated from radiometer noise alone (jitter is a likely contri-
bution to this) and, using the techniques developed in Coles et al.
(2011), correlated red timing noise.

5 A LL-SKY SEARCHES FOR EXCESS
G W P OW E R

Here, we make use of the Â+ and Â× time series to search for GW
power coming from any direction on the sky. This search would
detect sufficiently strong signals of any waveform. As a detection
statistic for this search, we define a dimensionless measure of the
total GW power contained in Â+ and Â×:

D = ÂT C̃
−1
+×Â. (13)

This is the mean squared error statistic for the null hypothesis. Using
slightly different terminology, D = ÂT

W ÂW where ÂW = U−1Â
and U is a Cholesky whitening matrix, i.e. C̃+× = UUT (Coles
et al. 2011). In the absence of signal, assuming the noise is correctly
modelled by C̃+× and thus U , the whitened data stream, ÂW , will
consist of Gaussian noise, be unit variance, and white; D will follow
χ2 statistics with Ndof = 2(Nτ − Nc) degrees of freedom, where Nc

is the number of constraints applied individually to the Â+ and Â×
time series and, again, Nτ is the number of grid points at which
Â+ and Â× are sampled. If ÂW is not unit variance and white,
either GW signal is present in the data or the individual pulsar noise
models are inaccurate. The noise models for the data we use here
have been vetted by the analyses of Zhu et al. (2014) and Wang
et al. (2015).

We compute Â+ and Â× over a grid of trial source locations on
the sky and compute D at each grid point. The number of statistically
independent samples on this grid of sky positions, Ns, influences
our anticipated false alarm probability. The false alarm probability
for a given value of D is

f (D) = 1 − c(D; Ndof)
Ns , (14)

where c(D; Ndof) is the cumulative distribution for a χ2 distribu-
tion with Ndof degrees of freedom evaluated at D. Cornish & van
Haasteren (2014) recently demonstrated that the response of a PTA
to any type of GW can be expressed as a linear combination of NP

orthogonal modes, or sky maps, where, again, NP is the number
of pulsars in the array. A similar result was derived by Gair et al.
(2014). Since our actual data consist of observations of 20 pulsars,
we will use the result from these authors and conservatively set
Ns = 20.

In Fig. 1, we display the results of this search procedure when
applied to SIM1, SIM2, and DR1 (listed in order from top to bot-
tom). We have sampled Â+ and Â× at 74 evenly spaced epochs,
corresponding to a cadence of 30 d. The left panels indicate the
value of D at each sky position. The black dot in these left panels
indicates the position on the sky that yielded the greatest value of
D. The right panels depict the Â+ and Â× time series associated
with the direction on the sky that yielded this greatest value of the
detection statistic. For the analysis of SIM1, our null example, Â+
and Â× appears by eye to be consistent with zero signal and, indeed,
the maximum value of D that is realized is 174.8, consistent with
approximately 18.7 per cent of realizations of noise.

Our analysis of SIM2 is shown in the middle row of Fig. 1. The
position of the GW source was set to a right ascension of 0 h

and a declination of 0◦. Notice the change in the colour scales
between the top left and middle left panels. In the middle row, the
detection statistic at nearly every trial sky position is inconsistent
with noise, but D is peaked around the location of the simulated
source demonstrating the efficacy of this procedure in localizing a
bright GW source on the sky. The Â+ and Â× time series produced
at the position of the maximal detection statistic reproduces the
injected GW signal,

b(t) = b0(t − t∗)e−(t−t∗)2/2w2
, (15)

where b0 = 3 × 10−9, t∗ = MJD 54500, and w = 75 d. For sim-
plicity, we injected the same functional form into each polarization
channel. This burst, at maximum amplitude, produces an approxi-
mately 136 ns ToA perturbation. In our analysis of SIM1 and SIM2,
we have shown that with idealized data, our search method cor-
rectly returns a null result in the absence of a GW signal, but does
correctly detect, reproduce, and localize on the sky, a bright signal
that is present.

