PLANTING THE SEEDS OF SCIENCE
A flexible, integrated and engaging resource for teachers of 3 to 8 year olds
EDITED BY CHRISTINE HOWITT AND ELAINE BLAKE
Wherever there is a child there is curiosity and where there is curiosity there is science.

ACKNOWLEDGEMENTS

The pre-service early childhood teachers who participated in Science Education 225, School of Education, Curtin University in 2008 and 2009 are acknowledged for their outstanding contributions during the development of this book. The early childhood consultants, Natalie Binrell, Mary Morris, Heidi Mullender and Karen Wood, are sincerely thanked for their professional feedback throughout the development of the book.

Teachers and children in the following schools are especially thanked for their time, expertise, commitment and feedback in trialling the modules that make up this book: Ellenbrook Christian College, John Calyun Kelmscott School, Lake Joondalup Baptist College, Perth College and Woodlupine Primary School. Thanks are extended to all children who allowed their work to be photographed for this book.

Professor Lesley Parker, Chair of the Reference Group, for her wisdom, and support organisations that provided sage advice throughout the project, are sincerely thanked for their contributions. Representatives from the following organisations are especially thanked for their time and support:

Wendy Gorman: Association of Independent Schools, Western Australia

Don Watts: Australian Academy of Technological Sciences and Engineering, Western Australian Division

Crescentia Anthony: Catholic Education Office in Western Australia

Louise Nelson, Gail Clark, Margaret Waterton: Department of Education, Western Australia

Janice Lake: Engineers Australia

John Clarke: Science Teachers Association of Western Australia

Denise Kirkpatrick, Paul Nicholls: Scitech

Photographs have been contributed by many educators including: Jacqui Arnold, Natalie Binrell, Elaine Blake, Martina Calais, Jessica Deed, Shelley Forbes, Sandra Frid, Christine Howitt, Emily Upton, and Louise Vanderfees. Their dedication to recording and generosity of sharing is acknowledged with thanks.

The Project Team express thanks to Curtin University for the opportunity to undertake this project.

Permission has been obtained from parents for all photographs that identify children.

Support for the production of this publication has been provided by the Australian Learning and Teaching Council, an initiative of the Australian Government Department of Education, Employment and Workplace Relations. The views expressed in this publication do not necessarily reflect the views of the Australian Learning and Teaching Council Ltd.

This work is published under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 2.5 Australia Licence. Under this Licence you are free to copy, distribute, display and perform the work and to make derivative works.

Attribution: You must attribute the work to the original authors and include the following statement: Support for the original work was provided by the Australian learning and teaching Council Ltd, an initiative of the Australian Government Department of Education, Employment and Workplace Relations.

Noncommercial: You may not use this work for commercial purposes.

Share Alike: If you alter, transform, or build on this work, you may distribute the resulting work only under a licence identical to this one.

For any reuse or distribution, you must make clear to others the licence terms of this work.

Any of these conditions can be waived if you get permission from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-sa/2.5/au/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Requests and inquiries concerning these rights should be addressed to the Australian Learning and teaching Council, PO Box 2375, Strawberry Hills NSW 2012 or through the website: http://www.altc.edu.au

2010

ISBN 978 0 646 53937 9

Printed and bound in Western Australia

Graphic design by m3design, Fremantle

The information presented in this book is part of the Australian Learning and Teaching Council Project CGB-724: Science for early childhood teacher education students: Collaboration between teacher educators, scientists and engineers

PROJECT TEAM

Christine Howitt (Project Leader)

Elaine Blake (Project Manager)

Marjan Zadnik

Simon Lewis

Maura Macerino

Martina Calais

Sandra Frid

Yvonne Cornellor

Len Sparrow

Jo Ward
IS THE GRASS STILL GREEN AT NIGHT?

Astrophysics of the dark

CHRISTINE HOWITT, ELAINE BLAKE AND MARIAN ZADNIK
The rhythm of day and night is a part of everyone’s life and children can easily relate their experiences of day light and night time dark. *Is the grass still green at night?* Astrophysics of the dark introduces children to scientific concepts related to day and night.

This module is designed to expand a child’s knowledge of why there is a light and a dark part of every day through developing a greater understanding of the characteristics of day and night, exploring shadows, and observing the relationship between earth and the sun.

There are seven sub-themes presented in this module, each with a different number of ideas and activities. *Is the grass still green at night?* Astrophysics of the dark begins with children discussing living and working during day time, and living and working at night time. The night time discussion acknowledges that some children are afraid of the dark and sensitively addresses this issue. It also discusses monsters, and allows children to confidently experience being in the dark. A comparison between day and night is then made. Children investigate how shadows are made, by examining shadows of themselves, the changing shapes of shadows, and shadows on balls. Using the relationship between the Sun and the Earth, children explore day and night with various hand-held models. Finally, they answer the question ‘Is the grass still green at night?’

