

Abstract—This paper deals with efficient computation of

probability coefficients which offers computational simplicity as

compared to spectral coefficients. It eliminates the need of inner

product evaluations in determination of signature of a combinational

circuit realizing given Boolean function. The method for computation

of probability coefficients using transform matrix, fast transform

method and using BDD is given. Theoretical relations for achievable

computational advantage in terms of required additions in computing

all 2n probability coefficients of n variable function have been

developed. It is shown that for n ≥ 5, only 50% additions are needed

to compute all probability coefficients as compared to spectral

coefficients. The fault detection techniques based on spectral

signature can be used with probability signature also to offer

computational advantage.

Keywords—Binary Decision Diagrams, Spectral Coefficients,

Fault detection

I. INTRODUCTION

INCE last three decades spectral techniques has been

widely adopted in field of VLSI CAD, testing, quantum

computing [2, 6, 9, 13, 14, 16] etc. Due to exponential

increase in numbers of transistors in a single chip the problem

of synthesizing and testing are becoming more complex. This

is necessitating consideration of testing issues right in the

design phase rather than post design practice [10, 17] leading

to on-chip incorporation of both test hardware and software

routines in the design of self-testing, fault tolerant, fail-safe

and/or self-repairing digital devices and systems [11, 15].

Spectral techniques of fault detection provide an attractive

solution to the problem of testing complex digital circuits by

offering global information about the target circuit realizing

the function. One of the major drawback of spectral techniques

is their computational complexity in calculation of spectral

coefficients; making them impractical for testing complex

circuits. The phenomenal increase in operating speed of digital

devices and systems during 1990s has created resurgence of

interest for exploring faster testing techniques to perform time

efficient testing. This is more so because even fastest available

Ashutosh Kumar Singh is with Department of ECEC, School of

Engineering and Science, Curtin University of Technology, Miri, Sarawak.

Malaysia (email: ashutosh.s@ curtin.edu.my)

Anand Mohan is with Department of Electronics Engineering, Institute of

Science and Technology, Banaras Hindu University, Varanasi, India (e-mail:

amohan@ bhu.ac.in)

spectral methods using fast transform techniques don’t perform

efficiently due to their inherent computational constrains [6,

7].

This paper addresses the problem of computational

complexities and describes the efficient method to generate

probability coefficient obtained from the output probability [1,

9] of a Boolean function. We use Rademacher-Walsh (R-W)

transform for conversion between Boolean to Probability

domain as shown in Figure 1.

Fig. 1: Block Diagram for conversation between Boolean to

probability domain

We propose three methods to compute these coefficients (1)

Matrix method (2) FFT method (3) BDD method. The value of

Probability coefficients varies between (-1) to (+1).

Mathematical expression for determination of probability

coefficients of a function is developed and theoretical plot

illustrating computational advantage offered by probability

coefficients is achieved. These coefficients are used to obtain a

probability signature using linearisation technique [14, 19]

which is then used for fault detection by comparing the

probability signatures of the fault free and faulty circuits. A set

of rules [14] for selecting spectral coefficients constituting

spectral signature have been similarly applied to linearisation

technique for obtaining probability signature. Test results

obtained using probability signatures are compared with those

of spectral signature technique and have been found same;

validating the use of probability signature for fault detection

applications.

The paper is organized as follows: section 2 includes the

basics definition and mathematical background for Binary

Decision Diagrams and spectral techniques. Probability

coefficient and their computation using different methods

definition is discussed in section 3 with basic definitions and

theorems. Section 4 describes about the test vector generation

for fault detection using linearisation techniques. In section 5

we discuss about the results and their comparison with spectral

coefficient’s computation. Finally concluding remarks and

future work is given in section 6.

Computation of Probability Coefficients using

Binary Decision Diagram and their Application

in Test Vector Generation

Ashutosh Kumar Singh, Anand Mohan

S

Boolean Domain

(0, 1)
Probability Domain

(-1 to +1)
R-W Matrix

of order of 2n × 2n

II. PRELIMINARIES

A. Binary Decision Diagram

Binary Decision Diagrams (BDDs) is based on Shannon

expansion [8, 12, 20]:

10'
iiii fxfxf += (1)

Where f ∈ Bn be a Boolean function defined over the

variable set Xn = {x1, …, xn) for all i = {x1, …, xn).

It represents a Boolean functions as a rooted, directed acyclic

graph with a vertex set containing two types of vertices, non-

terminal and terminal vertices. A non-terminal vertex v has

two attributes i.e. (i) an argument index (v) ∈ {x1,….., xn} and

(ii) two children indicated by dashed and solid lines for low (v)

and high (v) respectively. A terminal vertex v has an attribute

value (v) ∈ {0, 1} and has no outgoing edge.