The bottom row of plots in Fig. 1 depicts the results of our search
for directional GWs in the PPTA’s DR1. The search is carried out
in the same way as for the simulated data sets, but we have used
a generalized least-squares fitting routine (as described in Coles
et al. 2011) in order to account for the different red noise present in
different pulsars.3 The white stars in the bottom left panel indicate
the positions of the 20 pulsars comprising DR1. The distribution of
pulsars on the sky does not approach statistical uniformity and the
noise properties of the pulsars are not all equal as in SIM1 and SIM2.
With Nτ = 74, Nc = 7 (as discussed in Appendix A), and Ns = 20,
D would have to exceed approximately 194 to claim an excess of
GW power with 99 per cent confidence or 184 for 95 per cent
confidence. The maximum value of D we find in our analysis of
DR1 is 188.5, which is between the 95 per cent and 99 per cent
confidence thresholds.

Even though this value of D is consistent with a null detection, it is
close to values of interest. However, there is a reason to be sceptical
of this marginally high value of D. The Â+ time series associated
with this maximal value of D from DR1 has a 4.2σ outlier at an
epoch near September of 2008. This epoch is contemporaneous
with the commissioning of a new pulsar timing backend at Parkes.
Many ToAs from this brief era have been excluded from DR1 for
displaying obvious systematic issues, but it is likely that systematic
artefacts may still be present in the data. If this one outlier in the Â+
time series is artificially forced towards zero until its 1σ error bar
is consistent with zero, the value of D from this pointing is reduced
to approximately 171, consistent with approximately 30 per cent of
noise realizations.

This result with DR1 underscores the importance of the IPTA
project in two ways. First, if the marginally significant result we
have discussed is indeed just a systematic artefact in PPTA data,
comparison with measurements from the EPTA and NANOGrav
from around September of 2008 of a subset of pulsars that overlaps
with the PPTA sample should be able to resolve the issue. Secondly,
if the outlier in the PPTA data set is a very short duration, very
bright GW burst, it will be present in the data sets of all three PTAs
comprising the IPTA and a joint analysis of the combined data sets
will bolster the significance of the result.

3 In contrast to searches for a GW background, the signals of interest here
have significantly different spectral characteristics than the intrinsic red
noise often observed in pulsar data sets.
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Figure 1. Left: the total power detection statistic, D, as it varies over the sky. The black circle indicates the position on the sky that yielded the greatest value
of D. Right: the Â+ and Â× time series for the direction of the sky that yielded the greatest value of D. Top: analysis of SIM1. The detection statistic never
exceeds values that are inconsistent with noise. Middle: analysis of SIM2. The detection statistic clearly indicates that the data are inconsistent with the noise,
we are able to localize the location of the injected GW source, and we can reconstruct the waveform of the injected burst. Bottom: analysis of the six-year DR1
from the PPTA. The stars indicate the positions of the 20 pulsars included in DR1. The coloured diamonds indicate the positions of five nearby massive galaxy
clusters: Virgo (blue), Fornax (green), Norma (magenta), Perseus (cyan), and Coma (yellow). There is no significant evidence for GW power in DR1.

6 TA R G E T E D I N V E S T I G AT I O N S O F N E A R B Y
M A S S I V E G A L A X Y C L U S T E R S

Simon et al. (2014) recently conducted a detailed analysis of surveys
of local galaxies in order to identify potential directions on the sky
from which an initial detection of resolvable GWs by PTAs is likely
to originate, so-called ‘GW hotspots’. They singled out, in order
of increasing distance from Earth, several massive galaxy clusters:
Virgo, Fornax, Norma, Perseus, and Coma. The directions to these
clusters are indicated in the bottom left panel of Fig. 1 with coloured
diamonds. These clusters are all within 100 Mpc of Earth and all but
Fornax, the smallest of the five, contain upwards of 500 galaxies.
In Fig. 2, we plot the Â+ and Â× time series produced when DR1
is phased up to the directions of each of these galaxy clusters. All
are consistent with noise.

