
 

 

  

Abstract—This paper deals with efficient computation of 

probability coefficients which offers computational simplicity as 

compared to spectral coefficients. It eliminates the need of inner 

product evaluations in determination of signature of a combinational 

circuit realizing given Boolean function. The method for computation 

of probability coefficients using transform matrix, fast transform 

method and using BDD is given. Theoretical relations for achievable 

computational advantage in terms of required additions in computing 

all 2n probability coefficients of n variable function have been 

developed. It is shown that for n ≥ 5, only 50% additions are needed 

to compute all probability coefficients as compared to spectral 

coefficients. The fault detection techniques based on spectral 

signature can be used with probability signature also to offer 

computational advantage. 

 

Keywords—Binary Decision Diagrams, Spectral Coefficients, 

Fault detection  

I. INTRODUCTION 

INCE last three decades spectral techniques has been 

widely adopted in field of VLSI CAD, testing, quantum 

computing [2, 6, 9, 13, 14, 16] etc. Due to exponential 

increase in numbers of transistors in a single chip the problem 

of synthesizing and testing are becoming more complex. This 

is necessitating consideration of testing issues right in the 

design phase rather than post design practice [10, 17] leading 

to on-chip incorporation of both test hardware and software 

routines in the design of self-testing, fault tolerant, fail-safe 

and/or self-repairing digital devices and systems [11, 15]. 

Spectral techniques of fault detection provide an attractive 

solution to the problem of testing complex digital circuits by 

offering global information about the target circuit realizing 

the function. One of the major drawback of spectral techniques 

is their computational complexity in calculation of spectral 

coefficients; making them impractical for testing complex 

circuits. The phenomenal increase in operating speed of digital 

devices and systems during 1990s has created resurgence of 

interest for exploring faster testing techniques to perform time 

efficient testing. This is more so because even fastest available 
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spectral methods using fast transform techniques don’t perform 

efficiently due to their inherent computational constrains [6, 

7]. 

This paper addresses the problem of computational 

complexities and describes the efficient method to generate 

probability coefficient obtained from the output probability [1, 

9] of a Boolean function. We use Rademacher-Walsh (R-W) 

transform for conversion between Boolean to Probability 

domain as shown in Figure 1. 

 
 

 

 

 

 

Fig. 1: Block Diagram for conversation between Boolean to 

probability domain 

 

We propose three methods to compute these coefficients (1) 

Matrix method (2) FFT method (3) BDD method. The value of 

Probability coefficients varies between (-1) to (+1). 

Mathematical expression for determination of probability 

coefficients of a function is developed and theoretical plot 

illustrating computational advantage offered by probability 

coefficients is achieved. These coefficients are used to obtain a 

probability signature using linearisation technique [14, 19] 

which is then used for fault detection by comparing the 

probability signatures of the fault free and faulty circuits. A set 

of rules [14] for selecting spectral coefficients constituting 

spectral signature have been similarly applied to linearisation 

technique for obtaining probability signature. Test results 

obtained using probability signatures are compared with those 

of spectral signature technique and have been found same; 

validating the use of probability signature for fault detection 

applications.  

The paper is organized as follows: section 2 includes the 

basics definition and mathematical background for Binary 

Decision Diagrams and spectral techniques. Probability 

coefficient and their computation using different methods 

definition is discussed in section 3 with basic definitions and 

theorems. Section 4 describes about the test vector generation 

for fault detection using linearisation techniques. In section 5 

we discuss about the results and their comparison with spectral 

coefficient’s computation. Finally concluding remarks and 

future work is given in section 6. 
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II. PRELIMINARIES  

A. Binary Decision Diagram  

Binary Decision Diagrams (BDDs) is based on Shannon 

expansion [8, 12, 20]: 

10'
iiii fxfxf +=         (1) 

Where f ∈ Bn be a Boolean function defined over the 

variable set Xn = {x1, …, xn) for all i = {x1, …, xn). 

