ABSTRACT

BACKGROUND: A systematic review and meta-analysis was conducted to examine the effect of exercise training on daily physical activity (PA) in people with chronic obstructive pulmonary disease (COPD).

METHODS: MEDLINE, PubMed, EMBASE, CINAHL, Physiotherapy Evidence Database (PEDro) and Cochrane Central Register of Controlled Trials were searched from their inception to week 27 of 2010, using the keywords ‘COPD’, ‘exercise’, ‘therapy’ and ‘physical activity’. All studies except case-reports were eligible for inclusion provided they investigated the effects of ≥ 4 weeks of supervised exercise training on PA in patients with COPD. Study quality for the randomised trials (RT) and single-group interventional studies was rated using the PEDro scale and Downs and Black Tool, respectively.

RESULTS: No randomised controlled trials met our study criteria. The two RTs had a mean PEDro score of 5. The five single-group studies had a mean Downs and Black score of 19 ± 3. When combined, a small effect on PA outcomes was demonstrated (overall mean effect = 0.12; p = 0.01).

CONCLUSIONS: There are no randomised controlled trials that examine the effect of ≥ 4 weeks of supervised exercise training on PA. Taken together, the RTs and single-group studies demonstrate that exercise training may confer a significant but small increase in PA. Keywords: COPD, Exercise training, Physical activity, Systematic review, Meta-analysis
INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is characterised by progressive airflow obstruction caused by a loss of elastic recoil and airway narrowing, that is not fully reversible in response to bronchodilators. The prevalence of COPD in people aged ≥ 40 years, measured in 9,425 adults from 12 countries, was estimated to be 10%. Worldwide, COPD is expected to be the third leading cause of death by 2030. It is also a leading cause of hospitalisation, especially in older populations.

Many individuals with COPD are inactive in daily life, most likely as a strategy to minimise dyspnea. Physical activity (PA) is defined as any bodily movements produced by skeletal muscles that results in energy expenditure beyond resting state. Lower levels of PA in COPD have been associated with impaired health-related quality of life, increased healthcare utilisation and reduced survival. A recent study that collected data using a portable metabolic monitor demonstrated that the time spent in moderate intensity PA diminishes with worsening disease. As the level of habitual PA appears to play an important role in the mortality and healthcare burden associated with COPD, optimising PA is an important goal in the management of people with this condition. Several studies have investigated the effect exercise training, undertaken in the context of pulmonary rehabilitation, on daily PA. However, there is considerable variability in study findings and therefore the effect of exercise training on PA is unclear.

The aim of this review was to systematically search the literature and undertake a meta-analysis of data from studies that have evaluated the effect of exercise training on PA in people with COPD.
Change in physical activity in COPD

METHODS

Data Sources

Study identification began with electronic searching of computerised databases, namely MEDLINE, PubMed, EMBASE, CINAHL, Physiotherapy Evidence Database (PEDro) and Cochrane Central Register of Controlled Trials from inception to week 27 in 2010 (Box 1). The subject headings used in the search were ‘COPD/chronic obstructive pulmonary disease’, ‘therapy’ and ‘exercise’ with key terms comprising of ‘accelerometer’, ‘pedometer’, ‘physical activity’ and, ‘energy’. Secondary searches included hand searching reference lists of all identified studies and PubMed ‘related articles’ function. Clinical trials registries were also reviewed to identify any randomised controlled trials (RCTs) that may have been ‘in press’.

Study Selection

Studies were eligible for inclusion criteria if they: (i) were written in English, (ii) recruited people with COPD, (iii) investigated the effect of supervised exercise training of at least 4 weeks in duration on PA, (iv) measured PA using activity monitors and, (v) reported PA in absolute values such as steps or activity counts. Studies that utilised any design other than case reports were eligible for inclusion. Where necessary, authors were contacted to obtain PA data in absolute values. If the authors did not respond, the study was excluded from the meta-analysis.

Quality Assessment

Two members of the review team (CN and JM) independently extracted data using a standardised assessment form. Quality assessment for the RCTs and randomised trials (RTs) was rated using the 10-point PEDro scale. Quality assessment for the single-group studies
Change in physical activity in COPD was rated using a modified Downs and Black tool. This tool consists of 27 questions, that relate to study description, external validity, internal validity and statistical power. To minimise ambiguities, the question pertaining to statistical power was assigned one point if prospective sample size calculations were provided (and 0 points if these details were absent), which resulted in a maximum score of 28. This modification to the Downs and Black tool has been used previously.