There are several notable features in Fig. 2. First, all five pointings
have some marginal outliers near the 2008 September commission-
ing of the new pulsar timing backend at Parkes that was discussed
earlier. We demonstrated in our analysis of SIM2 (depicted in Fig. 2)
that a GW burst can be localized on the sky and the five clusters
we consider here are from widely separated directions; this gives

further weight to the argument that there are systematic issues with
DR1 near September of 2008 and it is very unlikely that the excess
power in Â+ and Â× is from a spatially localized GW source. Sec-
ondly, the scatter in all pointings is larger earlier in the time-span;
this is due largely to an increase in the observing cadence over time
and thus a greater number of ToAs contributing to each Â+ and Â×
sample later in the data set. The change in the observing cadence
has not led to any issues in our analysis of DR1, but this illustrates
the possible need for unequal spacing in the Â+ and Â× sample
grid in other data sets. Finally, the scatter in the Â+ and Â× time
series is biggest in our pointing towards the Perseus cluster and
smallest in our pointing towards the Norma cluster. The Perseus
cluster is in the opposite direction of the sky from the peak concen-
tration of PPTA pulsars while the Norma cluster is very nearly in the
same direction as many of the PPTA pulsars. This is a reflection of
the point we discussed in Section 2 that pulsar timing measurements
are more sensitive to GWs coming from directions of the sky near the
direction of the pulsar. It is well known that an anisotropic dis-
tribution of well-timed pulsars leads to anisotropic sensitivity to
GWs; this again highlights the importance of the IPTA and close
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Figure 2. The Â+ (black) and Â× (red) time series produced when DR1 is phased up to the locations of the massive Virgo, Fornax, Norma, Perseus, and
Coma galaxy clusters. All pointings are consistent with noise only (as indicated by the D value quoted in each panel). The diamonds in each panel are colour
coded with the diamonds in the bottom left panel of Fig. 1 indicating the directions to these clusters.

collaboration and data sharing between pulsar astronomers in the
Northern and Southern Hemispheres.

6.1 A BWM Search in Â+ and Â×

Although we find no evidence for excess GW power in the directions
of any of these five clusters, to search for a specific waveform, a
matched-filter search of Â+ and Â× is more sensitive than a total
power search. Building on our discussion from Section 3, as a test
case, we here conduct a search for BWMs in these five pointings.

We define a different detection statistic for this search: DB =
α̂T �−1α̂. This is nearly identical to the detection statistic used in
the BWM search conducted by Wang et al. (2015), but here we do
our search directly in Â+ and Â×. In the absence of signal, DB

will follow χ2 statistics with 2 degrees of freedom. We will search
epochs within the innermost 80 per cent of each of the five Â+
and Â× pointings in Fig. 2 for evidence of a BWM occurring. We
restrict ourselves to this window because detecting a BWM requires
the ability to accurately assess the pulsar timing behaviour both pre-
and post-burst. Arzoumanian et al. (2015a) recently showed that in a
BWM search over many trial burst epochs, there are approximately
five statistically independent trials; this fact must be accounted for
in assessing the false alarm probability in our search. In order for
the data to be inconsistent with 95 per cent of realizations of noise,
with Ns = 5, DB must exceed approximately 9.2.