An un-simplified BDD is basically a Binary Decision tree

contains 2
n-1

 non-terminal nodes. The BDD of the example

function f1 (x0, x1, x2) is shown in Figure 2 (a); which is a direct

mapping of truth table in tree form. In this tree the value of

function is determined by tracing a path from the root to a

terminal vertex. A BDD representation of an n variable

function will initially have 2
n
-1 nodes can be further

simplifying using following two reduction rules [12].

Fig. 2: BDD for f1 (x0, x1, x2) = ∑(3, 5, 6, 7)

(i) Deletion Rule:

If one or more non-terminal nodes are such that their both

branches corresponding to 0 and 1 lead to a non-terminal

successor node or to a terminal node then that non-terminal

node can be deleted.

(ii) Merging Rule:

If two or more terminal (or non-terminal) nodes of the same

label have the same 0 and 1 successors i.e. their left and right

sons are equivalent then they can be merged in a single node.

The simplified BDD of the function f (x0, x1, x2) = ∑(3, 5,

6, 7) using these two rules is shown in Figure 2 (b). The value

of Boolean function is determined by tracing a path from the

root to a terminal vertex, following the branches indicated by

the values assigned to the variables. Due to the way the

branches are ordered in this figure, the values are of the

terminal vertices, read from top to bottom, match those in the

truth table, read from left to right.

B. Spectral Coefficient

Spectral coefficients of an n variable Boolean function are

determined by transformation of the function output column

vector F using an orthogonal transform matrix of size 2
n
×2

n

that is multiplied with F. The complete set of spectral

coefficients thus obtained is called spectrum of the function

and it contains global information. The transformations are

loss less and hence permit computation of their inverse

transform to revert back into Boolean domain.

Let f(X) be a Boolean function of n variables, X = {x1, x2,

…, xn}, xi ∈ {0,1} and i = 1, 2, ,…, n. Then all 2
n
 spectral

coefficients of the function can be obtained using a 2
n

× 2
n

Rademacher-Walsh (R-W) transform matrix Tn [16].

RFTn =⋅ (2)

Where F is column matrix of dimension (2
n
 × 1)

representing f(X) recoded as f(Y) where f(Y) = 1−2 f(X), f(Y) =

{+1, -1} such that X = {x1, x2, …, xn}, xi∈{0, 1} and i = (1, 2,

…, n) and R is the spectrum that uniquely represents f(X),

which values varies between n2− to n2+ . The complete set

of coefficients is called as spectrum of the function. The

transformation matrix Tn is defined as:

−
=

−−

−−

11

11

nn

nn
n

TT

TT
T

and by definition T0 ∆ 1.

The inverse [18] of (1) is obtained as

FRTn =⋅
−1][(3)

Example

Let F (x1, x2, x3) be a Boolean function defined as F (x1, x2,

x3) = [0, 0, 1, 0, 1, 0, 1, 1], its ordered set of spectral

coefficients R can be evaluated using equation (2) and can be

written as [r0 = 4, r1 = 2, r2 = -2, r12 = 0, r3 = -2, r13 = 0, r23 = 0

and r123 = -2]. The order of the coefficients is determined by

the number of xi variables in the corresponding XOR function

i.e. for example r123 is third order and r12 is second order and

containing the information about x1x2x3 and x1x2 respectively.

Therefore this method requires total 2
n
 × (2

n
 −1)

addition/subtraction to compute all 2
n

spectral coefficients,

which becomes infeasible if the function has large number of

variables.

III. PROBABILITY COEFFICIENTS AND THEIR COMPUTATION

Definition: Let f(X) be a Boolean function and if we

consider that each row vector of this transformation matrix is

another function called constituent function fc [9].

According to definition, constituent function can be

considered as a Boolean function whose output vector is

identical to a row vector in the transformation matrix. Thus a

transformation matrix may be viewed as a collection of

constituent functions. We change the Boolean domain (0, 1)

into (−1, +1) for shake of simplicity i.e. xi ∈ {+1, −1}. For the

function f(X), the probability of matches (pm) / probability of

mismatches (pmm) can be defined as the ratio of number of

0

x0

x1 x1

x2 x2 x2 x2

1

x1

0

x0

x1

x2

1

(a) (b)

matches / mismatches between f(X) and fc to 2
n
. The number of

matches “pm(i)” corresponding to any probability coefficient Pi

is obtained from bit by bit Ex-NOR between f(X) and the i
th

constituent function fc(i) of transformation matrix “T” of order

2
n
 × 2

n
 followed by summation.

