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Abstract—The optimal source precoding matrix and relay am-
plifying matrix have been developed in recent works on multiple-
input multiple-output (MIMO) relay communication systems as-
suming that the instantaneous channel state information (CSI) is
available. However, in practical relay communication systems, the
instantaneous CSI is unknown, and therefore, has to be estimated
at the destination node. In this paper, we develop a novel channel
estimation algorithm for two-hop MIMO relay systems using
the parallel factor (PARAFAC) analysis. The proposed algorithm
provides the destination node with full knowledge of all channel
matrices involved in the communication. Compared with existing
approaches, the proposed algorithm requires less number of
training data blocks, yields smaller channel estimation error,
and is applicable for both one-way and two-way MIMO relay
systems with single or multiple relay nodes. Numerical examples
demonstrate the effectiveness of the PARAFAC-based channel
estimation algorithm.

Index Terms—Channel estimation, MIMO relay, PARAFAC.

I. INTRODUCTION

Recently, there have been many research efforts on multiple-
input multiple-output (MIMO) relay systems [1]-[6]. For a
three-node two-hop MIMO relay system where the direct
source-destination link is omitted, the optimal relay amplifying
matrix is obtained in [2]-[3] to maximize the mutual infor-
mation between source and destination. In [4], optimal relay
matrices are developed to minimize the mean-squared error
(MSE) of the signal waveform estimation at the destination
node for a two-hop MIMO relay system with multiple parallel
relay nodes. A unified framework is established for optimizing
the source precoding matrix and the relay amplifying matrix of
two-hop linear non-regenerative MIMO relay systems with a
broad class of objective functions [5]. Recently, it has been
shown in [6] that by using a nonlinear decision feedback
equalizer (DFE) based on the minimal MSE (MMSE) criterion
at the destination node, the system bit-error-rate (BER) can be
significantly reduced.

For the aforementioned MIMO relay systems, the instanta-
neous channel state information (CSI) knowledge of both the
source-relay link and the relay-destination link is required at
the destination node to estimate the source signals. Moreover,
in order to optimize the source and/or relay matrices in [1]-
[6], the instantaneous CSI knowledge of both links is needed
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to carry out the optimization procedure. When the direct
source-destination link is considered, the CSI knowledge of
the direct link is also required at the destination node to
estimate the source signals [7]. However, in practical relay
communication systems, the instantaneous CSI is unknown,
and therefore, has to be estimated. Recently, a tensor-based
channel estimation algorithm is developed in [8] for a two-way
MIMO relay system. Since the algorithm in [8] exploits the
channel reciprocity in a two-way relay system, its application
in one-way MIMO relay systems is not straightforward. In [9],
a relay channel estimation algorithm using the least-squares
(LS) fitting is proposed. The performance of the algorithm in
[9] is further analyzed and improved by using the weighted
least-squares (WLS) fitting in [10]. However, the number
of training data blocks required in [9] and [10] is at least
equal to the number of relay nodes (antennas), resulting in a
low system spectral efficiency. For amplify-and-forward relay
networks with single-antenna source, relay, and destination
nodes, the optimal training sequence is developed in [11]. A
superimposed training based channel estimation algorithm has
been developed recently for OFDM modulated relay systems
in [12]. The optimal training sequence is derived in [13] for
a MIMO relay system with one multi-antenna relay node.
However, for systems with distributed relay nodes which do
not cooperate with each other, the result in [13] can not be
used.

There are two major challenges in channel estimation for
MIMO relay systems. Firstly, for most applications, the CSI
on the compound source-relay-destination channel alone is
not sufficient. In fact, the CSI of each hop is required at
the destination node to perform signal retrieving and sys-
tem optimization. Secondly, relay nodes (in particular, non-
regenerative distributed relays) often have limited computation
capacity. Thus, channel estimation is usually carried out at the
destination node, not at the relay nodes [8]-[12]. In this paper,
we address these two challenges by proposing a novel MIMO
relay channel estimation algorithm based on the parallel factor
(PARAFAC) analysis [14]-[16]. The proposed algorithm pro-
vides the destination node with full knowledge of all channel
matrices involved in the communication. The contributions of
this paper can be summarized as follows. Firstly, compared
with algorithms in [9] and [10] where the number of training
data blocks should be at least equal to the number of relay
nodes (antennas), the number of training data blocks required
in the proposed algorithm can be less than the number of
relay nodes (antennas). In particular, we show that when the
number of relay nodes (antennas) is smaller than the number
of antennas at the source node and the destination node, as
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few as two training data blocks are sufficient to estimate all
channels. Thus, the proposed algorithm has a higher spectral
efficiency than those in [9] and [10]. Secondly, in this paper,
the initial estimation of channel matrices is improved by a
linear MMSE (LMMSE) algorithm, which yields a smaller
estimation error than the WLS fitting applied in [10]. Thirdly,
in contrast to [8], the proposed algorithm is applicable for both
one-way and two-way relay systems with single or multiple
relay nodes.

In the proposed algorithm, the MIMO channel matrix of
the direct source-destination link in one-way relay systems is
estimated by the LS approach. For the source-relay-destination
link in both one-way and two-way relay systems, we show
that under a mild condition of the channel training data block
length, the MIMO channel matrices of both hops can be
estimated up to permutation and scaling ambiguities, which are
inherent to the PARAFAC model. To remove the permutation
ambiguity, we exploit the knowledge of the relay factors
available at the destination node during the channel training
period. Then by using a bilinear alternating least-squares
(BALS) algorithm, the channel matrix of each hop can be
estimated up to some scaling ambiguity, which can be resolved
through normalization as in [9], [10], [15].