In the top panel of Fig. 3, we show the values of DB de-
rived from our search; we find nothing inconsistent with noise.
Knowing �, however, allows us to compute the minimum value
of |α| needed to exceed the 95 per cent confidence threshold in
DB. We display this quantity, which we call hB, min, in the middle
panel of Fig. 3. The strain amplitude of a BWM is hB ≈ 1.5 ×
10−13(μ/109M�)(d/10Mpc)−1 where μ is the reduced mass of the
binary and d is the luminosity distance between the binary and
Earth; we have assumed the binary has a typical inclination angle
of π/3 (Madison et al. 2014). Taking the luminosity distances to
Virgo, Fornax, Norma, Perseus, and Coma, as 17 Mpc, 19 Mpc,
68 Mpc, 74 Mpc, and 99 Mpc, respectively (see Simon et al. 2014,
and references therein), we have generated the bottom panel of

Fig. 3 displaying the minimal reduced mass, μmin, of a merging
SMBHB that would have produced a BWM bright enough to ex-
ceed our 95 per cent confidence threshold on DB. The likelihood
of such a massive merger occurring in one of these galaxy clusters
during our observing span is exceedingly small, but as the span of
our data set grows, our sensitivity to BWMs will improve and we
will become sensitive to less massive mergers.

The Â+ and Â× time series associated with the directions towards
these five galaxy clusters can be accessed along with DR1 and our
simulated data sets following the link mentioned above. Instructions
by which results for any other pointing can be quickly produced with
TEMPO2 can be found in the usage details of Appendix B. Following
the BWM example detailed here and the analysis of Zhu et al.
(2014), analogous searches for any type of parametrized waveform
can be easily carried out.

7 M U LT I P O L E M E NAG E R I E : C L O C K
E R RO R S , INAC C U R AT E E P H E M E R I D E S ,
A N D G R AV I TAT I O NA L WAV E S

As we mentioned in Section 1, GWs are not the sole means by
which timing residuals from all the pulsars in a PTA can become
correlated. Faults in terrestrial time standards can induce monopolar
correlations between pulsar timing data sets (Hobbs et al. 2012).
Errors in our estimated position for the SSB from, for example,
inaccuracies in the measured mass of Saturn can lead to dipolar
correlations between pulsar timing residuals (Champion et al. 2010).
In order for Â+ and Â× time series to be useful in studies of
GW-induced inter-pulsar timing correlations, they must be able to
reliably differentiate the distinctly quadrupolar signature of a GW
from the monopolar or dipolar signatures of these other effects; in
Fig. 4, we demonstrate that our techniques can effectively do this.

The left panels of Fig. 4 depict our analysis of SIM3 in which
clock errors and ephemeris errors have been simulated but there is
no GW signal present. We simultaneously fit for the timing models
of all the pulsars in our simulated array along with linear-interpolant
models for clock errors (as in Hobbs et al. 2012), vectorial offsets
between the true SSB and its assumed location (as in Champion
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Figure 3. Top: the detection statistic, DB, derived from a search for BWMs
in the Â+ and Â× time series associated with the directions to five nearby
massive galaxy clusters. DB needs to exceed approximately 9.2 in order to
be inconsistent with more than 95 per cent of noise realizations. Middle:
the minimum amplitude of a BWM that would have yielded a value of DB

exceeding 9.2. Bottom: assuming a statistically average inclination angle
for a merging SMBHB, based on the luminosity distance to each of the five
galaxy clusters we investigate, the minimum reduced mass of a merging
SMBHB that would have produced a detectable BWM.

et al. 2010), and the Â+ and Â× time series for the direction on
the sky from which we eventually inject a GW burst in SIM4. From
top to bottom, we display the clock signal (we call this �T), the
three Cartesian components of the simulated vector displacement
in the assumed SSB (called �X, �Y, and �Z), and the Â+ and Â×
time series. The red lines indicate the injected signal with the best-
fitting (in a least-squares sense) quadratic removed; the quadratic
removal is necessary because of the quadratic fit carried out for each
pulsar. The black dots indicate the recovered signal. We are able to
accurately recover the clock and ephemeris-error signals present
in the data and the Â+ and Â× are consistent with a null result.
Significant monopolar and dipolar correlations present in the data
have not produced spurious signal in the Â+ and Â× channels.