It represents a Boolean functions as a rooted, directed acyclic 

graph with a vertex set containing two types of vertices, non-

terminal and terminal vertices. A non-terminal vertex v has 

two attributes i.e. (i) an argument index (v) ∈ {x1,….., xn} and 

(ii) two children indicated by dashed and solid lines for low (v) 

and high (v) respectively. A terminal vertex v has an attribute 

value (v) ∈ {0, 1} and has no outgoing edge. 

An un-simplified BDD is basically a Binary Decision tree 

contains 2
n-1

 non-terminal nodes. The BDD of the example 

function f1 (x0, x1, x2) is shown in Figure 2 (a); which is a direct 

mapping of truth table in tree form. In this tree the value of 

function is determined by tracing a path from the root to a 

terminal vertex. A BDD representation of an n variable 

function will initially have 2
n
-1 nodes can be further 

simplifying using following two reduction rules [12]. 

 

 

 

 

 

 

 

 

 

 

Fig. 2: BDD for f1 (x0, x1, x2) = ∑(3, 5, 6, 7) 

(i) Deletion Rule: 

If one or more non-terminal nodes are such that their both 

branches corresponding to 0 and 1 lead to a non-terminal 

successor node or to a terminal node then that non-terminal 

node can be deleted. 

(ii) Merging Rule: 

If two or more terminal (or non-terminal) nodes of the same 

label have the same 0 and 1 successors i.e. their left and right 

sons are equivalent then they can be merged in a single node. 

The simplified BDD of the function f (x0, x1, x2) = ∑(3, 5, 

6, 7) using these two rules is shown in Figure 2 (b). The value 

of Boolean function is determined by tracing a path from the 

root to a terminal vertex, following the branches indicated by 

the values assigned to the variables. Due to the way the 

branches are ordered in this figure, the values are of the 

terminal vertices, read from top to bottom, match those in the 

truth table, read from left to right. 

B. Spectral Coefficient 

Spectral coefficients of an n variable Boolean function are 

determined by transformation of the function output column 

vector F using an orthogonal transform matrix of size 2
n
×2

n
 

that is multiplied with F. The complete set of spectral 

coefficients thus obtained is called spectrum of the function 

and it contains global information. The transformations are 

loss less and hence permit computation of their inverse 

transform to revert back into Boolean domain. 

Let f(X) be a Boolean function of n variables, X = {x1, x2, 

…, xn}, xi ∈ {0,1} and i = 1, 2, ,…, n. Then all 2
n
 spectral 

coefficients of the function can be obtained using a 2
n 

× 2
n 
 

Rademacher-Walsh (R-W) transform matrix Tn [16]. 

RFTn =⋅             (2) 

Where F is column matrix of dimension (2
n
 × 1) 

representing f(X) recoded as f(Y) where f(Y) = 1−2 f(X), f(Y) = 

{+1, -1} such that X = {x1, x2, …, xn}, xi∈{0, 1} and i = (1, 2, 

…, n) and R is the spectrum that uniquely represents f(X), 

which values varies between n2−  to n2+ . The complete set 

of coefficients is called as spectrum of the function. The 

transformation matrix Tn is defined as: 
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and by definition T0 ∆ 1. 

The inverse [18] of (1) is obtained as  

FRTn =⋅
−1][           (3) 

Example 

Let F (x1, x2, x3) be a Boolean function defined as F (x1, x2, 

x3) = [0, 0, 1, 0, 1, 0, 1, 1], its ordered set of spectral 

coefficients R can be evaluated using equation (2) and can be 

written as [r0 = 4, r1 = 2, r2 = -2, r12 = 0, r3 = -2, r13 = 0, r23 = 0 

and r123 = -2]. The order of the coefficients is determined by 

the number of xi variables in the corresponding XOR function 

i.e. for example r123 is third order and r12 is second order and 

containing the information about x1x2x3 and x1x2 respectively. 

Therefore this method requires total 2
n
 × (2

n
 −1) 

addition/subtraction to compute all 2
n 

spectral coefficients, 

which becomes infeasible if the function has large number of 

variables. 