Since during the training period, the noise at the relay
nodes is amplified and forwarded to the destination node, the
effective noise vector at the destination node is non-white.
Taking this fact into account, we propose an LMMSE approach
to further improve the channel estimation, by exploiting the
initial estimate of the relay-destination channel. We show
that the proposed BALS and LMMSE algorithms can also
be applied for channel estimation in two-way MIMO relay
systems. Numerical examples demonstrate the effectiveness of
the proposed PARAFAC-based channel estimation algorithm
compared with existing techniques. We would like to mention
that in this paper, for notational convenience, we consider a
narrowband single-carrier system. However, our algorithm can
be straightforwardly applied to estimate the MIMO channel
matrices in each subcarrier of a broadband multi-carrier relay
communication system1.

The rest of this paper is organized as follows. In Section II,
we introduce the model of a two-hop amplify-and-forward
MIMO relay communication system. The proposed channel es-
timation algorithm is developed in Sections III. In Section IV,
we show some numerical examples. Conclusions are drawn in
Section V.

II. SYSTEM MODEL

We consider a two-hop MIMO communication system
where the source node transmits information to the destination
node with the aid of R relay nodes as shown in Fig. 1.
The source node and the destination node are equipped with
Ns ≥ 2 and Nd ≥ 2 antennas, respectively, while the ith relay
node has Mi antennas, i = 1, · · · , R. Since several practical

1In a multicarrier communication system, the spectral correlation among
subcarriers can be exploited to reduce the computational complexity and
improve the quality of channel estimation [17]. Exploiting such correlation in
multicarrier MIMO relay channel estimation is an interesting future topic.

constraints such as power consumption, implementation costs
and spatial efficiency make half-duplex relays more appealing
for wireless applications than full-duplex relays, in this paper,
we consider half-duplex relays as in [2]-[13] (i.e., each relay
node does not receive and transmit signals simultaneously).
Thus, the communication process between the source and
destination nodes is completed in two time slots. In the
first time slot, the Ns × 1 modulated signal vector us(t) is
transmitted to all relay nodes and the destination node, and
the received signal vectors are respectively given by

yr,i(t) = Hsr,ius(t) + vr,i(t), i = 1, · · · , R

yd(t) = Hsdus(t) + vd(t) (1)

where yr,i(t) is an Mi × 1 received signal vector at the ith
relay node, yd(t) is an Nd × 1 received signal vector at the
destination node, Hsr,i is the Mi×Ns MIMO fading channel
matrix between the source node and the ith relay node, Hsd is
the Nd×Ns MIMO source-destination channel matrix, vr,i(t)
is an Mi × 1 noise vector at the ith relay node, and vd(t) is
the Nd × 1 noise vector at the destination node. We assume
that all noises are independent identically distributed (i.i.d.)
complex Gaussian noise with zero mean and unit variance.
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Fig. 1. Two-Hop MIMO relay system with R relay nodes.

In the second time slot, the source node is silent, and each
relay node amplifies the received signal vector with matrix Gi

and forwards the amplified signals to the destination node. We
assume that relay nodes are synchronized during transmission2

as in [4], [9], and [10]. The received signal vector at the
destination node is

yd(t + 1) =
R∑

i=1

Hrd,iGiHsr,ius(t)

+
R∑

i=1

Hrd,iGivr,i(t) + vd(t + 1)

= HrdGHsrus(t) + HrdGvr(t) + vd(t + 1) (2)

where Hrd,i is the Nd × Mi MIMO fading channel matrix
between the destination node and the ith relay node, and
vd(t + 1) is an Nd× 1 noise vector at the destination node at
time t + 1. Here Hsr ,

[
HT

sr,1, · · · ,HT
sr,R

]T
is the M ×Ns

(M =
∑R

i=1 Mi) MIMO channel from the source node to

2If a blind synchronization technique is applied, relay synchronization and
channel estimation can be jointly designed to improve the system performance
[18]. While in pilot symbols-based synchronization methods, these pilot
symbols can be exploited to assist channel estimation.
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all relay nodes, Hrd , [Hrd,1, · · · ,Hrd,R] is the Nd × M
channel matrix between all relay nodes and the destination
node, vr(t) ,

[
vT

r,1(t), · · · ,vT
r,R(t)

]T is an M × 1 vector
stacking the noise at all relay nodes on top of each other,
and G , bd[G1, · · · ,GR] is an M × M block diagonal
matrix containing all relay matrices. Here (·)T denotes matrix
(vector) transpose and bd[·] stands for a block diagonal matrix.
We assume that Hsr, Hrd, and Hsd have complex Gaussian
entries with zero-mean and variances of 1/Ns, 1/M , 1/(8Ns),
respectively3. Depending on the environment, the elements in
each channel matrix can be independent or correlated [19]. We
assume that the channel correlation knowledge is not available
at the destination node and thus can not be exploited. All
channels are quasi-static block fading which means they are
constant over some time interval before changing to another
realization. Combining (1) and (2), the received signals at the
destination node over two time slots are given by

y(t) =
[
HrdGHsr

Hsd

]
us(t) +

[
HrdGvr(t) + vd(t + 1)

vd(t)

]
.

(3)
Due to its lower computational complexity, a linear receiver

is used at the destination node to retrieve the transmitted signal
vector us(t) [2]-[5]. The estimated signal waveform vector is
given by ûs(t) = WHy(t), where W is the 2Nd×Ns weight
matrix. From (3), the MSE of the signal waveform estimation
can be written as

e = tr
(
E

[
(ûs(t)− us(t))(ûs(t)− us(t))H

])
(4)

where E[·] stands for statistical expectation, tr(·) and (·)H

denote matrix trace, and matrix Hermitian transpose, respec-
tively. Assuming that E

[
us(t)us(t)H

]
= INs , the receiver

weight matrix which minimizes (4) is the Wiener filter given
by [7]

W =
(
H̄H̄H + C̄

)−1
H̄ (5)

where

H̄,
[
HrdGHsr

Hsd

]
, C̄,

[
HrdGGHHH

rd + INd
0Nd×Nd

0Nd×Nd
INd

]
.