Data Extraction and Analysis
Consistency between reviewers for both quality assessment methods was calculated using Kappa statistics. Due to the heterogeneity in PA outcome measures, the random-effects approach was used in the meta-analysis. Effect sizes were calculated by dividing the differences in PA, (before and after the intervention) by the pooled standard deviation. Regarding interpretation, \(\leq 0.2 \) was considered small, 0.5 was considered moderate and \(\geq 0.8 \) was considered large. The \(I^2 \) test was used to quantify statistical heterogeneity of the studies. A value of \(\leq 25\% \) reflects low heterogeneity, 50\% is moderate and 75\% represents high heterogeneity. A \(p \) value of \(< 0.1 \) was used to indicate that the heterogeneity was not due to chance alone and it would be inappropriate to combine the results in a summary. A funnel plot was assessed visually to detect publication bias where a symmetric inverted funnel shape indicates that bias is unlikely. Comprehensive Meta Analysis version 2.2.050 (Biostat™, New Jersey, USA) was used for meta-analysis.

RESULTS
The search strategy yielded 1,840 records of which 128 (7\%) were duplicates and thus excluded (Figure 1). Of the remaining 1,712 records, 1,686 (98\%) were excluded based on title or abstract and 19 (1\%) were excluded after reviewing the full text. There were no RCTs
Change in physical activity in COPD

that met our study criteria. A total of seven studies met the criteria for inclusion; two (29%) were RTs in which two groups of participants received different interventions, both of which were designed to optimise PA and five (71%) were single-group interventional studies in which all participants received the same intervention. Authors of two of the studies were contacted for PA data in absolute values.

Quality Assessment

Table 1a and 1b presents the quality assessment score for each of the RTs and single-group studies, respectively. Reviewers agreed on 100% of all PEDro items (Kappa statistic = 1). The mean (SD) PEDro score for the RTs was 5 ± 0 points. Reviewers agreed on 96% of all Downs and Black items with a Kappa statistic of 0.92. The mean Downs and Black score was 19 ± 3 points.

Subject Characteristics

Table 1a and 1b also summarise the subject characteristics of the RTs and single-group interventional studies, respectively. The sample sizes ranged from 813 to 11618. Considering all studies together, the participants were predominantly male (n = 419, 72%). Based on the forced expiratory volume in one second (FEV\textsubscript{1}) expressed as a percentage of the predicted normal value, participants in most studies had severe airflow obstruction.26

Interventions and Methods for Measuring Physical Activity

The duration of supervised exercise training ranged between 6 weeks and 6 months.13-16, 18, 20, 27 The monitors used to measure PA comprised the NL-2000 pedometer,14 the Yamax Digi-Walker SW-200 pedometer,13 the DynaPort Activity Monitor,15 the Z80-32K Activity Monitor,16 the Actiwatch,20 the TriTrac-R3D® accelerometer27 and the RT-3 accelerometer.18
Change in physical activity in COPD

Effects on Physical Activity

Table 2a and 2b summarise the findings of the RTs and single-group studies, respectively. In the RTs, both groups received exercise training. One study compared an individualised targeted exercise program (ITEP) based on daily activities with a general exercise program (GEP), and the other investigated the effect of using a pedometer to provide feedback regarding walking targets, over and above a program of supervised exercise training. As both groups in these two studies examined the effect of exercise training on PA, we entered the data from each arm into the meta-analyses. The intervention for all five single group studies comprised supervised exercise training at least twice a week. Asymmetry was observed in the funnel plot for PA in the RTs and single-group interventional studies (Figure 2), suggesting that we could not exclude publication bias. Taken together, PA data entered into the meta-analysis from the RTs and the single-group studies was homogeneous ($I^2 = 0\%$, $p = 0.60$). The effect size for PA though significant was small (0.12; $p = 0.01$) (Figure 3).

DISCUSSION

This is the first systematic review and meta-analysis to evaluate the effect of exercise training on measures of PA. The important findings of our review are that; (i) there are no published RCTs that examine the effects of at least 4 weeks of supervised exercise training on PA and, (ii) data from the RTs and single-group interventional studies indicate that, in people with COPD, supervised exercise training confers a significant, but small effect on PA.