n

c
im

fandXfbetweenmatchesofNumberTotal
p

2

)(
)(= (4)

Mathematically this can be expressed as:

∑ ⊕=)(
2

1
)()(Xffp icnim (5)

Similarly the number of mismatches “pmm(i)” corresponding to

probability coefficient Pi is obtained from bit by bit Ex-OR

between f(X) and fc(i) of transformation matrix “T” followed by

summation as:

n

c
imm

fandXfbetweenmismatchesofNumberTotal
p

2

)(
)(

= (6)

∑ ⊕=)(
2

1
)(Xff icn

 (7)

Definition: Probability coefficient of f(X) is the difference

between probability of matches and probability of mismatches

i.e. (pmi−pmmi).

Theorem: The probability coefficient (Pi) of any Boolean

function corresponding to the i
th

 row vector of transformation

matrix “T” can be given as:

Pi=2pm(i)-1=1-2pmm(i) , where i=1, 2, …, 2
n
 (8)

Proof: Since the i
th

 probability coefficient of any Boolean

function f(X) is defined as the difference between the

probability of matches “pm(i)” and mismatches “pmm(i)”,

therefore

Pi = pm(i) – pmm(i) = pm(i) – (1– pm(i))=2pm(i) – 1 (9)

Similarly substituting the value of pm(i) in terms of pmm(i) we get

Pi = pm(i) – pmm(i)= (1 – pmm(i)) – pmm(i)= 1 – 2 pmm(i) (10)

From equations (9) & (10) Pi=2pm(i) –1=1 – 2pmm(i) (11)

A. Matrix Method

For an “n” variable Boolean function f(X), all the 2
n

probability coefficients can be computed using R-W transform

matrix of order 2
n
× 2

n

nT][# F =P=(2 pm –1)=1–2 pmm (12)

Where F is vector representing the function, P is the set of

probability coefficients and “#” denotes either (Ex-NOR) or

(Ex-OR) operators but not both simultaneously.

Therefore all the 2
n
 probability coefficients (P) of a given

Boolean function f(X) can be determined using equations (5)

or (7) and (12). The procedure for finding probability

coefficients of an “n” variable Boolean function with output

vector “F” of order 2
n
 × 1 can be stated as:

(i) Initialize C (counter) = 0.

(ii) Select first row of the transformation matrix.

(iii) Compare the corresponding elements of selected row and

output vector

(iv) Increment C by “1” for each match (mismatch) until all in

the row vector have been compared.

(v) Calculate probability of matches (mismatches) using pm

(pmm) = C/2
n
 and determine probability coefficients as

Pi=2pm(i) – 1=1 – 2pm m(i) for i=1, 2, …, 2
n

Using R-W transform for the example function F (x1, x2, x3)

and changing Boolean variables “0” and “1” to +1 and –1

respectively, its probability coefficients can be computed.

For the first probability coefficient (p0)

5.0]1,1,11,1,1,1,1[]1,1,1,1,1,1,1,1[
2

1

3
=−−−−⊕= ∑mp

Now using equation (12) we get p0=0

Similarly for second probability coefficient (p1)

25.0]1,1,11,1,1,1,1[]1,1,1,1,1,1,1,1[
2

1

3
=−−−−⊕−−−−= ∑mp

and equation (12) gives p1=−0.5.

Remaining probability coefficients of the function are

determined using their corresponding constituent function

giving all 2
3
 probability coefficients that are given below:

−

=

−

−

−

−

−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

5.0

0.0

0.0

0.0

5.0

5.0

5.0

0.0

1

1

1

1

1

1

1

1

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

The ordering as well as association of xi variables in each

probability coefficient is similar to corresponding spectral

coefficient and hence the complete set of probability

coefficients can be written as p0=0, p1=−0.5, p2=0.5, p12=0.5,

p3=0, p13=0, p23=0 and p123=0.5.

B. Fast Transform Method

Fast transforms [16, 21, 22] provide reduction in

computation by eliminating repeated computation of already

computed terms that are common to other spectral coefficients.

The use of fast transform reduces total number of

multiplications from 2
n
×2

n
 to n × 2

n
 in computation of all 2

n

spectral coefficients of a function. A fast Walsh-Fourier

transform procedure suggested by Shanks [22] is briefly

discussed to explain the computation process. The presented

method requires total n × 2
n
 multiplication in determination of

spectrum of a function. It is based on generating orthogonal

transform matrix using N distinct Walsh-Paley functions Pal(J,

K).