(6)
Here (·)−1 stands for the matrix inversion, 0m×n denotes an
m× n matrix with all zero entries, and In denotes an n× n
identity matrix. We assume that the destination node knows
the relay amplifying matrix G.

It can be clearly seen from (5) and (6) that in order to
compute W, the CSI knowledge of the compound channel H̄
alone is not sufficient. In fact, the CSI of Hrd is also needed at
the destination node to obtain W in (5). Moreover, it has been
shown in [7] that the CSI of Hsr, Hrd, and Hsd is required to
optimize the source precoding matrix and the relay amplifying
matrix.

It is shown in [13] that the CSI required above can be
obtained through a two-stage training (TST) approach. At the
first stage, Hrd is estimated by transmitting an M×L1 training
sequence S1 from all R relay nodes to the destination node,

3The variances are set to normalize the effect of number of transmit
antennas to the receive signal-to-noise ratio. The relay nodes are assumed
to be of equal distance to the source and the destination nodes with a path
loss factor of 3.

where L1 (L1 ≥ M) is the length of the training sequence.
The received signal matrix at the destination node is given
by Yd = HrdS1 + Vd(1), where Vd(1) is the noise matrix
at the destination node. According to [20], the optimal S1

minimizing the MSE of channel estimation is orthogonal, i.e.,
S1SH

1 = IM . Such S1 can be constructed, for example, from
the normalized discrete Fourier transform (DFT) matrix [20].
The estimation of Hrd is given by

Ĥrd = YdSH
1 . (7)

At the second stage, the source node transmits an Ns ×L2

(L2 ≥ Ns) orthogonal training sequence S2 (S2SH
2 = INs

) to
all relay nodes which then forward it to the destination node.
From (3), the received signal matrix at the destination node is

Y =
[
HrdGHsr

Hsd

]
S2 +

[
HrdGVr + Vd(2)

Vd(3)

]
(8)

where Vr is the noise matrix at the relay nodes, Vd(2) and
Vd(3) are the noise matrices at the destination node. The
estimation of the compound channel H̄ is obtained from (8)
as ˆ̄H = YSH

2 . Then an estimation of Hsr can be obtained
from ˆ̄H as

Ĥsr = (ĤrdG)† ˆ̄H(1) (9)

where (·)† stands for matrix pseudo-inverse, and ˆ̄H(1) contains
the first Nd rows of ˆ̄H. It can be seen from (9) that the error
in estimating Hsr can be very large since Ĥsr depends on
Ĥrd, which is also an estimated matrix. To overcome this
difficulty, in the following, we develop a PARAFAC analysis
based algorithm to directly estimate all channel matrices
(Hsr,Hrd,Hsd) at the destination node.

III. PROPOSED CHANNEL ESTIMATION ALGORITHM

In order to estimate the channel matrices, training sequences
are transmitted from the source node. The overall channel
training period is divided into K time blocks (the minimal K
required will be determined later). In each time block, the same
Ns×L (L ≥ Ns) orthogonal channel training sequence S with
SSH = INs is transmitted by the source node. In the kth time
block, the ith relay node amplifies the received signal vector
with a diagonal matrix Ek,i and forwards the amplified signal
to the destination node4. Thus, the overall amplifying matrix
from all relay nodes is Ek = bd[Ek,1, · · · ,Ek,R], which is in
fact a diagonal matrix. From (3), the received signal matrices
at the destination node over K time blocks are given by

Yk ,
[
Y(1)

k

Y(2)
k

]

=
[
HrdDk{F}Hsr

Hsd

]
S+

[
HrdDk{F}Vr,k + V(1)

d,k

V(2)
d,k

]
(10)

k = 1, · · · ,K

where Dk{F} , Ek, F is a K × M matrix whose kth row
contains the amplifying factors of all M relay antennas at the

4Diagonal relay amplifying matrix is only used for the purpose of channel
estimation. During the normal communication period, however, the relay
amplifying matrix does not need to be diagonal.
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kth time block, Dk{·} is the operator that makes a diagonal
matrix by selecting the kth row and putting it on the main
diagonal while putting zeros elsewhere, Vr,k is the M × L

noise matrix at the relay nodes during the kth time block, V(1)
d,k

and V(2)
d,k are Nd × L noise matrices at the destination node

during the kth time block, and Y(1)
k and Y(2)

k are matrices
containing the first and the last Nd rows of Yk, respectively.

At the destination node, by multiplying both sides of (10)
with SH , we obtain

YkSH =
[
HrdDk{F}Hsr

Hsd

]

+

[
HrdDk{F}Vr,kSH +V(1)

d,kSH

V(2)
d,kSH

]
, k = 1, · · · , K.(11)

From (11), an LS estimate of Hsd is given by

Ĥsd =
1
K

Y(2)(1K ⊗ S)H = Hsd +
1
K

V(2)
d (1K ⊗ S)H

where Y(2) ,
[
Y(2)

1 ,Y(2)
2 , · · · ,Y(2)

K

]
, V(2)

d ,
[
V(2)

d,1 ,V(2)
d,2 ,

· · · ,V(2)
d,K

]
, 1K denotes a 1 ×K vector with all 1 elements,

and ⊗ stands for the Kronecker matrix product [21]. In the
following, we show how to estimate Hrd and Hsr at the
destination node.