Regarding the RTs included in this review, the two groups in both RTs demonstrated a similar magnitude of change in PA following the intervention period. This is perhaps not surprising as both groups in these studies received an intervention that aimed to increase PA.
Change in physical activity in COPD

and it was the effectiveness of an additional strategy (such as feedback using pedometer data or individualisation of exercises) that was being examined. Thus, any difference between the two groups was likely to be small. When the results of the five single-group studies included in this review were considered individually, two (40%) reported a significant increase in PA on completion of the intervention period.15,20 Relative to baseline measures, one reported an improvement of 20% (p = 0.008)15 while the other reported a difference of 36 ± 49 (x103 counts/hour) or approximately 40% (p = 0.002).20 When these results of the RTs and single-group studies were combined the effect size for PA was small, but significant (0.14; p = 0.04). Exclusion of the data from the RTs from the meta-analysis produced a trivial change in the magnitude of the overall effect size (i.e. from 0.14 to 0.12). To appreciate this change in real terms, using the study by Pitta et al15 as a reference, an overall pooled effect size of 0.12 or 0.14 is equivalent to an increase of approximately 4.6 or 5.4 minutes of walking per day, following the intervention. In addition to this small effect, the wide 95% confidence intervals for data pertaining to five of the seven studies in Figure 3 indicates that there was considerable variability in PA between individuals. Our data revealing a modest effect size together with substantial variability suggests that future RCTs that aim to demonstrate an effect of supervised exercise training on PA will require very large sample sizes.

We considered that the capacity of individual studies to demonstrate a significant increase in PA may be influenced not only by the nature of the intervention, but by other factors such as; (i) the method used to measure PA, (ii) the frequency of supervised exercise training and, (iii) the clinical stability of participants over the duration of the study period. Regarding the outcome measures, earlier work has demonstrated that in people with COPD, questionnaires do not yield an accurate measure of PA5 and pedometers lack the sensitivity to detect steps at the slow walking cadence characteristic of this clinical population.28,29 In contrast,
Change in physical activity in COPD

accelerometers yield accurate measures of PA in people with COPD and have emerged as a popular choice. Given their superior accuracy, we considered the possibility that those studies that utilised an accelerometer to measure PA may have been more likely to demonstrate improvements in PA. Examination of Figure 3 revealed, that of the five studies which measured PA using an accelerometer, three (60%) demonstrated a significant effect. Differences in the nature and potentially the effectiveness of the interventions used in each of the studies preclude us from drawing conclusions regarding the superiority of an accelerometer as an outcome measure. However, future studies may have a greater likelihood of demonstrating change if reliable, valid and responsive accelerometers are used in preference to pedometers or self-report methods.

Regarding the frequency of supervised exercise training, both studies that utilised exercise training three times a week, for at least eight weeks demonstrated a significant improvement in PA. In contrast, of the five studies that offered exercise training only twice a week, only one demonstrated a significant improvement in PA. This suggests that more frequent training may be necessary to show a significant increase in PA. Similarly, the data from Pitta’s study suggests that the duration over which exercise training is offered is important. Specifically, the participants in his study demonstrated a small non-significant increase in PA after three months of supervised exercise training, with an additional three months of training required to confer a significant increase. These results are in line with a recent review which concluded that pulmonary rehabilitation programs that exceed 12 weeks in duration were more likely to promote long-term maintenance of training effects. Earlier work suggests that at least three months is required for most individuals to change a habit and therefore, studies that investigate interventions offered over an extended period that comprises frequent supervised exercise training are perhaps the most likely to be successful.
Change in physical activity in COPD

Regarding the clinical stability of study participants, only Steele et al.18 separated those who experienced an acute exacerbation during the follow-up period from those who did not. Of all the studies included in this meta-analysis, the participants who experienced an acute exacerbation in the study by Steele et al.18 were the only subgroup to demonstrate an effect suggestive of deterioration in PA. This is consistent with earlier work that reported a dramatic decline in PA among individuals with COPD following an exacerbation.32 Notably, this deterioration in PA has been shown to persist for several weeks.32

LIMITATIONS

The main limitation of this systematic review relates to the lack of RCTs. Further, although all studies included in this review investigated the effect of supervised exercise training on PA, there was disparity in the nature of the individual exercise training programs. Publication bias might have influenced the effect size. Both the RTs and single group interventional studies were of fair methodological quality. These considerations limit the extent to which we draw conclusions about the effect of supervised exercise training in PA in people with COPD.