III. PROBABILITY COEFFICIENTS AND THEIR COMPUTATION 

Definition: Let f(X) be a Boolean function and if we 

consider that each row vector of this transformation matrix is 

another function called constituent function fc [9]. 

According to definition, constituent function can be 

considered as a Boolean function whose output vector is 

identical to a row vector in the transformation matrix. Thus a 

transformation matrix may be viewed as a collection of 

constituent functions. We change the Boolean domain (0, 1) 

into (−1, +1) for shake of simplicity i.e. xi ∈ {+1, −1}. For the 

function f(X), the probability of matches (pm) / probability of 

mismatches (pmm) can be defined as the ratio of number of 
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matches / mismatches between f(X) and fc to 2
n
. The number of 

matches “pm(i)” corresponding to any probability coefficient Pi 

is obtained from bit by bit Ex-NOR between f(X) and the i
th

 

constituent function fc(i) of transformation matrix “T” of order 

2
n
 × 2

n
 followed by summation. 

n

c
im

fandXfbetweenmatchesofNumberTotal
p

2
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)( =    (4) 

Mathematically this can be expressed as: 

∑ ⊕= )(
2

1
)()( Xffp icnim           (5) 

Similarly the number of mismatches “pmm(i)” corresponding to 

probability coefficient Pi is obtained from bit by bit Ex-OR 

between f(X) and fc(i) of transformation matrix “T” followed by 

summation as: 
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Definition: Probability coefficient of f(X) is the difference 

between probability of matches and probability of mismatches 

i.e. (pmi−pmmi). 

Theorem: The probability coefficient (Pi) of any Boolean 

function corresponding to the i
th

 row vector of transformation 

matrix “T” can be given as: 

Pi=2pm(i)-1=1-2pmm(i) , where i=1, 2, …, 2
n
   (8) 

Proof: Since the i
th

 probability coefficient of any Boolean 

function f(X) is defined as the difference between the 

probability of matches “pm(i)” and mismatches “pmm(i)”, 

therefore 

Pi = pm(i) – pmm(i) = pm(i) – (1– pm(i))=2pm(i) – 1  (9) 

Similarly substituting the value of pm(i) in terms of pmm(i) we get 

Pi = pm(i) – pmm(i)= (1 – pmm(i)) – pmm(i)= 1 – 2 pmm(i)    (10) 

From equations (9) & (10) Pi=2pm(i) –1=1 – 2pmm(i)   (11) 

A. Matrix Method 

For an “n” variable Boolean function f(X), all the 2
n
 

probability coefficients can be computed using R-W transform 

matrix of order 2
n
× 2

n
 

nT ][ # F =P=(2 pm –1)=1–2 pmm      (12) 

Where F is vector representing the function, P is the set of 

probability coefficients and “#” denotes either (Ex-NOR) or 

(Ex-OR) operators but not both simultaneously. 

Therefore all the 2
n
 probability coefficients (P) of a given 

Boolean function f(X) can be determined using equations (5) 

or (7) and (12). The procedure for finding probability 

coefficients of an “n” variable Boolean function with output 

vector “F” of order 2
n
 × 1 can be stated as: 

(i) Initialize C (counter) = 0. 

(ii) Select first row of the transformation matrix. 

(iii) Compare the corresponding elements of selected row and 

output vector 

(iv) Increment C by “1” for each match (mismatch) until all in 

the row vector have been compared. 

(v) Calculate probability of matches (mismatches) using pm 

(pmm) = C/2
n
 and determine probability coefficients as 

Pi=2pm(i) – 1=1 – 2pm m(i) for i=1, 2, …, 2
n
 

Using R-W transform for the example function F (x1, x2, x3) 

and changing Boolean variables “0” and “1” to +1 and –1 

respectively, its probability coefficients can be computed.  

For the first probability coefficient (p0) 

5.0]1,1,11,1,1,1,1[]1,1,1,1,1,1,1,1[
2

1

3
=−−−−⊕= ∑mp  

Now using equation (12) we get p0=0 

Similarly for second probability coefficient (p1) 

25.0]1,1,11,1,1,1,1[]1,1,1,1,1,1,1,1[
2

1

3
=−−−−⊕−−−−= ∑mp  

and equation (12) gives p1=−0.5.  