A. PARAFAC model and identifiability of channel matrices

Let us introduce

X̃k , Y(1)
k SH = Xk + Vk, k = 1, · · · ,K (12)

Xk , HrdDk{F}Hsr, k = 1, · · · , K (13)

Vk , HrdDk{F}Vr,kSH + V(1)
d,kSH, k = 1, · · · ,K(14)

where Xk is the matrix-of-interest containing both Hrd and
Hsr, Vk is the effective noise matrix, and X̃k is a noisy
observation of Xk. We would like to mention that F is
chosen beforehand and is known at the destination node. The
optimal F is very difficult to obtain for the PARAFAC-based
channel estimation algorithm. Nevertheless, an intuitive way
of designing F will be discussed later. By assembling the set
of K matrices in (13) together along the direction of the index
k (the third dimension), we obtain an Nd×Ns×K three-way
array X, whose (i, j, k)-th element is given by

x(i, j, k) =
M∑

m=1

hrd(i,m)f(k, m)hsr(m, j) (15)

for all i = 1, · · · , Nd, j = 1, · · · , Ns, and k = 1, · · · ,K.
Here hrd(i,m), f(k,m), and hsr(m, j) stand for the (i,m)-
th, (k, m)-th, and (m, j)-th elements of Hrd, F, and Hsr,
respectively. Equation (15) expresses x(i, j, k) as a sum of
M rank-1 triple products, which is known as the trilinear

decomposition, or PARAFAC5 analysis of x(i, j, k) [14]-
[16]. Correspondingly, assembling K matrices of X̃k in (12)
along the index k leads to a noise-contaminated X given by
X̃ = X + V, where V is obtained by assembling K noise
matrices in (14).

Let us denote the Kruskal rank (or k-rank) [22] of a matrix
A as kA, which is the maximum integer k, such that any k
columns drawn from A are linearly independent. Note that
Kruskal rank is always less than or equal to the conventional
matrix rank. It can be easily checked that if A is full column
rank, then it is also full Kruskal rank. It can be shown by
using the identifiability theorem of the PARAFAC model in
[15] and [22] that if

kHrd
+ kF + kHsr

≥ 2M + 2 (16)

then the triple (Hrd,F,Hsr) is unique up to permutation
and scaling ambiguities, i.e., if there exists any other triple
(H̄rd, F̄, H̄sr) that gives rise to (13), then it is related to
(Hrd,F,Hsr) via

H̄rd = HrdΠ∆1, F̄ = FΠ∆2, H̄T
sr = HT

srΠ∆3 (17)

where Π is an M×M permutation matrix, and ∆i, i = 1, 2, 3,
are M ×M diagonal (complex) scaling matrices satisfying

∆1∆2∆3 = IM . (18)

Inequality (16) establishes the sufficient condition for the
identifiability of (Hrd,F,Hsr). Since F is chosen beforehand
(e.g., based on the DFT matrix as shown later), one can
guarantee that F has full k-rank. Moreover, both Hsr and Hrd

are random matrices, and hence have full k-rank. Therefore,
in such case, condition (16) becomes

min(Nd,M) + min(K,M) + min(Ns,M) ≥ 2M + 2. (19)

From (19), the identifiability condition can be summarized in
the following theorem.

THEOREM 1: The PARAFAC model (15) is identifiable only
if Ns ≥ 2, Nd ≥ 2, and 2 ≤ M ≤ Ns + Nd − 2. Moreover,
for different Ns, Nd, and M , the lower bound of K satisfying
(19) is given by

K ≥





2M + 2−Ns −Nd M ≥ Ns, Nd

M + 2−Nd Nd ≤ M ≤ Ns

M + 2−Ns Ns ≤ M ≤ Nd

2 M ≤ Ns, Nd

. (20)

For all four cases in (20), the lower bound of K is no greater
than M .

PROOF: The proof can be done by expanding the three
min(·) operators in (19).

5PARAFAC is a multi-way method originating from psychometrics [14]
and has recently found applications in array signal processing [15] and
communications [16]. Generalizing the concept of low-rank decomposition
to higher way arrays or tensors, PARAFAC is instrumental in the analysis of
data arrays indexed by three or more independent variables, just like singular
value decomposition (SVD) is instrumental in ordinary matrix (two-way array)
analysis. Unlike SVD, PARAFAC does not impose orthogonality constraints.
The reason is that in contrast to low-rank matrix decomposition, low-rank
decomposition of higher order tensorial data is essentially unique under certain
conditions.
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• If M ≥ Ns, Nd −→ min(K, M) ≥ 2M + 2 − Nd −
Ns −→ K ≥ 2M + 2 − Nd − Ns, and M ≥ 2M +
2 − Nd − Ns −→ M ≤ Ns + Nd − 2. This together
with M ≥ Ns, Nd, we have Ns, Nd ≥ 2 and 2 ≤ M ≤
Ns + Nd − 2. Since M ≤ Ns + Nd − 2, it holds that
2M + 2−Ns −Nd ≤ M ;

• If Nd ≤ M ≤ Ns −→ min(K, M) ≥ M + 2 −Nd −→
K ≥ M + 2−Nd, and M ≥ M + 2−Nd −→ Nd ≥ 2.
This together with Nd ≤ M ≤ Ns, we have Ns, Nd ≥ 2
and 2 ≤ M ≤ Ns + Nd − 2. Since Nd ≥ 2, there is
M + 2−Nd ≤ M ;

• If Ns ≤ M ≤ Nd −→ min(K, M) ≥ M + 2 −Ns −→
K ≥ M + 2−Ns, and M ≥ M + 2−Ns −→ Ns ≥ 2.
This together with Ns ≤ M ≤ Nd, we have Ns, Nd ≥ 2
and 2 ≤ M ≤ Ns + Nd − 2. Since Ns ≥ 2, it holds that
M + 2−Ns ≤ M ;

• If M ≤ Ns, Nd −→ min(K,M) ≥ 2 −→ K ≥ 2,
and M ≥ 2. This together with M ≤ Ns, Nd, we have
Ns, Nd ≥ 2 and 2 ≤ M ≤ Ns + Nd − 2.