As a consequence of children developing their own explanations to everyday phenomena, they may hold many alternative conceptions in astronomy. For instance when a question as simple as, ‘Where does the Sun go at night?’ is not factually or satisfactorily answered, children will construct their own explanation. Further, the use of everyday terms such as ‘sunrise’ and ‘sunset’ reinforces a belief that the Sun actually moves and Earth is at the centre of the Solar System. Expressions such as ‘the Sun is going down’ and ‘the stars are coming out’ illustrate how familiar language contrasts with scientific views.

This module relates only to day and night, providing many learning opportunities and different representations to reinforce scientific concepts associated with day and night. While the Moon will become a part of the children’s discussion of night, no attempt is made to explain the phases of the Moon here. Presenting young children with models of day and night, phases of the moon, seasons of the year, and the apparent motion of the stars all at the same time can leave them confused. Such abstract concepts should only be presented when children are mature enough in thought to construct the true understanding of these phenomena.

Health and safety issues, such as never look directly into a bright light or into the Sun should be introduced before the commencement of activities in this module. If teaching Indigenous students, there is a need to liaise with parents or the community, as the children may have strong beliefs about night spirits.
Module Outline

An outline of ‘Is the grass still green at night?’ Astrophysics of the dark is provided in the following table, demonstrating opportunities to integrate the module within the curriculum. Many of the activities presented in this module also have links with The Environment and Living Things within the Science learning area.

<table>
<thead>
<tr>
<th>IS THE GRASS STILL GREEN AT NIGHT? ASTROPHYSICS OF THE DARK</th>
<th>POSSIBLE CURRICULUM LINKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-THEME</td>
<td>A</td>
</tr>
<tr>
<td>Living and working in day time</td>
<td></td>
</tr>
<tr>
<td>The feel of day time</td>
<td>•</td>
</tr>
<tr>
<td>Day time routine</td>
<td>•</td>
</tr>
<tr>
<td>Living and working in night time</td>
<td></td>
</tr>
<tr>
<td>The feel of night time</td>
<td>•</td>
</tr>
<tr>
<td>Monsters and make believe</td>
<td>•</td>
</tr>
<tr>
<td>Night works!</td>
<td>•</td>
</tr>
<tr>
<td>Let’s make it dark!</td>
<td>•</td>
</tr>
<tr>
<td>Things to do in the dark</td>
<td></td>
</tr>
<tr>
<td>The dark room</td>
<td>•</td>
</tr>
<tr>
<td>Animals: nocturnal and diurnal</td>
<td>•</td>
</tr>
<tr>
<td>Night walks</td>
<td>•</td>
</tr>
<tr>
<td>Comparing day and night</td>
<td></td>
</tr>
<tr>
<td>Day and night journal</td>
<td>•</td>
</tr>
<tr>
<td>Exploring shadows</td>
<td></td>
</tr>
<tr>
<td>Day and night role play</td>
<td>•</td>
</tr>
<tr>
<td>Shadow games</td>
<td>•</td>
</tr>
<tr>
<td>Changing shadows</td>
<td>•</td>
</tr>
<tr>
<td>Shadow art</td>
<td>•</td>
</tr>
<tr>
<td>Why do we have a day time and night time?</td>
<td></td>
</tr>
<tr>
<td>Children’s ideas about day and night</td>
<td>•</td>
</tr>
<tr>
<td>Modelling day and night</td>
<td>•</td>
</tr>
<tr>
<td>Shoe box model</td>
<td>•</td>
</tr>
<tr>
<td>The night is just the Earth’s shadow</td>
<td>•</td>
</tr>
<tr>
<td>Celebrating day and night</td>
<td></td>
</tr>
<tr>
<td>Is the grass still green at night?</td>
<td>•</td>
</tr>
<tr>
<td>Star gazing</td>
<td>•</td>
</tr>
</tbody>
</table>

Possible curriculum links: A (Arts), E (English), M (Mathematics), H&PE (Health & Physical Education), LOTE (Languages other than English), S (Science), S&E (Society and Environment), T&E (Technology and Enterprise)

Introduction: Living and Working in Day Time

The feel of day time

Brainstorm as a class what day time looks like, sounds like, feels like and smells like. Record these responses to ascertain what the children know about day time. Take the children into the playground and ask them again what day time looks like, sounds like, feels like and smells like. Allow them to observe and discuss the things that are happening around them in the school yard, outside the school yard, and in the sky. Perhaps the Moon will be visible during the day. Incorporate children’s responses into a Y-chart.

Day time routine

What is a routine? Engage children in conversations about things that happen in their homes during day time. What is the routine of the children during the day? Is it the same routine on hot days and on cold days, school days and holidays? Develop a timeline of a child’s school day, get up and get dressed, have breakfast, come to school, have recess and lunch, go home, play, have dinner, have a bath and, go to bed. Children learn this is called a routine and a clock helps establish a routine. Talk about how a clock is related to the passing of time, and how different things happen at different times. Reinforce the cyclical rhythm of day time and night time through the use of a simple circular diagram such as that given below.

While outside, discuss the Sun and what we get from the Sun: heat and light energy. How could the children test that heat comes from the Sun? How do they feel when they stand in the Sun? Do they feel the same when they stand in shadows? With their eyes closed, can they describe a difference between standing in the Sun and standing in the shade? Let the children take photos of day time objects, for example birds, shadows, clouds, teachers and students at school. Print out the photos as a reminder of day time activities.