CONCLUSION

Current data suggests that any effect of exercise training on PA in people with COPD is small. Randomised controlled trials are needed in this area. Future studies may increase their likelihood of demonstrating a positive effect by; (i) measuring PA with an accelerometer, (ii) offering supervised exercise training at least three times a week over a minimum of 8 weeks and, (iii) extending the intervention period for those who experience an acute exacerbation of
Change in physical activity in COPD

their disease. Large sample sizes are likely to be necessary to demonstrate a statistically significant effect.

Acknowledgements:
We acknowledge Dina Brooks and Mika Nonoyama from University of Toronto, as well as Wai Pong Wong from Singapore General Hospital for their valuable feedback on the manuscript.

Ethical approval: Not applicable

Conflict of interest: None

All authors have read and approved of the manuscript.

REFERENCES

4. Mannino DM. COPD : Epidemiology, prevalence, morbidity and mortality, and disease heterogeneity Chest. 2002;121(5 suppl):121S-126S.
Change in physical activity in COPD

13. de Blok BMJ, de Greef MHG, ten Hacken NHT, Sprenger SR, Postema K, Wempe JB. The effects of a lifestyle physical activity counseling program with feedback of a
Change in physical activity in COPD

Change in physical activity in COPD

Change in physical activity in COPD

Change in physical activity in COPD

Figure 1: Flow of information through the different phases of the systematic review.

Literature search
Databases: MEDLINE, PubMed, EMBASE, CINAHL, Physiotherapy Evidence Database (PEDro) and Cochrane Central Register of Controlled Trials
Limits: Humans and English language

1,839 records identified through database searching
1 additional record identified through ClinicalTrials.gov (Article in press)

1,712 records after duplicates removed

1,712 records screened
1,686 records excluded on basis of title or abstract

26 full-text articles assessed for eligibility

7 studies included in qualitative synthesis

19 full-text articles excluded, with reasons
- Non-objective measurements of physical activity (n=3)
- Physical activity as an intervention and not an outcome measure (n=1)
- Interventions not related to rehabilitation or exercise training (n=5)
- Less than 4 weeks of rehabilitation or exercise training (n=3)
- Observational study on daily activity (n=6)
- Description of protocol (n=1)
Change in physical activity in COPD

Figure 2: Funnel plot of physical activity as an outcome measures in the randomised trials and single-group interventional studies. The tendency for data points to fall predominantly on the right of the 0 suggests a publication bias may be present.
Change in physical activity in COPD

Figure 3: Forest plot for physical activity measured in the two randomised trials and the five single-group interventional studies

<table>
<thead>
<tr>
<th>Study name</th>
<th>Std Paired Difference</th>
<th>Standard error</th>
<th>Variance</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Z-Value</th>
<th>p-Value</th>
<th>Std Paired Difference and 95% CI</th>
<th>Relative weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steele 2003</td>
<td>0.14</td>
<td>0.16</td>
<td>0.03</td>
<td>-0.18</td>
<td>0.46</td>
<td>0.88</td>
<td>0.38</td>
<td></td>
<td>9.03</td>
</tr>
<tr>
<td>Pitta 2008</td>
<td>0.26</td>
<td>0.19</td>
<td>0.04</td>
<td>-0.11</td>
<td>0.63</td>
<td>1.36</td>
<td>0.17</td>
<td></td>
<td>6.74</td>
</tr>
<tr>
<td>Walker 2008</td>
<td>0.36</td>
<td>0.22</td>
<td>0.05</td>
<td>-0.06</td>
<td>0.78</td>
<td>1.67</td>
<td>0.10</td>
<td></td>
<td>5.19</td>
</tr>
<tr>
<td>Dallas 2009</td>
<td>0.16</td>
<td>0.15</td>
<td>0.02</td>
<td>-0.13</td>
<td>0.45</td>
<td>1.06</td>
<td>0.29</td>
<td></td>
<td>10.67</td>
</tr>
<tr>
<td>Steele 2010</td>
<td>0.03</td>
<td>0.10</td>
<td>0.01</td>
<td>-0.17</td>
<td>0.24</td>
<td>1.31</td>
<td>0.76</td>
<td></td>
<td>22.08</td>
</tr>
<tr>
<td>Sewell 2005^</td>
<td>0.03</td>
<td>0.11</td>
<td>0.01</td>
<td>-0.17</td>
<td>0.24</td>
<td>1.31</td>
<td>0.76</td>
<td></td>
<td>21.60</td>
</tr>
<tr>
<td>Sewell 2005#</td>
<td>0.13</td>
<td>0.11</td>
<td>0.01</td>
<td>-0.08</td>
<td>0.33</td>
<td>1.19</td>
<td>0.23</td>
<td></td>
<td>21.44</td>
</tr>
<tr>
<td>de Blok 2006+</td>
<td>0.34</td>
<td>0.36</td>
<td>0.13</td>
<td>-0.37</td>
<td>1.06</td>
<td>0.94</td>
<td>0.34</td>
<td></td>
<td>1.81</td>
</tr>
<tr>
<td>de Blok 2006*</td>
<td>0.81</td>
<td>0.41</td>
<td>0.17</td>
<td>0.01</td>
<td>1.60</td>
<td>1.98</td>
<td>0.05</td>
<td></td>
<td>1.45</td>
</tr>
</tbody>
</table>