Summarizing the four cases above, we obtain the necessary
conditions for identifiability in the PARAFAC model (15) as
Ns ≥ 2, Nd ≥ 2, and 2 ≤ M ≤ Ns + Nd − 2. The lower
bound of K in each case, which is less than or equal to M ,
is also given above. ¤

Interestingly, it is shown in Theorem 1 that under the mild
condition of Ns, Nd ≥ 2 and 2 ≤ M ≤ Ns + Nd − 2,
the minimal K required in the proposed PARAFAC-based
channel estimation algorithm can be less than M . While in [9]
and [10], at least K = M training data blocks are required
to perform the channel estimation. Therefore, the proposed
algorithm has a higher spectral efficiency than those in [9]
and [10]. Moreover, Theorem 1 shows that if Nd ≥ M and
Ns ≥ M , then two training data blocks (K = 2) are sufficient
to estimate both Hrd and Hsr at the destination node. We also
observe that if (20) is satisfied, then it holds that KNd > M
and KNs > M . We would like to mention that since Ns ≥ 2
and Nd ≥ 2 are required, which implies that Hsr and
Hrd need to be matrices, the PARAFAC-based MIMO relay
channel estimation algorithm can not be straightforwardly
applied to relay systems with Ns = 1 and/or Nd = 1.

B. Bilinear alternating least-squares (BALS) fitting

In this subsection, we develop a BALS algorithm to estimate
Hsr and Hrd by carrying out the PARAFAC model fitting with
known F. First we show some rearrangements of three-way
arrays X, V, and X̃ which will be used later.

By stacking K matrices of Xk in (13) on top of each other,
we obtain

X ,




X1

...
XK


 =




HrdD1{F}
...

HrdDK{F}


Hsr = (F¯Hrd)Hsr

(21)
where ¯ stands for the Khatri-Rao (column-wise Kronecker)
matrix product [21]. Correspondingly, stacking matrices X̃k

in (12) on top of each other gives rise to

X̃ =




X1

...
XK


 +




V1

...
VK


 = X + V. (22)

By slicing X perpendicular to the dimension of j, we obtain
a set of Ns matrices Zj = FDj{HT

sr}HT
rd, j = 1, · · · , Ns.

By stacking Ns matrices of Zj on top of each other, we have

Z ,




Z1

...
ZNs


 =




FD1{HT
sr}

...
FDNs

{HT
sr}


HT

rd = (HT
sr¯ F)HT

rd.

(23)
Similarly, by slicing X̃ perpendicular to the dimension of j
and stacking the resulting matrices on top of each other, we
have

Z̃ =




Z1

...
ZNs


 +




N1

...
NNs


 (24)

where Nj , j = 1, · · · , Ns, are the slabs of V along the
dimension of j.

The BALS fitting starts at a random Ĥrd. In each iteration,
we first update Hsr using the LS fitting with fixed F and Ĥrd.
Using (21) and (22), we obtain an updated Hsr as

Ĥsr = arg min
Hsr

∥∥X̃− (F¯ Ĥrd)Hsr

∥∥ = (F¯ Ĥrd)† X̃ (25)

where ‖·‖ denotes the matrix Frobenius norm. Then we update
Hrd through the LS fitting with known F and Ĥsr, and obtain
Ĥrd using (23) and (24) as

Ĥrd = arg min
Hrd

∥∥Z̃− (ĤT
sr ¯ F)HT

rd

∥∥ =
[
(ĤT

sr ¯ F)† Z̃
]T

.

(26)
Since the conditional update of matrices in (25) and (26) may
either improve or maintain but can not worsen the current
LS fit, a monotonic convergence of the BALS procedure to
(at least) a locally optimal solution follows directly from this
observation [15]. The procedure of the BALS fitting is listed
in Table I, where ε is a positive constant close to 0, and the
matrix with superscript (n) denotes the estimated matrix at the
nth iteration. Theoretically, for some particular data sets, the
convergence of the BALS algorithm can be extremely slow.
However, since both Hsr and Hrd are random matrices, the
probability that both matrices fall in such data sets is very
small. For large values of Ns, M , and Nd, such probability
is almost zero. It will be shown in Section IV that the BALS
algorithm typically converges in only a few iterations.

TABLE I
PROCEDURE OF THE BALS FITTING

1) Initialize the algorithm with a given F and a random H
(0)
rd ; Set δ(0) =

∞ and n = 1.
2) Update H

(n)
sr as (25) using H

(n−1)
rd ; Update H

(n)
rd as (26) using H

(n)
sr ;

Calculate δ(n) =
∥∥X̃− (F¯H

(n)
rd )H

(n)
sr

∥∥.
3) If

[
δ(n− 1)− δ(n)

]
/δ(n) ≤ ε, then end.

Otherwise, let n := n + 1 and go to step 2).

Since F is known, the BALS algorithm delivers an esti-
mation of Hsr and Hrd with only a scaling ambiguity ∆1
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at the convergence point, i.e., Π = IM , ∆2 = IM in (17),
and ∆3 = ∆−1

1 according to (18). This scaling ambiguity
also exists in [9] and [10], and can be resolved through
normalization as in [9], [10], [15].