Focusing questions relating to the introduction

Possible focus questions to direct student thinking:

1. How can you tell if it is day time or night time?
2. What things do you see during the day time?
3. What things do you do during the day time?
4. What things happen in your day time?
5. Why do these things happen during the day?
6. What things do you see at night?
7. What things happens in your home at the day time?
8. What things does night time look, sound, feel and smell like?
9. What do you think your time does at night?
10. What do you do at night?
11. What causes day time and night time?
LIVING AND WORKING IN NIGHT TIME

The feel of night time

Develop a class timeline of night activities. Draw a picture to match their day time house, this time showing it at night time. Ask the children to visualise what they can see through their bedroom window at night time. To create their own night picture, cut a window from white paper and draw what they see using a white or yellow pencil/crayon onto black paper.

Monsters and make believe

Sensitively acknowledge that sometimes people are afraid of the dark. As this is a real fear for some children, teachers should judge the appropriateness of the following activities.

Read the book Where the wild things are by Maurice Sendak or a similar story that show activities taking place at night (see Resources). How do the children know the story is taking place at night? What pictures in the book indicate the story is taking place at night?

If children start talking about monsters in the dark, then the following ideas may be helpful. Talk about monsters and other things that children might see or imagine in the dark. Read books like The owl that was afraid of the dark or There’s a monster in the house (see Resources). Explain that monsters are make-believe. It is our imagination that makes up the monster. Suggest that each child think up their own monster and draw it for others to see. Make this monster in 3D form, using recycled materials. What materials do the children require to make their monster? Why have they chosen those materials? Give their monster a name. Display the finished monsters among books about monsters and make believe. Make up a whole class monster poem. Get the children to describe all the good things that they will do with their monster. Have a monster parade where children dress as monsters or carry their new 3D monster friend.

Night works!

Who works at night time? Make a list with the children. Such night workers could include miners, nurses, police, firemen, ambulance drivers, pilots, radio and television announcers, rubbish collectors, taxi drivers, truck drivers, people who fix roads, newspaper deliverers and street sweepers. Arrange for a ‘night time worker’ to come to school and tell the children about working at night and sleeping during the day. Ask children to develop a range of questions to ask the speaker. How do some people dress at night to be safe and seen? When do night workers eat their breakfast?

Let’s make it dark!

How can you make a room dark so you can sleep during the day? List ideas presented by the children so they can be tested later. What can you place over your eyes to make it seem dark? Investigate children’s different ideas (hands, sun glasses, hat, beanie, scarf) to see which is the darkest and the most comfortable to place over their eyes to help them sleep during the day. Could you fall asleep with your hands over your eyes? Play ‘blind man’s bluff’.

Investigate how different materials such as black plastic, thick material or alfrol block out light by taping the material to a classroom window and observing how much light shines through.

Create Sgraffito artworks of the night sky. Sgraffito (Italian meaning ‘to scratch’) is created by covering the entire surface of paper using oil crayons in a range of sun-rise and sun-set colours. Details are drawn, just bold stripes of various colours, with the exception of black. The picture is then covered entirely using black wax crayons or thick black paint. Then using a pointed stick children create their own nightscape by scratching a scene through the black surface.

Introduce famous works of art depicting the night. For example, Starry Night by Vincent Van Gogh (1888).

The dark room

Have a discussion circle to find out how children feel in the dark? Is it scary, frightening or fun? Ask them to substantiate their responses – why is it scary, frightening or fun? Simulate the dark in the classroom by having the children sit in small groups under dark blankets placed over a table or in big boxes (such as those from fridges or washing machines). Alternatively, use a tent or beach shelter with a blanket over the front. This place could be called the ‘dark room’ or any other name the children prefer. Place cushions and puppets of nocturnal animals inside the box or tent to make it more comfortable for the children. What other items would the children like to add to the dark room?

Once children are comfortable to sit in the dark get them to sit very still. What do they feel? What do they see? What clothes do they wear at night time? list ideas presented by the children so they can be tested later. How do you fall asleep with your hands over your eyes? Play ‘blind man’s bluff’.

To become accustomed to the dark space, have torches and allow children to move in and out of the ‘dark room’ until they are comfortable in the dark without a torch. Talk about how the torch gets its energy from a battery to create light, whereas during the day time we get light energy from the Sun. Play a game of ‘Guess who’s hiding under the blanket (or in a box)’ by asking questions to the hidden child that can only be answered using ‘yes’ or ‘no’.

Develop a class timeline of night activities. Draw a picture to match their day time house, this time showing it at night time. How will they make the picture look dark like night time? Write a sentence about what is happening in their house at night. Ask the children to visualise what they can see through their bedroom window at night time. To create their own night picture, cut a window from white paper and draw what they see using a white or yellow pencil/crayon onto black paper.
COMPARING DAY AND NIGHT

Animals: nocturnal and diurnal
Review the list of which animals the children are familiar with. Think about where do these animals sleep at night time?