In the right panels of Fig. 4 we have carried out the same proce-
dure described above but applied to SIM4 which contains a simulated
GW burst from RA = 0.2 rad and Dec. = −0.3 rad, a place on the
sky that is remote from the core concentration of PPTA pulsars. The
waveforms injected into the two GW polarization channels are

F�(t) = F�e
−(t−t�)2/2w2

� , (16)

where F+ = 10−5, F× = −8 × 10−6, t+ = MJD 50500, t× = MJD
50600, w+ = 224 d, and w× = 387 d. The injected clock and
ephemeris error signals are identical between SIM3 and SIM4. The
injected GW signal is successfully recovered, and even in the pres-
ence of a bright GW signal, the clock- and ephemeris-error signals
are also successfully recovered.

The examples depicted in Fig. 4 illustrate the ability to success-
fully differentiate the correlations induced in pulsar timing data sets
from clock errors, ephemeris errors, and GWs and to recover the
relevant signals without substantial bias. However, suppose some-
one was only interested in searching for a GW signal. If a clock or
ephemeris error were leading to correlations across multiple pulsar
timing data sets and only Â+ and Â× were fitted, the unaccounted-
for correlations from the clock or ephemeris error would bias the
GW signal-recovery and potentially lead to spurious claims of GW
detection (for related discussion, see Tiburzi et al. 2015). We empha-
size the importance of accounting for potential clock- or ephemeris-
error correlations in any PTA effort to detect GWs.

8 C O N C L U S I O N S

In this paper, we have described a technique that allows the signal
of a planar GW from a particular direction of the sky to be distilled
from PTA data. This plane wave could be from a single distant
source, such as an individual SMBHB, or from a collection of
distant sources that are sufficiently close together on the sky like
a massive galaxy cluster; how close together sources need to be
depends on the angular resolution of the PTA which depends on the
spatial distribution of well-timed pulsars. The angular resolution of
PTAs will improve over time as timing techniques are improved and
as new pulsars are discovered and incorporated into PTAs.

We have assumed that GWs behave according to the predictions
of linearized general relativity. Some alternative theories of gravity
allow for additional polarization modes of GWs such as longitudi-
nal or breathing modes (Lee 2013); our formalism cannot currently
address these alternative theories of gravity, but could with modi-
fication. With these caveats regarding the polarization of GWs in
mind, since our methods require no assumptions about the time-
domain behaviour of GWs, they provide a general and flexible tool
that will help maximize the discovery potential of PTAs, potentially
facilitating the discovery of wholly unanticipated sources.
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Figure 4. Simultaneous extraction from a 20-pulsar simulated PTA of the monopolar signature of clock errors (top panel), the dipolar signature of an
inaccurate Solar system ephemeris (the second, third, and fourth panels from the top), and the two polarization modes of a GW (the bottom two panels). The
left panels, depicting an analysis of SIM3, contain no GW signal, while the right panels, depicting an analysis of SIM4, contain the bright GW burst described
in equation (16).

Most modern efforts to detect GWs with PTAs utilize sophisti-
cated Bayesian inference codes (van Haasteren et al. 2011; Vigeland
& Vallisneri 2014; Arzoumanian et al. 2014; Lentati et al. 2015).
Our total-power all-sky GW search in Section 5 and our targeted
search for BWMs in Section 6 are frequentist in nature, but as Â+
and Â× are built into the PTA timing model, they can be straightfor-
wardly incorporated into Bayesian analyses. We feel that the Â+ and
Â× method will complement Bayesian GW searches by providing
important diagnostic time series that will allow by-eye examination
of GW signals. Furthermore, Â+ and Â× time series facilitate a
significant condensation of the data volume necessary for GW in-
vestigations, and as such, can potentially reduce the computational
resources required for even very advanced Bayesian search codes.