The major computation task in the proposed BALS algo-
rithm lies in the LS fittings in (25) and (26). Thus the per-
iteration complexity of the BALS algorithm can be estimated
as O(MKNdNs +M3). The overall complexity of the BALS
algorithm depends on the number of iterations and will be
further discussed in Section IV. Note that the computational
complexity of the LS-based algorithm in [9] can be estimated
as O(MKNdNs +M3 +MN2

dNs), where the three terms are
from matrix multiplications, matrix inversion, and M matrix
SVDs, respectively.

Now we present an intuitive choice of F. By slicing X̃
perpendicular to the dimension of i and stacking the resulting
matrices on top of each other, we have

P = (Hrd ¯HT
sr)F

T + M

where M is the corresponding noise matrix obtained by
slicing V perpendicular to the dimension of i and stacking
the resulting matrices on top of each other. Let us denote
Hsrd , Hrd¯HT

sr. Since E
[
HsrdHH

srd

]
= INsNd

, if K ≥ M
and M have i.i.d. entries, the optimal F minimizing the MSE
of a linear estimation of Hsrd is unitary (FHF = IM ).
However, it can be shown that the elements in M are correlated
and the covariance matrix of M is a complicated function of F.
Thus, strictly speaking, a unitary F is not optimal in general.
Nevertheless, such F is still a good choice especially when
the signal-to-noise ratio is medium to high at channel training
stage. In numerical simulations, we also find that the DFT
matrix (which satisfies FHF = IM ) is a good choice for F.

C. Linear minimal mean-squared error (LMMSE) estimation

It can be seen from (14) that the covariance matrix of
the effective noise Vk at the destination node is given by
Ck , E[VkVH

k ] = Ns

(
HrdDk{F}(Dk{F})HHH

rd + INd

)
,

k = 1, · · · ,K. Obviously, Vk is non-white due to the channel
Hrd. Therefore, after an initial estimation of Hrd by the BALS
algorithm in Section III-B, an improved estimation of Hsr can
be obtained by the LMMSE approach as H̆sr = TH

srX̃, where
Tsr is the KNd × M weight matrix. The MSE of channel
estimation can be written as

E
[
tr

(
(H̆sr −Hsr)(H̆sr −Hsr)H

)]
= tr

((
TH

sr(F¯ Ĥrd)

−IM

)(
TH

sr(F¯ Ĥrd)− IM

)H + TH
srĈTsr

)
(27)

where Ĉ = bd
[
Ĉ1, Ĉ2, · · · , ĈK

]
, and Ĉk = Ns

(
ĤrdDk{F}

(Dk{F})HĤH
rd + INd

)
, k = 1, · · · ,K, is an estimate of Ck

using Ĥrd. The weight matrix minimizing (27) is given by

Tsr =
(
(F¯ Ĥrd)(F¯ Ĥrd)H + Ĉ

)−1(F¯ Ĥrd). (28)

It will be seen in Section IV that there is an obvious im-
provement in the estimation of Hsr by using (28) after the
convergence of the BALS algorithm.

Similarly, we expect that the initial estimation of Hrd can be
improved by the LMMSE approach. It can be shown from (24)

that the covariance matrix of the noise Nj , denoted as Θj ,
E[NjNH

j ], j = 1, · · · , Ns, is a diagonal matrix whose (k, k)-
th diagonal element is given by

∑M
m=1 ‖f(k,m)hrd,m‖2+Nd,

where hrd,m is the mth column of Hrd. Thus, an improved
LMMSE estimate of Hrd can be obtained as H̆rd = [TH

rdZ̃]T ,
where Trd is the KNs ×M weight matrix with

Trd =
(
(H̆T

sr ¯ F)(H̆T
sr ¯ F)H + Θ̂

)−1(H̆T
sr ¯ F). (29)

Here Θ̂ = bd
[
Θ̂1, Θ̂2, · · · , Θ̂Ns

]
, and [Θ̂j ]k,k =

∑M
m=1

‖f(k,m)ĥrd,m‖2 + Nd, k = 1, · · · , K, j = 1, · · · , Ns, is an
estimate of [Θj ]k,k using Ĥrd.

We would like to mention that in [10], the WLS approach is
used to improve the channel estimation after the LS algorithm.
It will be shown in Section IV that the LMMSE algorithm
yields a smaller MSE of channel estimation (particularly for
estimating Hrd) than that of the WLS method in [10].

D. Extension to channel estimation in two-way MIMO relay
systems

In the following, we show that the proposed algorithm can
also be used for channel estimation in two-way MIMO relay
systems.

In a two-way relay system, two users exchange their infor-
mation through one or multiple relay nodes [23]. The received
signal matrices at two users during the kth time block of the
channel training period are given respectively by

Y1,k = H1,rDk{F}Hr,2S2 + H1,rDk{F}Hr,1S1

+H1,rDk{F}Vr,k + V1,k, k = 1, · · · ,K (30)
Y2,k = H2,rDk{F}Hr,1S1 + H2,rDk{F}Hr,2S2

+H2,rDk{F}Vr,k + V2,k, k = 1, · · · ,K (31)

where Hr,i, i = 1, 2, is the MIMO channel from user i to
all relay nodes, Hi,r, i = 1, 2, is the MIMO channel from all
relay nodes to user i, and Vi,k, i = 1, 2, is the noise matrix
at user i during the kth time block.