The graphical representation of the fast transform for a

three variable function (n = 3) is given in Butterfly diagram

shown in Figure 3. This is for probability coefficients

computation but still follows the basic concept of butterfly

diagram. The complete set of n × 2
n
 operations also forms the

principle of all the hardware circuits for generating Hadamard

and Walsh waveforms and their resulting coefficients.

Although fast transform techniques reduce the number of total

multiplications (additions / subtractions) as compared to

matrix multiplication method but they still use matrix

multiplication. Note that the storage requirements at each step

of the Butterfly diagram progressively increases (from 2
1
 to 2

n

for an n-variable function) as we move from input towards the

output node following a straight signal flow line. Therefore

total storage requirement for the output step to store all 2
n

coefficients becomes 2
n
 × 2

n
, which makes it unsuitable for

complex functions.

Since the procedure for determination of probability

coefficients involves identification of matches (or mismatches)

in place of multiplication and needs only addition instead of

addition / subtraction, therefore Butterfly diagram can not be

directly applied for their determination. This necessitates

modification of the fast transform algorithm implementation

on Butterfly diagram because of requiring only two inputs (i.e.

total number of matches and mismatches) at every intermediate

step of Butterfly instead of inputs from all previous steps.

Using the concept of fast transform and its related theory

for Fast Fourier Transform (FFT) [16, 22] the following

algorithm is adopted to find the number of matches /

mismatches for each probability coefficient:

(i) Draw the signal flow graph (Butterfly Diagram) for given

number of function variables.

(ii) Change the elements 0 and 1 of the output vector “F” to ⊕

and Ө respectively and then compare the changed values

of F and first step nodes of the Butterfly diagram to find

the number of matches and mismatches s using following

two rules:

(a) If ⊕ or Ө of the same row feeds to a ⊕ node;

record it as match or mismatch respectively.

Similarly the match or mismatch is computed for

Ө.

(b) If ⊕ or Ө of a different row feeds to a ⊕ node it is

considered as match or mismatch respectively.

However, if they feed to Ө; it is considered match

or mismatch respectively.

(iii) For subsequent steps of the butterfly diagram if the input

from the same row feeds to Ө; it will alter the values of

matche(s) and mismatche(s) obtained in the previous step

of Butterfly which are otherwise unaltered.

(iv) Repeat step (iii) until last step of the Butterfly diagram

and count total number of matches or mismatches that

gives the value of pi.

Once the values of matches or mismatches for a given n-

variable function are found using this modified fast transform

algorithm implementation on Butterfly, equation (12) can be

used to compute all 2
n

probability coefficients. The

computation of probability coefficients is illustrated below

with the help of an example function.

Example

Consider a function f (x1, x2, x3) = ∑ (0, 1, 3, 5, 6) = [1, 1, 0,

1, 0, 1, 1, 0]. The Butterfly diagram for calculating the total

number of matches and mismatches for this function using the

above mentioned algorithm is shown in fig. 3.3 where the

outputs of the final steps are the number of matches and

mismatches. Now all 2
3

probability coefficients of the function

f (x1, x2, x3) = ∑ (0, 1, 3, 5, 6) are computed using equation

(3.24) giving p0 = -0.25; p1 = -0.25, p2 = -0.25, p3 = 0.25; p12 =

-0.25, p13 = 0.25, p23 = 0.25, p123 = -0.75.

Analyzing the storage requirements in using Butterfly for

probability and spectral coefficient computations it is clear that

application of modified fast transform algorithm on Butterfly

to compute probability coefficients reduces storage because of

requiring only two inputs at every intermediate step of

Butterfly instead of inputs from all previous steps. This is

particularly attractive for complex functions that have large

number of steps and inputs at each node of the Butterfly.

Therefore application of fast transform to determine

probability coefficients provides storage economy along with

reduction in computation as compared to spectral coefficients

determination.

Fig. 3: Flow Graph for f (x1, x2, x3) = ∑ (0, 1, 3, 5, 6)

C. BDD Method

This section describes a new method to determine number of

matches (or mismatches) for an n variable Boolean function

using OBDD. It is based on generating 2
n
 column vectors

called “composite functions” that are generated considering

matches and mismatches between constituent functions fc(i) of

-

1

1m, 1mm 2m, 2mm 3m, 5mm

0m, 2mm 1m, 3mm 5m, 3mm

1

1m, 1mm 2m, 2mm 3m, 5mm

0m, 2mm 2m, 2mm 3m, 5mm

0

1

1m, 1mm 1m, 3mm 5m, 3mm

0

1

1m, 1mm 1m, 3mm 5m, 3mm

1

2m, 0mm 0m, 4mm 3m, 3mm

0

0m, 2mm 3m, 1mm 1m, 7mm

an R-W transform matrix of order 2
n
 ×2

n
 and function vector

F. The reduced OBDDs of the constituent functions are then

generated that is used for computation of each pi by recording

the number of one and zero terminating paths for matches and

mismatches respectively. Once the total number of matches

and mismatches are found, equation (12) is used to compute

probability coefficients. However, counting of the total

number of terminating paths on terminal nodes “1” and “0” of

an OBDD can be difficult for complex constituent functions

but this can be simplified using probability assignment

algorithm [9] that is briefly discussed below:

Probability assignment algorithm

(i) Assign probability = 1 for the input node

(ii) If the probability of node j = pj, assign a probability of 1/2

pj to each of the outgoing arcs from j.

(iii) The probability pk, of node k is the sum of the

probabilities of the incoming arcs.

The application of above algorithm for counting 1s and 0s

in graphical representation of a function is demonstrated below

taking an example function.

An important limitation of this method of finding t1 and t0

is that it requires computation of output probability at each

node that becomes tedious for complex BDDs. The unreduced

OBDDs of a function have all paths allowing direct

determination of t1 and t0, however, direct counting can not be

done for reduced OBDDs because some nodes are merged or

deleted. The contribution of deleted and / or merged nodes to

the total number of 1s and 0s is therefore necessary for correct

determination of t1 and t0 in an OBDD.

We propose following new rules for direct calculation of t1

and t0 of reduced OBDDs without calculating output

probability of nodes:

(i) If reduced OBDD of a function has only one node then the

number of 1s / 0s will be 2
n
/2.

(ii) If “k” variables are missing in a path terminating at node

“1” or “0” then “t1” and “t0” will be 2
k
, where k=0, 1, 2

…., (n-1).

(iii) If more than one paths are terminating at node “1” or “0”

then “t1” and “t0” will be the sum of number of 1s and 0s

respectively in each path calculated by applying rule (ii).

The step wise algorithm for computing probability

coefficients of a n-variable Boolean function using OBDD can

be stated as below:

(1) Select a constituent function of R-W matrix of order 2
n
 ×

2
n
.

(2) Perform bit-by-bit comparison between elements of

selected constituent function and output vector F. Record

1 for match or 0 for mismatch at the corresponding

positions in the composite function.

(3) Repeat steps (1) and (2) until all 2
n
 composite functions

have been generated.

(4) Generate reduced OBDD for each composite function and

calculate t1 and t0 for all 2
n
 OBDDs using rules (i) to (iii)

as mentioned above.

(5) Calculate all the 2
n
 probability coefficients using equation

(12).

If the function having large number of variables (n ≥5) we

select optimal ordering for generating OBBDs of composite

function which provides significant reduction in computation

as well as storage and time requirement. The computation of

probability coefficients using above procedure is illustrated

below with the help of an example.

IV. SELECTION OF TEST VECTORS FOR FAULT DETECTION

A subset of all 2
n
 probability coefficients which is sufficient

to cover all stuck-at and bridging faults in the circuit is defined

as probability signature. Probability signature of a circuit

realizing given Boolean function can be obtained using

linearisation technique [14, 18]. Their use in detection of

permanent faults allows further simplification of testing by

reducing the number of probability coefficients that are to be

stored and compared with their corresponding values of fault

free and faulty circuits. Realization of Boolean functions using

linearisation technique is based on partitioning of the function

into two sub-functions i.e. linear and a canonic function.

Determination of probability signature using linearisation

technique is achieved through following steps:

(i) Let B be a matrix of n × n which is initially empty

(ii) Select probability coefficients excluding p0 as follows:

(a) The largest magnitude coefficient (s)

(b) If more than one coefficient satisfy (a), select the one

(s) with lowest order

(c) If all the coefficients selected in (b) have same order,

select the one with the highest decimal subscript.

(iii) Insert the binary representation of the decimal subscript of

the selected coefficient as a new column of B, with the bit

corresponding to xj as the j
th

 entry. Delete the selected

probability from the list.

(iv) Delete all probability coefficients whose decimal

subscripts have binary representation which are equal to

the bit by bit mod-2 sum of any subsets of existing

columns of B matrix.

(v) Repeat step (ii) through (iv) ignoring coefficients that

have been deleted.

The probability coefficients in B matrix constitute the

probability signature of linear sub-function and any i
th

 column

of B matrix defines the EX-OR operation in spectral domain

involving those xj (j=1, 2, …, n) variables for which the j
th

entry in the i
th

 column of B matrix is 1. The validity of

probability signature generated using B matrix can be proved

by considering an arbitrary Boolean function and computing

it’s spectral as well as probability signatures. If the two

signatures exhibit similar magnitude profile while also

involving same xi variables for their corresponding

coefficients; it verifies the correctness of the obtained

probability signature and implies that linearisation technique

can be extended for determination of probability signature.