Finally, we point out that modern PTA data sets are constantly
growing and evolving. As technology advances and allows for up-
grades in radio instrumentation and as more nations and observato-
ries become major contributors to PTA endeavours, the data come
in a wider variety of forms and from more varied sources. PTA data
are becoming more and more heterogeneous and unwieldy to work
with. For the purposes of GW investigations, Â+ and Â× time series
will aid in the creation of a compressed and homogenized auxiliary
data set that isolates all of the important GW information.
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APPENDIX A : A PPROX IMATE
R E P R E S E N TAT I O N O F A+ A N D A×

The interpolated approximations to A+ and A× that we make use of
can be written as

A�(t) =
Nτ −1∑
μ=1

l�,μ(t)w(t, τμ, τμ+1), (A1)

where

l�,μ(t) = A�,μ + (A�,μ+1 − A�,μ)

(τμ+1 − τμ)
(t − τμ), (A2)

and

w(t, x, y) = 
(t − x) − 
(t − y). (A3)

Here, A�,μ ≡ A�(τμ). This piecewise linear interpolation scheme
has been used in Hobbs et al. (2012) to search for monopolar tim-
ing residual correlations associated with terrestrial clock errors and
Keith et al. (2013) in an effort to account for time-variable disper-
sion measures in individual pulsar timing data sets. As we wish to
incorporate this linear interpolant into the timing model, we will
need to know how the timing residuals change as the parameters of
the interpolant are changed, i.e.

∂δtK (t)

∂A�,λ

= G�
K

[
1 − t − τ1

τ2 − τ1

]
w(t, τ1, τ2); if λ = 1,

= G�
K

{
t − τλ−1

τλ − τλ−1
w(t, τλ−1, τλ)

+
[

1− t − τλ

τλ+1 − τλ

]
w(t, τλ, τλ+1)

}
; if 1 < λ < Nτ ,

= G�
K

t − τNτ −1

τNτ − τNτ −1
w(t, τNτ −1, τNτ ); if λ = Nτ . (A4)

To estimate A+,μ and A×,μ, they must be fit for simultaneously
with the timing models of several pulsars. Without doing this, struc-
ture induced in the residuals of a single pulsar from a GW could be
highly covariant with the structure anticipated from an inaccurate
timing model. The timing model parameters would become biased
away from their maximum-likelihood values and much of the power
in the residuals from the GW would be absorbed. To execute a si-
multaneous fit of all the pulsars in the PTA that can accommodate
global parameters that are shared by all the timing models, we can
construct modified design and noise covariance matrices and use
standard least-squares fitting techniques as in equations (6) and (7).
A modified design matrix that allows us to carry out such a fit is
Mg , structured as follows:⎡
⎢⎢⎣

M1 . . . 0 ∂δt1(t1)
∂A+,1

. . .

...
. . .

...
...

. . .

0 . . . MNP

∂δtNP (tNP )

∂A+,1
. . .

∂δt1(t1)
∂A+,Nτ

∂δt1(t1)
∂A×,1

. . . ∂δt1(t1)
∂A×,Nτ

...
...

. . .
...

∂δtNP (tNP )

∂A+,Nτ

∂δtNP (tNP )

∂A×,1
. . .

∂δtNP (tNP )

∂A×,Nτ

⎤
⎥⎥⎦ . (A5)

If the Kth pulsar has a nK × mK design matrix, Mg will be a
(
∑

KnK) × (2Nτ + ∑
KmK) matrix that is block diagonal except

for the rightmost 2Nτ columns. The maximum possible value of Nτ

is set by the requirement that Mg have more rows than columns,
or that there be more ToAs than model parameters; in practice we
choose Nτ to be significantly smaller than this theoretical limit.
The global noise covariance matrix will be (

∑
KnK) × (

∑
KnK) and

block diagonal:

Cg =

⎡
⎢⎣

C1 . . . 0
...

. . .
...