The Ni×L training sequence Si chosen by user i, i = 1, 2,
in (30) and (31) is designed such that

SiSH
i = INi , i = 1, 2, S1SH

2 = 0N1×N2 (32)

where Ni is the number of antennas at user i. Note that S1

and S2 satisfying (32) can be easily constructed from the
normalized DFT matrix with L ≥ N1 + N2. Multiplying both
sides of (30) with SH

2 and both sides of (31) with SH
1 , we

have

Y1,kSH
2 = H1,rDk{F}Hr,2 + H1,rDk{F}Vr,kSH

2

+V1,kSH
2 , k = 1, · · · ,K (33)

Y2,kSH
1 = H2,rDk{F}Hr,1 + H2,rDk{F}Vr,kSH

1

+V2,kSH
1 , k = 1, · · · ,K. (34)

Now the proposed PARAFAC-based algorithm developed in
Section III-A to Section III-C can be applied at user 1 to
estimate H1,r and Hr,2 from (33) and at user 2 to estimate
H2,r and Hr,1 from (34).
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IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed
channel estimation algorithm through numerical simulations.
In particular, we compare the proposed algorithm with the
conventional TST scheme in Section II, the LS-based algo-
rithm in [9], and the WLS fitting algorithm in [10]. Note
that the purpose of the WLS fitting in [10] is to improve
the performance of the LS algorithm in [9]. To ensure a fair
comparison, a factor of

√
K is used to scale the training

sequences S1 and S2 in the TST scheme such that the total
energy spent on channel training is identical for all approaches.
In the simulations, F is generated based on the DFT matrix,
and the BALS algorithm is performed following the procedure
in Table I with ε = 1 × 10−5. Similar to [9] and [10], the
scaling ambiguity ∆1 = ∆−1

3 in the proposed algorithm is
removed by assuming that the first column of Hsr contains
all one elements6. For each channel realization, the normalized
MSE (NMSE) of channel estimation for different algorithms
is calculated as ‖Ĥsr −Hsr‖2/‖Hsr‖2 for the channel Hsr,
where Ĥsr is the estimated value. The channel estimation
errors of Hrd and Hsd are calculated in a similar way to
that of Hsr. All simulation results are averaged over 2000
independent channel realizations.

We consider a two-hop MIMO relay communication system
with M = 4 single-antenna relay nodes, and the source and
destination nodes are equipped with Ns = Nd = 4 antennas.
Throughout the simulations, we use the minimal L, i.e., L =
Ns = 4. The transmission power at the relay node is set to be
20dB above the noise level.

In the first example, we study the performance of the
proposed algorithm and the TST approach with K = 3 where
all channel matrices have i.i.d. complex Gaussian entries with
zero-mean and variances of 1/Ns, 1/M , 1/(8Ns) for Hsr,
Hrd, and Hsd, respectively. Note that since K < M , the
algorithms in [9] and [10] can not be applied in this case. The
NMSE of both algorithms versus the source node transmission
power Ps is shown in Fig. 2. Since the NMSE for the
estimation of Hrd by the TST scheme does not change with
Ps (see (7)), it is not displayed in Fig. 2 (neither in Figs. 4
and 6 later on). It can be seen that for the proposed algorithm,
the NMSE of channel estimation decreases as Ps increases.
As expected, the estimation of Hsr and Hrd is improved by
carrying out the additional MMSE estimation. At the low Ps

level, the TST scheme is better than the proposed algorithm.
While at medium to high Ps levels, the proposed algorithm
significantly outperforms the TST scheme even without using
the additional MMSE estimation. In fact, the TST scheme has
an error floor in estimating Hsr. The reason is that as can
be seen from (9), the estimation of Hsr in the TST scheme
is extracted from the estimation of the compound channel H̄
and the estimation of Hrd. Thus, the accuracy of ˆ̄H and Ĥrd

has a great impact on the estimation of Hsr. While in the
proposed algorithm, Hsr is estimated together with Hrd. We

6The scaling ambiguity is represented as Ĥsr = ∆3Hsr in (17) (with
Π = IM ). Since the first column of Hsr contains all one elements, it can be
seen that [∆3]i,i =

[
Ĥsr

]
i,1

. Here [A]i,j stands for the (i, j)-th element
of matrix A.

also observe from Fig. 2 that for the proposed algorithm, the
NMSE of estimating Hsd is larger than that of Hsr and Hrd.
This is due to the lower signal-to-noise ratio at the direct link
as the source-destination distance is twice of the source-relay
(or relay-destination) distance.
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Fig. 2. Example 1: Normalized MSE versus Ps for i.i.d. MIMO channels.
K = 3.
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Fig. 3. Example 1: BER versus Ps for i.i.d. MIMO channels. K = 3.

The impact of channel estimation on the system BER
performance in this example is shown in Fig. 3. QPSK
constellations are used to modulate the source symbols, and
3000 randomly generated bits are transmitted for each channel
realization. It can be seen that at medium to high Ps levels, the
proposed algorithm significantly outperforms the TST scheme
even without using the additional MMSE estimation, and the
TST scheme shows a high error floor. We also observe in
Fig. 3 that around 1dB gain in Ps is obtained by using the
additional MMSE estimation after the convergence of the
BALS algorithm. At a BER of 1× 10−4, there is only around
2dB loss in Ps by using the estimated CSI obtained from the
MMSE algorithm compared with the system using the perfect
CSI.
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In the second example, we consider correlated MIMO
channels. Based on [19], we assume that Hl = R

1
2
l Hw

l C
T
2
l ,

where l ∈ [sr, rd, sd] denotes the link index. Here Hw
sr, Hw

rd,
and Hw

sd are complex Gaussian random matrices having i.i.d.
entries with zero mean and variances of 1/Ns, 1/M , 1/(8Ns),
respectively, Rl and Cl characterize the channel correlation at
the receive side and the transmit side of link l, respectively.
We adopt the commonly used exponential Toeplitz structure
in [19] such that [Rl]m,n = J0(2π|m− n|/rl) and [Cl]m,n =
J0(2π|m− n|/cl), where J0(·) is the zeroth order Bessel
function of the first kind, rl and cl stand for the correlation
coefficients which depend on physical factors such as the
angle of arrival spread, spacing between antenna elements,
and the wavelength at the center frequency [19]. For the sake
of simplicity, we choose cl = rl = 2 for all l ∈ [sr, rd, sd].
The NMSE and BER performance of different algorithms in
this example are displayed in Fig. 4 and Fig. 5, respectively. It
can be observed that similar to Fig. 2 and Fig. 3, the proposed
algorithm performs better than the TST algorithm.
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Fig. 4. Example 2: Normalized MSE versus Ps for correlated MIMO
channels. K = 3.