Remaining probability coefficients of the function are 

determined using their corresponding constituent function 

giving all 2
3
 probability coefficients that are given below: 

 

































−

=

































−

−

−

−

































−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

5.0

0.0

0.0

0.0

5.0

5.0

5.0

0.0

1

1

1

1

1

1

1

1

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

 

The ordering as well as association of xi variables in each 

probability coefficient is similar to corresponding spectral 

coefficient and hence the complete set of probability 

coefficients can be written as p0=0, p1=−0.5, p2=0.5, p12=0.5, 

p3=0, p13=0, p23=0 and p123=0.5. 

B. Fast Transform Method  

Fast transforms [16, 21, 22] provide reduction in 

computation by eliminating repeated computation of already 

computed terms that are common to other spectral coefficients. 

The use of fast transform reduces total number of 

multiplications from 2
n
×2

n
 to n × 2

n
 in computation of all 2

n
 

spectral coefficients of a function. A fast Walsh-Fourier 

transform procedure suggested by Shanks [22] is briefly 

discussed to explain the computation process. The presented 

method requires total n × 2
n
 multiplication in determination of 

spectrum of a function. It is based on generating orthogonal 

transform matrix using N distinct Walsh-Paley functions Pal(J, 

K). 



 

 

The graphical representation of the fast transform for a 

three variable function (n = 3) is given in Butterfly diagram 

shown in Figure 3. This is for probability coefficients 

computation but still follows the basic concept of butterfly 

diagram. The complete set of n × 2
n
 operations also forms the 

principle of all the hardware circuits for generating Hadamard 

and Walsh waveforms and their resulting coefficients. 

Although fast transform techniques reduce the number of total 

multiplications (additions / subtractions) as compared to 

matrix multiplication method but they still use matrix 

multiplication. Note that the storage requirements at each step 

of the Butterfly diagram progressively increases (from 2
1
 to 2

n
 

for an n-variable function) as we move from input towards the 

output node following a straight signal flow line. Therefore 

total storage requirement for the output step to store all 2
n
 

coefficients becomes 2
n
 × 2

n
, which makes it unsuitable for 

complex functions. 

Since the procedure for determination of probability 

coefficients involves identification of matches (or mismatches) 

in place of multiplication and needs only addition instead of 

addition / subtraction, therefore Butterfly diagram can not be 

directly applied for their determination. This necessitates 

modification of the fast transform algorithm implementation 

on Butterfly diagram because of requiring only two inputs (i.e. 

total number of matches and mismatches) at every intermediate 

step of Butterfly instead of inputs from all previous steps. 

Using the concept of fast transform and its related theory 

for Fast Fourier Transform (FFT) [16, 22] the following 

algorithm is adopted to find the number of matches / 

mismatches for each probability coefficient: 

(i) Draw the signal flow graph (Butterfly Diagram) for given 

number of function variables. 

(ii) Change the elements 0 and 1 of the output vector “F” to ⊕ 

and Ө respectively and then compare the changed values 

of F and first step nodes of the Butterfly diagram to find 

the number of matches and mismatches s using following 

two rules: 

(a) If ⊕ or Ө of the same row feeds to a ⊕ node; 

record it as match or mismatch respectively. 

Similarly the match or mismatch is computed for 

Ө. 

(b) If ⊕ or Ө of a different row feeds to a ⊕ node it is 

considered as match or mismatch respectively. 

However, if they feed to Ө; it is considered match 

or mismatch respectively. 

(iii) For subsequent steps of the butterfly diagram if the input 

from the same row feeds to Ө; it will alter the values of 

matche(s) and mismatche(s) obtained in the previous step 

of Butterfly which are otherwise unaltered. 

(iv) Repeat step (iii) until last step of the Butterfly diagram 

and count total number of matches or mismatches that 

gives the value of pi. 