Nocturnal animals can be introduced by reading Animals awake while you are asleep. Other occupations that use red lights in the dark include astronomers and submariners. Help humans see in the dark.

Night walks
 Invite children and their families to participate in ‘The Great Australian Marsupial Night Stalk’ (see Resources). Select a local bushland, park, or simply the school grounds to walk through at dusk or dusk: mosquitoes, kangaroos, rabbits, and birds. How do nocturnal animals sleep at night? What do nocturnal animals do during the day time? Where do nocturnal animals sleep during the day?

Day and night journal
Develop a class day and night journal and ask each child to complete their pages at home. Over the weekend, with the help of an adult, children keep a two day journal. Two A3 pages stapled together is perfect for this journal. Using front and back of pages provides four sections for entries: Saturday day time, Saturday night time, Sunday day time, and Sunday night time. Each section, depending on the child’s ability, they record (write, draw, paint or photograph) four things that signify day time or night time at their home. Once the child has all presented their findings to class, the journals are collated and made into a class book.

These suggestions could be made for parents to assist their children in the journal keeping: noticing transition times such as dusk and dawn: the difference between a clear day and a cloudy day: looking for different shaped clouds: recording the time of day they see daylight and when it gets dark: describing what sounds they can hear at different times of day or night: making observations twice during one night to see how things change (for example, changes noticed with the position of the Moon, clouds and/or planets and stars): or looking at the way clouds move (for example, is the Moon moving or are the clouds moving?). Other suggestions include finding birds and animals in day time and night time and recording where they are seen and what they are doing.

Parents are encouraged to resist providing answers to their child’s questions about natural phenomena. Rather provide time to wonder about the possibilities and research answers with others. The children’s questions could also be written into the journal.

As a class discuss different aspects of day and night at home rather than at school. Develop a Venn diagram that compares the features of day and night.

Day and night role play
Refer back to the children’s diagrams of a day in their life. Discuss the rhythm of day and night with the children. What sorts of things do people do at different times of the day and night? Illustrate with a clock to demonstrate the link between time and the passing of day and night.

Shadow games
Introduce with a shadow puppet story. Brainstorm and record children’s ideas about what makes a shadow. Ask questions such as: What makes a shadow? When do we see shadows? What happens to a shadow if you tread on it? Can we see shadows at night time? Are shadows visible on cloudy days? Do you need a light source to make a shadow? Can you make a shadow completely disappear? Can they jump on their own shadow? Can they catch another child’s shadow? How can three people make just one shadow? Can they make a shadow on the ground and then on a wall? Is a shadow connected to your body? What happens to the shadow when they jump off the ground? What happens to the shadow when they are on a swing? Can they make shadows of buildings, trees, clouds or aeroplanes on the ground?

Children dress up to try and change their shadow, for example wear a hat or fairy wings. Get them to predict the shape of their shadow before they test it. Take photos of the children’s shadows, and produce a class booklet of shadow photos. Can the children identify each other’s shadow in the book?

Ask a group of 3 or 4 children to make up a simple story. They then use their own shadows to dramatise this story. Take photographs of the shadows the children make, or let them take their own photographs. Back in the classroom and using PowerPoint, show the photographs to the class. What story does the class come up with from the photographs? Compare this to the original story.

Dance or use dramatic play to role play different things that happen during day time or night time. Provide picture cards for children to randomly select and act out, such as eating breakfast, cleaning teeth, getting dressed, walking to school, showering, or going to bed. Listen to different music and ask them to describe if the music feels like day time or night time music. Have children elaborate these feelings – why does the music feel like day time or night time music?

Changing shadows
Using chalk and working in pairs, have children draw around each other’s feet and then the shadow on the footpath. Ask them to go and stand in the same place at different times of the day and see if their shadow shape and position are still the same. Record one of these examples by taking photos to produce a PowerPoint of how their shadows change with time. At the end of the day have a ‘sharing circle’ so changes may be discussed and explanations offered as to why these changes occurred. This exercise can be repeated with a range of stationary objects such as trees, poles, or buildings. What would happen to their shadow if a cloud moved in front of the Sun?

Can shadows have holes in them? Investigate shadows of a variety of non-solid objects such as strainers, or loosely woven objects. Can there be shadows in the dark? Do the children have a shadow in the dark room?

Investigate what happens as you move an object closer to or further away from a light source? Use different light sources (such as torches, lamps or an overhead projector), a wide range of objects, and a light coloured wall. Investigate if an object can have more than one shadow, by using several torches.
Why do we have a day time and a night time?

Children’s ideas about day and night

Without dispelling the joy of childhood, ask the children to explain what happens to the Sun at night? Get them to draw pictures and explain their ideas to an adult. The explanation could be scribbled for the children if necessary. Introduce other cultures’ myths and legends of how day and night came about. In particular, consider Aboriginal stories of day and night time. Allowing the children to dramatise these legends.

Use Google Earth to show pictures of the Earth from space, and the NASA website for pictures of the Sun (see Resources).