In the third example, we simulate all algorithms with K = 4
and i.i.d. channel matrices. Since K = M , now we can
compare the performance of the proposed algorithm with the
algorithms developed in [9] and [10]. The NMSE of the LS
algorithm in [9], the additional WLS fitting in [10], and the
proposed algorithm is shown in Table II. It can be seen that
the proposed BALS fitting yields the same NMSE as the LS
approach. The NMSE of the proposed algorithm, the TST
scheme, and the WLS fitting versus Ps is shown in Fig. 6,
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Fig. 5. Example 2: BER versus Ps for correlated MIMO channels. K = 3.

where we observe that as K is increased from 3 to 4, the
NMSE of all algorithms is reduced compared with that in
Fig. 2. Moreover, we see from Table II and Fig. 6 that
the improvement in NMSE of the WLS fitting over the LS
algorithm is obvious for the estimation of Hsr, while the
improvement for that of Hrd is negligible. The reason is that
Ĉk in (28) is non-diagonal, while Θ̂j in (29) is diagonal. In
contrast to the WLS fitting (Table II), it can be seen from
Fig. 6 that the MMSE approach greatly reduces the NMSE of
estimating Hrd. From Fig. 6 we also observe that the MMSE
approach yields a smaller NMSE in estimating Hsr compared
with the WLS fitting.

For this example, with a random initialization of Hrd,
the average and maximum number of iterations over 2000
independent channel realizations required by the proposed
BALS algorithm till convergence at different Ps level are listed
in Table III. Based on the analysis of the overall complexity
of the LS-based algorithm and the per-iteration complexity
of the BALS algorithm in Section III-B, it can be seen from
the second row of Table III that in average at medium and
high Ps levels, the overall complexity of the proposed BALS
algorithm is similar to that of the LS algorithm. When Ps is
low, the complexity of the BALS algorithm is slightly higher
than that of the LS algorithm. It can also be seen from the
third row of Table III that at medium to high Ps levels (which
is the Ps range in practical systems), the maximum number of
iterations is only twice of or almost identical to the average
ones.

For the third example, the comparison of BERs among

TABLE II
EXAMPLE 3: NMSE OF THE LS [9], THE WLS [10], AND THE PROPOSED BALS ALGORITHM

Ps (dB) 0 4 8 12 16 20 24 28
BALS (Hsr) 4.4316 1.2800 0.3212 0.0891 0.0296 0.0118 0.0050 0.0025
LS [9] (Hsr) 4.4316 1.2800 0.3212 0.0891 0.0296 0.0118 0.0050 0.0025
BALS (Hrd) 0.9208 0.3678 0.1359 0.0527 0.0206 0.0086 0.0038 0.0020
LS [9] (Hrd) 0.9208 0.3679 0.1359 0.0527 0.0206 0.0086 0.0038 0.0020

WLS [10] (Hrd) 0.9207 0.3678 0.1358 0.0526 0.0204 0.0084 0.0037 0.0020
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Fig. 6. Example 3: Normalized MSE versus Ps for i.i.d. MIMO channels.
K = 4.

TABLE III
ITERATIONS REQUIRED TILL CONVERGENCE BY THE PROPOSED BALS

ALGORITHM

Ps (dB) 0 4 8 12 16 20 24 28
Iterations (average) 7 6 6 5 4 4 3 3

Iterations (maximum) 23 18 13 10 8 6 5 4

the system using different channel estimation algorithms is
demonstrated in Fig. 7. We observe from Fig. 7 that as K is
increased from 3 to 4, the BER of all algorithms is reduced
compared with that in Fig. 3. Similar to Fig. 3, we see from
Fig. 7 that the proposed algorithm significantly outperforms
the TST scheme at medium to high Ps levels, where the latter
scheme shows a high error floor. The LS approach in [9] has
the same BER performance as the proposed BALS approach,
while the proposed MMSE algorithm performs slightly better
than that of the WLS algorithm in [10]. At a BER of 1×10−4,
the loss in Ps using the estimated CSI from the MMSE
algorithm is less than 2dB compared with the system using
the perfect CSI. This is quite reasonable for practical systems.
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Fig. 7. Example 3: BER versus Ps for i.i.d. MIMO channels. K = 4.

Based on the three numerical examples above, one can
draw the following conclusions: (1) The proposed algorithm
performs well in case of K < M where the algorithms in
[9] and [10] stop working; (2) When K ≥ M , the proposed
MMSE approach outperforms the algorithm in [10]; (3) The
computational complexity of the proposed algorithm is similar
to that of [9]; (4) The proposed algorithm performs well for
both i.i.d. and correlated fading MIMO channels.

V. CONCLUSIONS

We have developed a novel PARAFAC-based channel es-
timation method for two-hop MIMO relay communication
systems. The proposed algorithm provides the destination node
with full knowledge of all channel matrices involved in the
communication. Compared with existing approaches, the pro-
posed algorithm requires less number of training data blocks,
yields smaller channel estimation error, and is applicable for
both one-way and two-way MIMO relay systems. Simulation
results demonstrate the effectiveness of the proposed channel
estimation algorithm.
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