0 . . . CNP

⎤
⎥⎦ . (A6)

The matrices Cg and Mg can be used along with a vector of all
of the timing residuals, δtT = [δt1

T . . . δtNP
T ], in equations (6) and

(7) to carry out a global fit simultaneously for the timing models
of all the pulsars in the array and the model for a quadrupolar GW
signal coming from direction n̂. However, without some additional
conditioning, the fit will be ill-behaved because certain components
of signals in A+ and A× will induce structure in each pulsar’s timing
residuals that will be indistinguishable from structure caused by in-
correct estimates of that pulsar’s timing model parameters, resulting
in a singular parameter covariance matrix.

For example, suppose that A+(t) and A×(t) are simply quadrat-
ics, Q+(t) and Q×(t). Then, according to equation (3), the timing
perturbation from this GW in the Kth pulsar’s residuals will be
δth

K (t) = G+
KQ+(t) + G×

KQ×(t), which is itself a simple quadratic.
The most fundamental parameters in any pulsar timing model are
the spin parameters: a reference rotational phase, φK, the pulsar’s
spin frequency, fK, and the pulsar’s spin-down rate, ḟK . Errors in
the timing model estimates of these parameters lead to quadratic
structure in the timing residuals. In fact, the only means we have
of measuring these quantities for a particular pulsar is by fitting
a quadratic to that pulsar’s timing residuals. If a GW were cre-
ating additional quadratic structure in a pulsar’s timing residuals
beyond what is expected from incorrect estimates of that pulsar’s
spin parameters, the two effects could never be meaningfully differ-
entiated. For this reason, if we are to simultaneously fit the timing
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models for all the pulsars in the PTA with models for A+ and A×,
we must constrain the models to not contain quadratics. This can
be implemented by enforcing these six equality constraints:

Nτ∑
μ=1

A�,μ = 0,

Nτ∑
μ=1

τμA�,μ = 0,

Nτ∑
μ=1

τ 2
μA�,μ = 0. (A7)

We can approximately satisfy these six constraints while simulta-
neously conducting the global fit by appending six appropriately
constructed columns to Mg , six zero-value pseudo-residuals to δ t ,
and six very small diagonal elements, ε, to Cg . We find that this
procedure is numerically stable when we make ε five to six orders of
magnitude smaller than the largest diagonal element of Cg . Modern
PTA data sets include pulsars with rms ToA uncertainty ranging
between several tens of nanoseconds and a few microseconds. Our
condition on ε thus enforces that the linear equality constraints on
A+ and A× are satisfied with a precision consistent with or in ex-
cess of the timing precisions achievable with the best-timed known
pulsars.

In addition to the spin parameters of a pulsar, for the purposes
of precision pulsar timing, the celestial coordinates of the pulsar
are always fit for, and if the precision with which the pulsar can
be timed warrants it, two proper motion terms and a parallax are
also fit for. The influence of these astrometric parameters on timing
models principally concerns the calculation of the Roemer delay –
the difference in light-travel-time for pulses arriving at Earth-based
observatories and the SSB. Small estimation errors in the position
parameters of a pulsar lead to annual sinusoidal fluctuations in the
timing residuals of that pulsar. The sinusoid can be of any phase.
Similarly, incorrect estimates for proper motion lead to annual si-
nusoidal fluctuations of any phase in a pulsar’s residuals, but the
amplitude of the sinusoid grows linearly in time as the expected
pulsar position deviates more and more from the true pulsar posi-
tion.