Modelling day and night

Provide torches for the children and a variety of different sized balls. In pairs, ask them to explore the shadows on the ball by using the torch. For greater results they could do this inside the dark room. One child shines the torch at the ball, while the other child looks at the ball from different positions. What shadows do they see on the ball? What caused the shadow? Use a class discussion explaining how you can have shadows on balls. (The ball blocks the light and causes the shadow. See Q&A)

It children are ready, explore their views of how day and night occur using models. The torch would represent the Sun, a ball represents Earth, and a sticker on the ball represents a person on Earth. In small groups, allow the children time to discuss how they think day and night occur. Then have each group present their explanation of night and day by using their model. Encourage discussion of each model and questions. Are children able to use a model and explain day and night adequately to other children?

Introduce a globe (of earth) to the children and show how the globe spins around. Place a plasticine model of a person on Australia. Using a torch or the overhead projector as the light source to represent the Sun, demonstrate that when Australia faces this Sun, it is day time. As the Earth turns, it causes Australia to move away from the Sun and Australia falls into shadow. This is night time in Australia. The length of the day and night depends largely on the seasons. The Earth takes 24 hours to spin around once. A part of each day is called daylight. See if children can identify when it would be twilight. Encourage the children to look at the globe from different positions to observe the shadows. Night is a big shadow. What caused the shadow? The Earth itself!

Repeat this model using children to represent Earth and the Sun. One person is the Sun and holds a torch. A second person is the Earth and turns around slowly. As ‘Earth’ faces the Sun, what do the others see? As ‘Earth’ turns away from the Sun, what do they notice?

Construct a list of people known to the children who live in other countries of the world. Use this information to reiterate the knowledge that Earth is in both day time and night time simultaneously. When it is night in Australia, it can be day time in other countries. Place a different plasticine person in another country on the globe. Slowly turn the globe and allow children to explain what is happening in relation to day and night in the two countries.

Shoe box model

Designing an opportunity of children and adult help, a model of day and night could be produced using a shoe box painted black on the inside to represent the night sky, a table tennis ball and a pipe cleaner. Poke two holes in the table tennis ball to allow the pipe cleaner to pass straight through the ball. Hook the ends of the pipe cleaner to the top and bottom of the box. Draw some countries on the ball, making sure that Australia is present. Using a torch as the Sun, demonstrate the phenomena of how Australia has day and night because the Earth is spinning. Cut slits in the sides and on top of the box, to allow children to peep through the slits to see both the light and shadow on the ‘Earth’ at the same time. Alternatively, older children in the school could make this model and demonstrate it to your class.

Shoe box model

Designing an opportunity of children and adult help, a model of day and night could be produced using a shoe box painted black on the inside to represent the night sky, a table tennis ball and a pipe cleaner. Poke two holes in the table tennis ball to allow the pipe cleaner to pass straight through the ball. Hook the ends of the pipe cleaner to the top and bottom of the box. Draw some countries on the ball, making sure that Australia is present. Using a torch as the Sun, demonstrate the phenomena of how Australia has day and night because the Earth is spinning. Cut slits in the sides and on top of the box, to allow children to peep through the slits to see both the light and shadow on the ‘Earth’ at the same time. Alternatively, older children in the school could make this model and demonstrate it to your class.

Shadow art

Encourage families to visit the annual Sculptures by the Sea exhibition or sculptures in other locations to experience the changing shadows and shapes created when art work is viewed from different perspectives. Alternatively look at the way light falls through the leaves of a tree and creates moving shadows on the ground or path.

Produce a shadow puppet show of a favourite story. Children design and produce their own puppets by cutting out shapes, gluing them to pop-sticks and then creating a tale that uses their puppets to illustrate the story line. Allow them to retell the story in as many different ways as they wish.

Introduce children to silhouettes. Place each child side on in front of an overhead projector to create a silhouette of their profile. Capture the silhouette onto paper on the wall by tracing around the shadow. Cut out the result and glue onto black paper. Alternatively, draw the shadow onto black paper using a white pen. Can the children guess which silhouette is theirs? Do they recognise anyone else? What is distinctive about each child’s silhouette?

Develop a class concept map of shadows. Discuss what things are needed to produce shadows – a light source and an object to block the light. Have children draw a picture of how shadows are formed and write or describe their own definition of a shadow.

Is the grass still green at night?

Arrange an evening class to investigate if the grass is still green at night. Ask children to predict the colour of the grass at night. In the dark, observe the colour of the grass. Then give the children a torch and ask the question again. Can they explain why the grass is still green at night?

If an evening class is not possible, then use an opened box to answer the question ‘Is the grass still green at night?’ Cut a hole in the bottom of the box about 10 cm square. Place the box upside down over real or fake grass. Have the children look through the hole, trying to block out as much light as possible. What colour is the grass? Now let a second child shine a torch into the hole as the first child observes. What differences do they notice? What colour is the grass this time? The light from the torch should show the true colour of the grass. Is the grass still green at night? The use of this box in a classroom is presented in Case Study 2.