\(I^2=0\%, p=0.60\)

Physical Activity

p, pedometer; a, accelerometer

The two interventions in both randomised trials have been entered separately into this plot where ^ represents the group that completed a general exercise program, # represents the group that completed an individualised targeted exercise program, + represents the group that completed pulmonary rehabilitation and * represents the group that completed pulmonary rehabilitation with counseling and feedback based on pedometer data.
Change in physical activity in COPD

Table 1a: Characteristics of study participants of randomised trials

<table>
<thead>
<tr>
<th>Study</th>
<th>PEDro</th>
<th>Sample size (n)</th>
<th>Gender (M/F)</th>
<th>Age (years)</th>
<th>BMI (kg·m²)</th>
<th>FEV₁ (L) (%pred)</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewell 2005¹⁵</td>
<td>5</td>
<td>90</td>
<td>51/39</td>
<td>67.3±8.4</td>
<td>N/A</td>
<td>0.97±0.45</td>
<td>Individually targeted ex program (ITEP) performed twice a week. One day comprised aerobic exercise and the other day comprised exercises based on daily functional activities identified during the Canadian Occupational Performance Measure + 2 hours of education per week</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>60/30</td>
<td>69.3±8.7</td>
<td>N/A</td>
<td>0.93±0.39</td>
<td>General ex program (GEP) performed twice a week. One day comprised aerobic exercise and the other day comprised standard exercises including step-ups, sit-to-stand and stationary cycling, wall push-ups, small and large arm circling and shoulder shrugs trunk flexion, trunk rotation and pelvic tilt + 2 hours of education per week</td>
</tr>
<tr>
<td>de Blok 2006¹²</td>
<td>5</td>
<td>10</td>
<td>5/5</td>
<td>65.7±10.4</td>
<td>29.3±8.4</td>
<td>1.44±0.80 (52±22%)</td>
<td>Pulmonary rehabilitation exercise program + dietary + psychosocial-education modules + lifestyle PA counseling based on pedometer data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>4/7</td>
<td>62.5±12.3</td>
<td>28.2±6.6</td>
<td>1.24±0.62 (43±13%)</td>
<td>Pulmonary rehabilitation exercise program + dietary + psychosocial-education modules</td>
</tr>
</tbody>
</table>

Data are mean±SD.
M: male; F: female; BMI: body mass index; FEV₁: forced expiratory volume in one second.
Change in physical activity in COPD