Once the values of matches or mismatches for a given n-

variable function are found using this modified fast transform 

algorithm implementation on Butterfly, equation (12) can be 

used to compute all 2
n 

probability coefficients. The 

computation of probability coefficients is illustrated below 

with the help of an example function. 

Example 

Consider a function f (x1, x2, x3) = ∑ (0, 1, 3, 5, 6) = [1, 1, 0, 

1, 0, 1, 1, 0]. The Butterfly diagram for calculating the total 

number of matches and mismatches for this function using the 

above mentioned algorithm is shown in fig. 3.3 where the 

outputs of the final steps are the number of matches and 

mismatches. Now all 2
3 

probability coefficients of the function 

f (x1, x2, x3) = ∑ (0, 1, 3, 5, 6) are computed using equation 

(3.24) giving p0 = -0.25; p1 = -0.25, p2 = -0.25, p3 = 0.25; p12 = 

-0.25, p13 = 0.25, p23 = 0.25, p123 = -0.75. 

Analyzing the storage requirements in using Butterfly for 

probability and spectral coefficient computations it is clear that 

application of modified fast transform algorithm on Butterfly 

to compute probability coefficients reduces storage because of 

requiring only two inputs at every intermediate step of 

Butterfly instead of inputs from all previous steps. This is 

particularly attractive for complex functions that have large 

number of steps and inputs at each node of the Butterfly. 

Therefore application of fast transform to determine 

probability coefficients provides storage economy along with 

reduction in computation as compared to spectral coefficients 

determination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Flow Graph for f (x1, x2, x3) = ∑ (0, 1, 3, 5, 6) 

 

C. BDD Method 

This section describes a new method to determine number of 

matches (or mismatches) for an n variable Boolean function 

using OBDD. It is based on generating 2
n
 column vectors 

called “composite functions” that are generated considering 

matches and mismatches between constituent functions fc(i) of 
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an R-W transform matrix of order 2
n
 ×2

n
 and function vector 

F. The reduced OBDDs of the constituent functions are then 

generated that is used for computation of each pi by recording 

the number of one and zero terminating paths for matches and 

mismatches respectively. Once the total number of matches 

and mismatches are found, equation (12) is used to compute 

probability coefficients. However, counting of the total 

number of terminating paths on terminal nodes “1” and “0” of 

an OBDD can be difficult for complex constituent functions 

but this can be simplified using probability assignment 

algorithm [9] that is briefly discussed below: 

Probability assignment algorithm 

(i) Assign probability = 1 for the input node 

(ii) If the probability of node j = pj, assign a probability of 1/2 

pj to each of the outgoing arcs from j. 

(iii) The probability pk, of node k is the sum of the 

probabilities of the incoming arcs. 

The application of above algorithm for counting 1s and 0s 

in graphical representation of a function is demonstrated below 

taking an example function. 

An important limitation of this method of finding t1 and t0 

is that it requires computation of output probability at each 

node that becomes tedious for complex BDDs. The unreduced 

OBDDs of a function have all paths allowing direct 

determination of t1 and t0, however, direct counting can not be 

done for reduced OBDDs because some nodes are merged or 

deleted. The contribution of deleted and / or merged nodes to 

the total number of 1s and 0s is therefore necessary for correct 

determination of t1 and t0 in an OBDD. 

We propose following new rules for direct calculation of t1 

and t0 of reduced OBDDs without calculating output 

probability of nodes: 

(i) If reduced OBDD of a function has only one node then the 

number of 1s / 0s will be 2
n
/2. 

(ii) If “k” variables are missing in a path terminating at node 

“1” or “0” then “t1” and “t0” will be 2
k
, where k=0, 1, 2 

…., (n-1). 

(iii) If more than one paths are terminating at node “1” or “0” 

then “t1” and “t0” will be the sum of number of 1s and 0s 

respectively in each path calculated by applying rule (ii). 

The step wise algorithm for computing probability 

coefficients of a n-variable Boolean function using OBDD can 

be stated as below: 

(1) Select a constituent function of R-W matrix of order 2
n
 × 

2
n
. 