Star gazing

If possible, have a whole class evening, or sleepover (with parents), to celebrate and share the children’s understanding of day and night. Children lie on mats on the ground and look up at the night sky. Adult supervisors ask what they see. Can they find patterns in the sky as they draw imaginary lines to connect the stars? Can they make stories from their imaginary patterns, like people did in ancient times? Do they see any ‘shooting stars’ (meteors), satellites or the International Space Station? Use binoculars to enhance the experience. Invite an astronomer with a telescope, or take the children to a planetarium to discover more about the night sky. These experiences provide rich conversation to embed the knowledge.

Conclusion:

Celebrating day and night

Reflect back to the myths and legends around the origins of day and night time. How do these myths and legends differ to the science of day and night time?
WHY DO WE HAVE A DAY TIME AND NIGHT TIME?
As the Earth spins (rotates), on its axis, the sun shines on one side at any one time. The side facing the sun is day time. On the side that faces away from the sun, it is night time. As the Earth continues to turn, the shaded side moves into the Sun’s light (morning). At the same time, the side facing the Sun turns away from the light into shadow (evening). Night time is a shadow caused by the Earth itself. Dawn and dusk are on the outer edges of that shadow.

HOW LONG IS DAY TIME AND NIGHT TIME?
The Earth takes 24 hours to fully rotate or turn once. Depending where you live on Earth, and the season of the year, you will experience different lengths of day time and night time. There are more hours of day time in summer than in winter. The closer you live to the equator, the more similar the amount of day time and night time. In contrast, people living close to the poles (at latitudes greater than 66.5°) will experience 24 hours of day time for part of the summer and 24 hours of night time for part of the winter. The varying length of day and night is a result of the Earth’s axis of rotation being 23.5° at an angle to its plane of orbit around the Sun.

WHAT IS THE SUN?
The Sun is a star. This means that the Sun generates (makes) its own energy by nuclear fusion (converting hydrogen into helium). The Sun is the nearest star to Earth and appears to be the biggest. Light from the Sun heats our world and makes life possible on Earth. The next nearest star is Proxima Centauri, part of the Alpha Centauri System.

WHERE IS THE SUN IN DAY TIME WHEN I CAN’T SEE IT?
The Sun is still there. However, clouds in the sky can prevent you from seeing the Sun directly.

WHAT IS A SHADOW?
Light travels in straight lines. This means that it cannot bend around objects. When light rays cannot travel through an object, you see a dark image or a shadow of that object. Hence, shadows require a light source and an object.

WHY DOES A SHADOW CHANGE SHAPE?
The shape of a shadow depends upon the shape of the object that has blocked the light, the angle of the surface upon which the shadow falls, and the distance between the object and the light source. Hence shadows can and do change shape, especially if the object or light source moves.

CAN YOU HAVE MORE THAN ONE SHADOW?
A light source is needed in order to produce a shadow. One light source will produce one shadow. Two light sources will produce two shadows. Look at footballers playing under lights at night time. How many shadows do you see?

WHY CAN’T I FIND MY SHADOW SOMETIMES?
If there is no light source, there is no shadow or it is so cloudy that sunlight is too diffuse. So if you move from a light area into a dark area, you will not see your shadow. If you move your shadow into a bigger shadow, then you will not be able to see your shadow.

CAN YOU HAVE A SHADOW AT NIGHT TIME?
Shadows require a light source and an object. At night time that light source could be street lights, car lights, or even light from the Moon. So, yes, you can have shadows at night time.

WHY DOES THE MOON APPEAR TO SHINE?
The only reason that we can see the Moon from Earth, or that it appears to ‘shine’, is because light from the Sun strikes the Moon’s surface and is reflected to us on Earth.

WHY CAN THE MOON SOMETIMES BE SEEN DURING THE DAY?
The Moon is easy to see at night as it is so bright compared with the dark night sky. For half the month the Moon can be seen during the day time.

WHY CAN’T I SEE THE SUN AT NIGHT?
Your place on Earth is facing away from the Sun at night. This is why we have day time and night time.

WHY CAN’T I LOOK DIRECTLY AT THE SUN?
You can look directly at the Sun, but you would permanently damage your eyes and go blind. This happens because the Sun is an intense light source, plus our eyes’ lenses focus on the intense light into the back of the eye retina, damaging it. So never ever look directly at the Sun.

WHY DO STARS TWINKLE?
All light entering our atmosphere appears to twinkle. Turbulence in Earth’s atmosphere causes the light to appear to twinkle. As stars are so far away from Earth, they look like a twinkling dot. The planets are much closer to Earth, and do not appear to twinkle because they have a ‘disc’ shape.

WHY ARE SOME STARS BRIGHTER THAN OTHERS?
The brightness of stars differs enormously depending on their original masses and stage of evolution. Generally, stars closer to Earth ‘appear’ to be brighter.

WHY ARE STARS DIFFERENT COLOURS?
The colour of a star relates to the size, mass and the temperature of the star. Blue coloured stars are hot (20,000ºC surface temperature) and are burning their fuel rapidly. In contrast, red coloured stars are cool (about 2000ºC surface temperature). The more massive the star, the faster it uses its fuel, the brighter it is, and the shorter it will be its life.