Table 1b: Characteristics of study participants of single-group interventional studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Downs & Black 2003</th>
<th>Sample size (n)</th>
<th>Gender (M/F)</th>
<th>Age (years)</th>
<th>BMI (kg·m(^2))</th>
<th>FEV(_1) (L) (%pred)</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steele</td>
<td>14 38 37/1</td>
<td>63.7±7.8</td>
<td>1.2±0.5</td>
<td>(39±17%)</td>
<td>Twice weekly exercise classes. On completion of the first 2 to 3 weeks of the program a home exercise program was given and encouraged at least 3 days a week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitta</td>
<td>21 29 23/6</td>
<td>67±8</td>
<td>25±6</td>
<td>-</td>
<td>(46±16%)</td>
<td>Multi-disciplinary rehabilitation including education, support and/or counseling, circuit exercise training (cycling, walking, strength training for quadriceps, pectoralis and triceps, arm cranking and stair climbing) Months 1 to 3, exercise was performed 3 times a week; months 4 to 6, exercise was performed 2 times a week</td>
<td></td>
</tr>
<tr>
<td>Walker</td>
<td>17 23 12/11</td>
<td>66±9</td>
<td>24.4±4.4</td>
<td>0.93±0.32</td>
<td>(36±12%)</td>
<td>2 supervised + 1 unsupervised exercise sessions per week comprising whole body endurance ex + peripheral muscle strengthening</td>
<td></td>
</tr>
<tr>
<td>Dallas</td>
<td>21 45 21/24</td>
<td>69±8</td>
<td>27±5</td>
<td>(45±18%)</td>
<td>Exercise classes 2 to 3 times per week. Multi-modality aerobic and strength training of lower and upper extremities + education + psychosocial support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steele</td>
<td>20 20(^*) 130/6</td>
<td>67.0±9.0</td>
<td>28.6±6.3</td>
<td>-</td>
<td>(36±15%)</td>
<td>Twice a week rehab-progressive resistance exercises with hand weights, elastic resistance tubing, and/or weight machines. Cardiovascular/ endurance training included use of treadmills, stationary cycles, NuStep, and upper extremity ergometers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>116(^†)</td>
<td>66.8±10.4</td>
<td>30.8±7.5</td>
<td>-</td>
<td>(40±16%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are mean±SD.
* COPD participants who had an exacerbation during the study; †COPD participants who had no exacerbation during the study.
M: male; F: female; BMI: body mass index; FEV\(_1\): forced expiratory volume in one second.
Change in physical activity in COPD

Table 2a: Summary of findings for randomised trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Duration of intervention</th>
<th>Days of activity monitoring</th>
<th>PA pre</th>
<th>PA post</th>
<th>Within group findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewell 2005</td>
<td>7 weeks</td>
<td>2</td>
<td>ITEP</td>
<td>4537±8465 activity counts</td>
<td>5819±5665 activity counts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>GEP</td>
<td>3587±4357 activity counts</td>
<td>3835±6453 activity counts</td>
</tr>
<tr>
<td>de Blok 2006</td>
<td>9 weeks</td>
<td>4</td>
<td>Added counseling + pedometer</td>
<td>2059±941 steps/day</td>
<td>3594±1657 steps/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2312±916 steps/day</td>
<td>2985±1730 steps/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p=0.24 between groups</td>
</tr>
</tbody>
</table>

Data are mean±SD.

Data from 8 participants were assessed over 4 days without rehabilitation including 1 weekend day. The 4 days data was used in the meta-analysis as it had a greater effect size than that of the 6 days without rehabilitation (including 2 weekend days) data and 7 days data was excluded as it included rehabilitation.

Activity counts rounded to the nearest whole number.
Change in physical activity in COPD

Table 2b: Summary of findings for single-group interventional studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Duration of intervention</th>
<th>Days of activity monitoring</th>
<th>PA pre</th>
<th>PA post</th>
<th>Within group findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steele 2003</td>
<td>8 weeks</td>
<td>5</td>
<td>82±34 VMU</td>
<td>90±38 VMU</td>
<td>p=0.06</td>
</tr>
<tr>
<td>Pitta 2008</td>
<td>3 months</td>
<td>5</td>
<td>55±26 min/day</td>
<td>59±27 min/day</td>
<td>After 3 months; 7% improvement in walking time, p=0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>After 6 months; 20% improvement in walking time, p=0.008</td>
</tr>
<tr>
<td>Walker 2008</td>
<td>8 weeks</td>
<td>3</td>
<td>82±53 (x10<sup>3</sup> counts/hr)</td>
<td>117±84 (x10<sup>3</sup> counts/hr)</td>
<td>Improvement of 36±49 (x10<sup>3</sup> counts/hr), p=0.002</td>
</tr>
<tr>
<td>Dallas 2009</td>
<td>6-12 weeks</td>
<td>7</td>
<td>207±139 counts/hr</td>
<td>240±153 counts/hr</td>
<td>Improvement of 33±149 counts/hr, p=0.14</td>
</tr>
<tr>
<td>Steele 2010</td>
<td>8 weeks</td>
<td>6</td>
<td>Exacerbation (n=20)</td>
<td>165±143 VMU</td>
<td>No within group data. p=0.56 between those that had an exacerbation and those that did not</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Non exacerbation (n=92)</td>
<td>163±89 VMU</td>
<td></td>
</tr>
</tbody>
</table>

Data are mean±SD.
VMU: vector magnitude units; mins: minutes; hr: hour
VMU and activity scores rounded to the nearest whole number