(2) Perform bit-by-bit comparison between elements of 

selected constituent function and output vector F. Record 

1 for match or 0 for mismatch at the corresponding 

positions in the composite function. 

(3) Repeat steps (1) and (2) until all 2
n
 composite functions 

have been generated. 

(4) Generate reduced OBDD for each composite function and 

calculate t1 and t0 for all 2
n
 OBDDs using rules (i) to (iii) 

as mentioned above. 

(5) Calculate all the 2
n
 probability coefficients using equation 

(12). 

If the function having large number of variables (n ≥5) we 

select optimal ordering for generating OBBDs of composite 

function which provides significant reduction in computation 

as well as storage and time requirement. The computation of 

probability coefficients using above procedure is illustrated 

below with the help of an example. 

IV. SELECTION OF TEST VECTORS FOR FAULT DETECTION 

A subset of all 2
n
 probability coefficients which is sufficient 

to cover all stuck-at and bridging faults in the circuit is defined 

as probability signature. Probability signature of a circuit 

realizing given Boolean function can be obtained using 

linearisation technique [14, 18]. Their use in detection of 

permanent faults allows further simplification of testing by 

reducing the number of probability coefficients that are to be 

stored and compared with their corresponding values of fault 

free and faulty circuits. Realization of Boolean functions using 

linearisation technique is based on partitioning of the function 

into two sub-functions i.e. linear and a canonic function. 

Determination of probability signature using linearisation 

technique is achieved through following steps: 

(i) Let B be a matrix of n × n which is initially empty 

(ii) Select probability coefficients excluding p0 as follows: 

(a) The largest magnitude coefficient (s) 

(b) If more than one coefficient satisfy (a), select the one 

(s) with lowest order 

(c) If all the coefficients selected in (b) have same order, 

select the one with the highest decimal subscript. 

(iii) Insert the binary representation of the decimal subscript of 

the selected coefficient as a new column of B, with the bit 

corresponding to xj as the j
th

 entry. Delete the selected 

probability from the list. 

(iv) Delete all probability coefficients whose decimal 

subscripts have binary representation which are equal to 

the bit by bit mod-2 sum of any subsets of existing 

columns of B matrix. 

(v) Repeat step (ii) through (iv) ignoring coefficients that 

have been deleted. 

The probability coefficients in B matrix constitute the 

probability signature of linear sub-function and any i
th

 column 

of B matrix defines the EX-OR operation in spectral domain 

involving those xj (j=1, 2, …, n) variables for which the j
th
 

entry in the i
th

 column of B matrix is 1. The validity of 

probability signature generated using B matrix can be proved 

by considering an arbitrary Boolean function and computing 

it’s spectral as well as probability signatures. If the two 

signatures exhibit similar magnitude profile while also 

involving same xi variables for their corresponding 

coefficients; it verifies the correctness of the obtained 

probability signature and implies that linearisation technique 

can be extended for determination of probability signature. 

Considering the example function [14] F(x1, x2, x3, x4,) = ∑(2, 

3, 4, 7, 8, 11, 13, 14), its coefficients constituting spectral 

signature will be: 

r4321 = -6, r3 = -2, r43 = 2, r32 = -2 



 

 

The probability coefficients of the function obtained using 

equation (9) are: 

p0=0.0, p4=0.0, p3=0.25, p2=0.0, p1=0.0; p43=−0.25, p42=0.0, 

p32=0.25, p41=0.0, p31=0.25, p21=0.0; p432=−0.25, p431=−0.25, 

p421=0.0, p321=0.25; p4321=0.75. 

The above iterative procedure can be used to obtain B matrix 

as: 
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This matrix is same as obtained in [14] for deriving the 

spectral signature. Therefore the probability signature of the 

function can be obtained from above B matrix consisting of 

probability coefficients p4321, p3, p43 and p32. Comparing the 

corresponding magnitudes and association of variables in 

spectral and probability domains, it is evident that the two 

signatures are identical and have exactly same order. This 

proves that probability signature technique can be used to 

eliminate the need of spectral signature determination for fault 

detection purposes while also reducing the computational 

requirements. Due to space constraints we are omitting the 

fault detection subsection. 