DOES THE NIGHT SKY ALWAYS STAY THE SAME?
The night sky is constantly changing. Because the Earth is moving around the Sun, we see different stars and patterns (constellations) at different times of the year. We also see different phases of the Moon over a month. Planets too move around the Sun and so they appear to ‘wander’ against the background stars. Occasionally we see comets. ‘Shooting stars’ are really meteors burning up in Earth’s atmosphere. If a meteor lands on Earth it is called a meteorite.

WHAT IS THE SOUTHERN CROSS?
The Southern Cross is a constellation that can only be seen in the Southern Hemisphere. A representation of the Southern Cross appears on the Australian and New Zealand flags.

WHY CAN’T I SEE THE SUN AT NIGHT?
The Sun is the nearest star to Earth, and the only reason we can see it from Earth is because the Sun’s light is reflected to us on Earth.

WHY DOES THE MOON APPEAR TO SHINE?
The only reason that we can see the Moon from Earth, or that it appears to ‘shine’, is because light from the Sun strikes the Moon’s surface and is reflected to us on Earth.

Diagnostic assessment
What are the children’s initial ideas about day and night? How aware are they of their daily routine? What examples were provided of people who work during the night? What nocturnal animals were listed by the children? What information could children supply in their descriptions of day and night?

Summative assessment
Children create a shadow story. Make shadow puppets to go with the story, incorporating certain characteristics of shadows. For example, shadows can have holes in them and shadows can change shape.

Formative assessment
Do the children have an understanding that some people work at night and why they work at night? Can the children tell their own day/night sequence of events?

For extension: children write an acrostic using the letters from N I G H T T I M E.
RESOURCES

This list of resources is not exhaustive and should be considered a starting point for finding more information. It is a good idea to also check the parent list as there can be some very useful resources readily available among the families in the school. While many of these resources are Western Australian, teachers are encouraged to find the equivalent resources within other states.

Websites
- Fear of the Dark
 www.betterhealth.vic.gov.au
- Perth Observatory
- Gravity Discovery Centre (Perth)
 www.gdc.asn.au
- Perth Zoo – nocturnal house
 www.perthzoo.wa.gov.au/animals/nocturnal-house
- Perth Zoo – The Great Australian Marsupial Night Stalk
- Google Earth
 http://www.google.com/educators/p_earth.html
- NASA – education
 www.nasa.gov
- Planetarium for your computer
 www.stellarium.org
- Scitech – planetarium (Perth)
 www.scitech.org.au
- \'Bob Miller\’s Light Walk\'
 http://www.exploratorium.edu/light_walk/ia_main.html

Interactive story books, for use with computers and/or whiteboard
- The Moon and the Rabbit
- Interactive stories for kids: Goodnight Bird
 www.woodlands-junior.kent.sch.uk/interactive/onlinestory.htm
- KS Bite Size: Light and Shadows
 www.bbc.co.uk/schools/Ks2Bitesize/science/physical_processes.shtml

Books

Factual texts
- Perth Observatory (every year) produces the Western Australian Astronomy Almanac: The really useful guide to the wonders of the night sky.

Narrative texts
- (Beware of the alternative conceptions that can be presented in these books)

Raps and rhymes
- Twinkle, twinkle, little star (traditional rhyme)
 Twinkle, twinkle, little star
 How I wonder what you are.
 Up above the world so high,
 Like a diamond in the sky.
 Twinkle, twinkle little star.
 How I wonder what you are.

- Sally go round the stars (Clark, 1995, p. 74)
 Sally go round the stars
 Sally go round the Moon
 Sally go round the chimney pots
 On a Saturday afternoon.

- Starlight, star bright (traditional rhyme)
 Starlight, star bright, first star I see tonight
 Wish I may, wish I might
 Have the wish I wish tonight.

Games
- Echo game
 Have you heard the … (cat) … at night? Miao, miao, miao miao
 Have you heard the … (owl) … at night? Woohoo, woohoo, woohoo

- Continue and add night time animals such as fox, beetle, dingo, tasmanian devil, mice until all sections of the class are making night time animal noises!

- Someone is hiding
 Here is a box, put on the lid
 I wonder whoever inside is hid?
 Why it\’s …… without any doubt
 Open the box and let him (her) out.

- Blind man\’s bluff
 Child A has eyes covered with a blindfold. Five other children remain in a predetermined and uncluttered space. Child A tries to catch one of the others while they try to avoid being caught. Child A has to guess which child has been caught. The person caught is the next blindfolded child.
CURRICULUM INTEGRATION

Is the grass still green at night? Astrophysics of the dark.