Considering the example function [14] F(x1, x2, x3, x4,) = ∑(2,

3, 4, 7, 8, 11, 13, 14), its coefficients constituting spectral

signature will be:

r4321 = -6, r3 = -2, r43 = 2, r32 = -2

The probability coefficients of the function obtained using

equation (9) are:

p0=0.0, p4=0.0, p3=0.25, p2=0.0, p1=0.0; p43=−0.25, p42=0.0,

p32=0.25, p41=0.0, p31=0.25, p21=0.0; p432=−0.25, p431=−0.25,

p421=0.0, p321=0.25; p4321=0.75.

The above iterative procedure can be used to obtain B matrix

as:

=

0101

1111

1001

0001

B

This matrix is same as obtained in [14] for deriving the

spectral signature. Therefore the probability signature of the

function can be obtained from above B matrix consisting of

probability coefficients p4321, p3, p43 and p32. Comparing the

corresponding magnitudes and association of variables in

spectral and probability domains, it is evident that the two

signatures are identical and have exactly same order. This

proves that probability signature technique can be used to

eliminate the need of spectral signature determination for fault

detection purposes while also reducing the computational

requirements. Due to space constraints we are omitting the

fault detection subsection.

V. RESULT AND COMPARISON

The determination of probability coefficients involves

finding only total number of matches (or mismatches) and also

that only addition is required instead of multiplication and

addition / subtraction as in spectral coefficient determination

therefore it offers significant reduction in computational

efforts. However, since the number of matches (or

mismatches) depends not only on the transform matrix but also

the output function vector F hence it will not be possible to

find the total number of required additions without knowing F.

However, an upper bound of the total number of required

additions to determine all 2
n
 probability coefficients can be

evaluated.

The upper bound of total number of additions required to

compute complete set of probability coefficients of an n

variable function using R-W transform matrix can be

determined by expressing maximum number of required

additions in terms of n. For any R-W transform matrix of

2
n
×2

n
, total number of +1s and –1s shall be {2

n–1
(2

n
+1)} and

{2
n–1

(2
n
−1)} respectively and therefore the number of

maximum additions can be found by comparing +1s in the

matrix with F containing all +1s. Under this situation the

maximum value of matches corresponding to maximum

additions shall be {2
n–1

×(2
n
+1)}, however, in actual practice

+1 or –1 can be chosen depending upon output function to

further minimize the number of additions. Therefore the ratio

of maximum number of additions in probability coefficient

determination and additions/subtractions in spectral coefficient

computation can be expressed as:

)12(2

)12(

)/(

)(

+×

−
=

n

n

sa

a

R

P
 (13)

W Where P(a) and R(a/s) are the number of maximum additions

required for computation of probability coefficients and

number of additions / subtractions needed in determination of

spectral coefficients respectively. Figure 4 indicates a

theoretical plot of equation (13), which clearly shows the

achievements in computational simplicity as compared to

conventional spectral technique. Referring equation (13) it is

clear that probability coefficients are particularly attractive for

complex Boolean functions (n ≥ 5) because maximum number

of required additions is only half of the additions/subtractions

necessary while using conventional spectral technique. Figure

5 gives individual plots for P(a) and R(a/s) as a function of n

from which it is clear that significant reduction in computation

is achieved even at lower values of n.

Fig. 4: Ratio between Probability and Spectral Coefficients with

respect to number of variable

Fig. 5: Number of addition / multiplication versus number of

variable (n)

4 5 6 7 8

Number of variables (n)

0

10

20

30

40

50

60

70

P(a)

R(a / s)

N
u
m

b
e
r

o
f

A
d
d
it

io
n

 /
 S

u
b
tr

ac
ti

o
n
 i

n
 T

h
o
u
sa

n
d
s

VI. CONCLUDING REMARKS AND FUTURE WORKS

A computationally efficient technique of obtaining spectrum of

Boolean functions called probability coefficients with application of

fault detection is presented. Probability Coefficients are more

attractive as compared to spectral coefficients due to its

computational simplicity. The numerical values of these coefficients

can lie between –1 to +1 and they can be computed without

multiplication that is otherwise needed in spectral coefficient

determination. Mathematical expression for determination of

probability coefficients of a function has been developed and

theoretical plot illustrating computational advantage offered by

probability coefficients as compared to spectral coefficients is given.