 

V. RESULT AND COMPARISON 

The determination of probability coefficients involves 

finding only total number of matches (or mismatches) and also 

that only addition is required instead of multiplication and 

addition / subtraction as in spectral coefficient determination 

therefore it offers significant reduction in computational 

efforts. However, since the number of matches (or 

mismatches) depends not only on the transform matrix but also 

the output function vector F hence it will not be possible to 

find the total number of required additions without knowing F. 

However, an upper bound of the total number of required 

additions to determine all 2
n
 probability coefficients can be 

evaluated. 

The upper bound of total number of additions required to 

compute complete set of probability coefficients of an n 

variable function using R-W transform matrix can be 

determined by expressing maximum number of required 

additions in terms of n. For any R-W transform matrix of 

2
n
×2

n
, total number of +1s and –1s shall be {2

n–1 
(2

n
+1)} and 

{2
n–1 

(2
n
−1)} respectively and therefore the number of 

maximum additions can be found by comparing +1s in the 

matrix with F containing all +1s. Under this situation the 

maximum value of matches corresponding to maximum 

additions shall be {2
n–1

×(2
n
+1)}, however, in actual practice 

+1 or –1 can be chosen depending upon output function to 

further minimize the number of additions. Therefore the ratio 

of maximum number of additions in probability coefficient 

determination and additions/subtractions in spectral coefficient 

computation can be expressed as: 

)12(2

)12(

)/(

)(

+×

−
=

n

n

sa

a

R

P
         (13) 

W  Where P(a) and R(a/s) are the number of maximum additions 

required for computation of probability coefficients and 

number of additions / subtractions needed in determination of 

spectral coefficients respectively. Figure 4 indicates a 

theoretical plot of equation (13), which clearly shows the 

achievements in computational simplicity as compared to 

conventional spectral technique. Referring equation (13) it is 

clear that probability coefficients are particularly attractive for 

complex Boolean functions (n ≥ 5) because maximum number 

of required additions is only half of the additions/subtractions 

necessary while using conventional spectral technique. Figure 

5 gives individual plots for P(a) and R(a/s) as a function of n 

from which it is clear that significant reduction in computation 

is achieved even at lower values of n. 

 
Fig. 4: Ratio between Probability and Spectral Coefficients with 

respect to number of variable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Number of addition / multiplication versus number of 

variable (n) 
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VI. CONCLUDING REMARKS AND FUTURE WORKS 

A computationally efficient technique of obtaining spectrum of 

Boolean functions called probability coefficients with application of 

fault detection is presented. Probability Coefficients are more 

attractive as compared to spectral coefficients due to its 

computational simplicity. The numerical values of these coefficients 

can lie between –1 to +1 and they can be computed without 

multiplication that is otherwise needed in spectral coefficient 

determination. Mathematical expression for determination of 

probability coefficients of a function has been developed and 

theoretical plot illustrating computational advantage offered by 

probability coefficients as compared to spectral coefficients is given. 

Further, each probability coefficient contains global information and 

thus ensuring that their values are influenced by the complete 

Boolean performance of the circuit or network under consideration. 

Finally, computation of probability coefficients using techniques for 

spectral coefficient determination i.e. transform matrix, fast transform 

method and using OBDDs is given. The test vectors are derived from 

the set of probability coefficients of the given function using R-W 

transform matrix. The validity of probability signature has been 

proved by demonstrating that probability coefficients of any Boolean 

function have similar magnitude profile and involve same xi 

variable(s) as their corresponding spectral coefficients. Further, 

computation of probability coefficients does not need inner product 

evaluation and requires only half the number of additions (for n ≥5) 

as compared to spectral technique; it is particularly attractive for 

circuits realizing complex Boolean functions. This work can be 

extended for practical Benchmark circuits where most of the circuits 

contain multiple output function [4] and can play a big role in 

quantum computing and reversible logic [3, 5]. 
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