Like a quadratic, if a GW were to induce sinusoidal structure with
a one-year period (possibly with an amplitude changing linearly in
time) in the residuals of any or all the pulsars in a PTA, that structure
could not be differentiated from the signatures of incorrect estimates
for the positions and proper motions of the affected pulsars. We must
thus also constrain A+ and A× to not contain such signatures:

Nτ∑
μ=1

sin (ω1τμ)A�,μ = 0,

Nτ∑
μ=1

cos (ω1τμ)A�,μ = 0,

Nτ∑
μ=1

τμ sin (ω1τμ)A�,μ = 0,

Nτ∑
μ=1

τμ cos (ω1τμ)A�,μ = 0, (A8)

where ω1 = 2π yr−1.
In the context of fitting linear interpolants to individual pulsar

timing data sets to model time-variable dispersion measure, Keith

et al. (2013) were the first to discuss and implement the constraints
discussed above. Because pulsar timing models often fit for parallax,
errors in which induce sinusoidal oscillations with a half-year period
in timing residuals, Keith et al. (2013) also constrained their linear
interpolants to not contain such biannual sinusoids. But, a parallax
constraint is unnecessary for the global, multi-pulsar fits we are
discussing. Fitting for parallax in all the pulsars in an array does not
generate problems when globally fitting for A+ and A× in the same
way as fitting for the pulsars’ rotational parameters, positions, or
proper motions. Estimation errors in the parallax induce sinusoidal
structure in the timing residuals of a pulsar with a specific phase
that depends only on the equatorial longitude of that pulsar. If a GW
were to induce biannual sinusoidal structure in a pulsar’s residuals, it
would have to have a very specific phase to potentially be confused
as an error in the parallax estimate for that pulsar, but then, the
residuals of other pulsars in the PTA would also show evidence of
biannual sinusoidal fluctuations with the same phase in their timing
residuals and with amplitudes that vary in accordance with the
quadrupolar nature of a GW. If they do, these biannual sinusoidal
fluctuations can be reliably ascribed to the activity of a GW in the
vicinity of Earth. If they do not, the fluctuations can instead be
ascribed to an estimation error in the parallax of one pulsar. For
these reasons, no additional constraints regarding parallax must be
enforced on A+ and A×.

APPENDI X B: TEMPO2 USAG E

Here we provide details for how to make use of the routines de-
scribed in this paper. In almost all cases the A+(t) and A×(t) time
series will be included as part of a global fit. The following param-
eters should therefore be provided in a global parameter file (which
we assume is called ‘apac.par’):

# The following line sets (S) the
#quadrupolar (Q) interpolation function
#(IFUNC) for the plus (p) polarization.
#The 1 indicates the type of interpolation
#(linear) and the 2 indicates that this
#will be fitted globally to all pulsars
SQIFUNC_p 1 2
# The next line is the same for the
#cross polarization
SQIFUNC_c 1 2
# We now need to define the direction
#(in radians) of the quadrupole for the
#plus and cross functions
#(usually they are the same)
QIFUNC_POS_P <ra> <dec>

QIFUNC_POS_c <ra> <dec>

# We now define the actual grid points
#for the plus polarization
QIFUNC_p1 <mjd> <val> <err>

QIFUNC_p2 <mjd> <val> <err>

# and also for the cross polarization
QIFUNC_c1 <mjd> <val> <err>

QIFUNC_c2 <mjd> <val> <err>

# We then ensure that the constraints
#are correctly applied
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CONSTRAIN QIFUNC_p
CONSTRAIN QIFUNC_c

Assuming that four pulsars have been observed, their parameters
are in individual files (psr1.par, psr2.par, psr3.par and psr4.par) and
their ToAs are in psr1.tim, psr2.tim etc., then the TEMPO2 fit can be
carried out using:
tempo2 -f psr1.par psr1.tim -f psr2.par
psr2.tim -f psr3.par psr3.tim -f psr4.par
psr4.tim -global apac.par

To include red noise models (defined in model.dat), use:
tempo2 -f psr1.par psr1.tim -f psr2.par
psr2.tim -f psr3.par psr3.tim -f psr4.par
psr4.tim -global apac.par -dcf model.dat

The Â+ and Â× time series are written to files called
‘aplus_t2.dat’ and ‘across_t2.dat’. The covariance matrix C+× is
written to a file called ‘aplus_across.cvm’.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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