Further, each probability coefficient contains global information and

thus ensuring that their values are influenced by the complete

Boolean performance of the circuit or network under consideration.

Finally, computation of probability coefficients using techniques for

spectral coefficient determination i.e. transform matrix, fast transform

method and using OBDDs is given. The test vectors are derived from

the set of probability coefficients of the given function using R-W

transform matrix. The validity of probability signature has been

proved by demonstrating that probability coefficients of any Boolean

function have similar magnitude profile and involve same xi

variable(s) as their corresponding spectral coefficients. Further,

computation of probability coefficients does not need inner product

evaluation and requires only half the number of additions (for n ≥5)

as compared to spectral technique; it is particularly attractive for

circuits realizing complex Boolean functions. This work can be

extended for practical Benchmark circuits where most of the circuits

contain multiple output function [4] and can play a big role in

quantum computing and reversible logic [3, 5].

ACKNOWLEDGMENT

The work of Ashutosh Kumar Singh was funded by the Curtin

Sarawak Research Fund 2008, Malaysia.

REFERENCES

[1] Ashutosh Kumar Singh and Anand Mohan, “A Theoretical Frame work

for Probability Coefficients: A New Methodology for Fault Detection”,

IEEE Proc. International Conference on Computer and Electrical

Engineering (iccee 2008), Phuket, Thailand, 19-21 December 2008.

[2] Osnat Keren, “Reduction of the Average Path Length in Binary

Decision Diagrams by Spectral Methods,” IEEE Trans. on Comput.,

vol. 57, no.4, pp. 520-531, April 2008.

[3] James Donald, Niraj K. Jha, “Reversible Logic Synthesis with Fredkin

and Peres Gates”, ACM Journal on Emerging Technologies in

Computing Systems, vol. 4, pp. 1-19, March 2008.

[4] Abusaleh M. Jabir, Dhiraj K. Pradhan, Ashutosh K. Singh, Rajaprabhu

T. L., “A Technique for Representing Multiple Output Binary Functions

with Applications to Verification and Simulation”, IEEE Trans. on

Comput., vol. 56, No. 8, pp. 1133-1145, August 2007.

[5] D. M. Miller, “Spectral and Two-Place Decomposition Techniques in

Reversible Logic”, Proceeding of the IEEE Midwest Symposium on

Circuits and Systems, vol. 2, pp. 493-496, 2002.

[6] D. M. Miller, R. Drechsler and M. A. Thornton, “Spectral Techniques in

VLSI CAD” Kluwer Academic 2001.

[7] Dragan Jankovic, R. S. Stankovic, Rolf Drechsler Decision Diagram

Method for Calculation of Pruned Walsh Transform”, IEEE Trans. on

Comput., vol. 50, Issue 2, pp. 147-157, Feb. 2001.

[8] R. Drechslor, B. Becker and N. Gockel, “Genetic Algorithm for

Variable Ordering of OBDDs”, IEE Proc. Comput. Digit. Tech., vol.

143, no. 6, pp. 364-368, 1996.

[9] M. A. Thornton and V. S. S. Nair, “Efficient calculation of spectral

coefficients and their applications”, IEEE Trans. on Comput., vol. 14,

no.11, pp. 1328-1340, Nov. 1995.

[10] V. Chickermane, J. Lee, and J. H. Patel, “Addressing design for

testability at the architectural level,” IEEE Trans. on Comput., vol. 13,

no.-7, pp. 920-934, Jul. 1994.

[11] S. H. Hosseini and N. Jamal, “Efficient distributed algorithms for self

testing of multiple processor systems”, IEEE Trans. on Comput., vol.

41, no.-11, pp. 1397-1409, Jul. 1992.

[12] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-

Decision Diagrams”, ACM computing surveys vol. 24, no. 3, pp. 293-

318, 1992.

[13] Suman Purwar, “An Efficient Method of Computing Generalized Reed-

Muller Expansions from Binary Decision Diagram”, IEEE Trans. on

Comput., vol. 40, issue 11, pp. 1298-1301, Nov. 1991.

[14] E. Eris and J. C. Muzio, “Spectral testing of circuit realizations based on

linearisations”, IEE Proc. Comput. Dig. Tech., vol. 133E, no.2. pp. 73-

78 March 1986.

[15] D. K. Pradhan, “Fault Tolerant Computing”, Englewood Cliffs, New

Jersey 07632 (U. S. A) 1986.

[16] S. L. Hurst, D. M. Miller and J. C. Mujio, “Spectral Techniques in

Digital Logic”, Academic Press (London) 1985.

[17] T. W. Williams and K. N. Parker, “Design for testability-A survey,”

IEEE Trans. on Comput., vol. C-31, no. 1, pp. 1-15, Jan. 1982.

[18] S. L Hurst, D. M. Miller and J. C. Muzio, “A spectral method of

Boolean function complexity”, Electron. Lett., 18, pp. 572-574, 1982.

[19] S. L. Hurst, “The logical processing of digital signals”, Crane Russak,

New York, 1978.

[20] S. B. Akers, “Binary Decision Diagrams”, IEEE Trans. on Comput.,

vol. C-27, no. 6, pp. 509-516, 1978.

[21] B. J. Fino, and V. R. Algazi, “Unified matrix treatment of the fast

Walsh-Hadamard transform”, IEEE Trans. on Comput., vol. C-25, pp.

1142-1145, 1976.

[22] J. Shanks, “Computation of the fast Walsh-Fourier transform”, IEEE

Trans. on Comput., vol. EC-18, pp. 457-459, 1969.

Ashutosh Kumar Singh received the PhD

degree in electronics engineering from Banars

Hindu University, India, in 2000. He is a

faculty member in the Department of ECEC,

School of Engineering and Science, Curtin

University of Technology, Miri, Malaysia. He

worked as a senior lecturer and deputy dean on

the Faculty of Information Technology at

University Tun Abdul Razak, Kuala Lumpur,

Malaysia. Prior to this, he was a postdoctoral

research assistant in the Department of Computer Science at the University of

Bristol, United Kingdom. He also worked in the Faculty of Information

Science and Technology, Multimedia University, Malaysia, for two years and

as a senior lecturer in the Department of Electronics and Communication at

the National Institute of Science and Technology (INDIA), India. He was a

member of the editorial board of the University Tun Abdul Razzak
(UNITAR) e-journal and has also been involved in the reviewing process of

different journals and conferences, such as the IEEE Transactions on

Computers, IEEE International Test Conference (ITC), International

Conference on Advanced Computing and Communication (ADCOM), and so

forth. His research interests include verification, synthesis, design, and testing

of digital circuits. He has published approximately 50 research papers to date

in different conferences and journals in these areas. He is a coauthor of two

books, Digital Systems Fundamentals and Computer System Organization

and Architecture (Prentice Hall). He is the recipient of the Merit Award from

the Institute of Engineers in 2003, the Best Poster Presenter Award from the

86th Indian Science Congress in 1999, and the Best Paper Presenter from the

23rd National Systems Conference (NSC ’99) in India.

Anand Mohan obtained B. Sc. (Engg.) with

Honours, M. Tech. and Ph. D. degrees in

Electronics Engineering from Banaras Hindu

University, Varanasi (India) in 1973, 1977 and

1994 respectively. During December ’75 to March

’79 he worked as R & D Engineer at Murphy India

Ltd., Thane, Maharastra and subsequently joined

as faculty member in Electronics Engineering,

Institute of Technology, Banaras Hindu University

in April ’79 where he is currently working as

Professor of Electronics Engineering. His areas of current research interest are

fault tolerant digital systems, programmable logic devices, and information

security. Prof. Mohan has chaired technical sessions at international and

national conferences / seminars and organized as well as participated in

international and national conferences / seminars / symposia held in the

country and abroad. Prof. Mohan has authored 81 research papers published

in reputed international / national journals and conference proceedings,

supervised 47 M. Tech. dissertations and good number of Ph. D. theses. He

has been reviewer of research papers for publication in IEEE Transactions on

Computer (USA), Journal of Computer and Information Science (Canada),

and Institution of Engineers, (India) and has also reviewed book on

Microcontrollers for Tata-MacGraw Hill and learning material for ISTE, New

Delhi. His coauthored papers have received awards of International Union of

Radio Science (URSI), Belgium, Institution of Engineers, (India) and Indian

Science Congress. Prof. Mohan is Fellow of Institution of Electronics and

Telecommunication Engineers, (India) and Institution of Engineers (India)

and Life Member of Indian Society for Technical Education (ISTE), New

Delhi. Anand Mohan is Chairman of research panel on Armament Sensors &

Electronics, DRDO, Ministry of Defence, Govt. of India, worked as Chairman

of NBA Ad-hoc Committees of AICTE, New Delhi, and chaired project

review committee of HAL, Korwa. He has been Member of several national

committees of UGC, CSIR, DST, DRDO and reputed academic institutions of

the country. Prof. Mohan was also Member of Executive Council, Banaras

Hindu University, Governor’s Nominee, Rajasthan Technical University,

Kota, and presently he is Member of Governing Councils of HBTI, Kanpur,

IET, Lucknow, and many other reputed institutions of Engineering &

Technology.