Science
- Difference between day time and night time
- Rhythms of day time and night time
- How do my senses change in a dark place?
- Researching nocturnal animals
- Exploring shadows; what causes a shadow?
- Relationship between the Earth and the Sun
- Earth takes 24 hours to rotate
- How eyes adjust to seeing in the dark (dilation of the pupils)

Mathematics
- Time: Hours/minutes/seconds
- Time: Calendars/days/weeks/months/years
- Size and shape of Earth and the Moon
- Distance from the Earth to the Moon
- Measurement: perspective of near and far
- Measurement: lengths of shadows
- Measurement: shorter and longer (days/night)
- Record sunrise and sunset times
- Problem solve: How many times has the Earth moved around the Sun since you were born?
- Personal timeline of day time and night time in your 24 hours
- What is the shape of the Earth and the Sun

English
- Make a night and day book or poster
- Determine fact and fiction in stories written to help understand phenomena (ie sunset/sunrise)
- Reading monster stories
- Write monster poems
- Expressions associated with feelings about the dark
- Lists, captions, pictures, words, or questions for a Day and Night Word Wall
- Descriptions of shadows
- Stories created for puppet shows
- The days of the week are related to astronomical objects (Saturday – Saturn; Sunday – Sun; Monday – Moon)

Languages Other Than English
- Make associated word charts in English and the school’s LOTE curriculum
- The names of the Earth and Sun in different languages
- Cultural stories of the origins of day and night including Dreamtime stories
- Aboriginal story of ‘The emu in the sky’
- Monster stories associated with other cultures
- Greetings for ‘good morning’ and ‘good evening’ in other languages

Science
- Difference between day time and night time
- Rhythms of day time and night time
- How do my senses change in a dark place?
- Researching nocturnal animals
- Exploring shadows; what causes a shadow?
- Relationship between the Earth and the Sun
- Earth takes 24 hours to rotate
- How eyes adjust to seeing in the dark (dilation of the pupils)

Mathematics
- Time: Hours/minutes/seconds
- Time: Calendars/days/weeks/months/years
- Size and shape of Earth and the Moon
- Distance from the Earth to the Moon
- Measurement: perspective of near and far
- Measurement: lengths of shadows
- Measurement: shorter and longer (days/night)
- Record sunrise and sunset times
- Problem solve: How many times has the Earth moved around the Sun since you were born?
- Personal timeline of day time and night time in your 24 hours
- What is the shape of the Earth and the Sun

English
- Make a night and day book or poster
- Determine fact and fiction in stories written to help understand phenomena (ie sunset/sunrise)
- Reading monster stories
- Write monster poems
- Expressions associated with feelings about the dark
- Lists, captions, pictures, words, or questions for a Day and Night Word Wall
- Descriptions of shadows
- Stories created for puppet shows
- The days of the week are related to astronomical objects (Saturday – Saturn; Sunday – Sun; Monday – Moon)

Languages Other Than English
- Make associated word charts in English and the school’s LOTE curriculum
- The names of the Earth and Sun in different languages
- Cultural stories of the origins of day and night including Dreamtime stories
- Aboriginal story of ‘The emu in the sky’
- Monster stories associated with other cultures
- Greetings for ‘good morning’ and ‘good evening’ in other languages

Science
- Difference between day time and night time
- Rhythms of day time and night time
- How do my senses change in a dark place?
- Researching nocturnal animals
- Exploring shadows; what causes a shadow?
- Relationship between the Earth and the Sun
- Earth takes 24 hours to rotate
- How eyes adjust to seeing in the dark (dilation of the pupils)

Mathematics
- Time: Hours/minutes/seconds
- Time: Calendars/days/weeks/months/years
- Size and shape of Earth and the Moon
- Distance from the Earth to the Moon
- Measurement: perspective of near and far
- Measurement: lengths of shadows
- Measurement: shorter and longer (days/night)
- Record sunrise and sunset times
- Problem solve: How many times has the Earth moved around the Sun since you were born?
- Personal timeline of day time and night time in your 24 hours
- What is the shape of the Earth and the Sun

English
- Make a night and day book or poster
- Determine fact and fiction in stories written to help understand phenomena (ie sunset/sunrise)
- Reading monster stories
- Write monster poems
- Expressions associated with feelings about the dark
- Lists, captions, pictures, words, or questions for a Day and Night Word Wall
- Descriptions of shadows
- Stories created for puppet shows
- The days of the week are related to astronomical objects (Saturday – Saturn; Sunday – Sun; Monday – Moon)

Languages Other Than English
- Make associated word charts in English and the school’s LOTE curriculum
- The names of the Earth and Sun in different languages
- Cultural stories of the origins of day and night including Dreamtime stories
- Aboriginal story of ‘The emu in the sky’
- Monster stories associated with other cultures
- Greetings for ‘good morning’ and ‘good evening’ in other languages

Science
- Difference between day time and night time
- Rhythms of day time and night time
- How do my senses change in a dark place?
- Researching nocturnal animals
- Exploring shadows; what causes a shadow?
- Relationship between the Earth and the Sun
- Earth takes 24 hours to rotate
- How eyes adjust to seeing in the dark (dilation of the pupils)

Mathematics
- Time: Hours/minutes/seconds
- Time: Calendars/days/weeks/months/years
- Size and shape of Earth and the Moon
- Distance from the Earth to the Moon
- Measurement: perspective of near and far
- Measurement: lengths of shadows
- Measurement: shorter and longer (days/night)
- Record sunrise and sunset times
- Problem solve: How many times has the Earth moved around the Sun since you were born?
- Personal timeline of day time and night time in your 24 hours
- What is the shape of the Earth and the Sun

English
- Make a night and day book or poster
- Determine fact and fiction in stories written to help understand phenomena (ie sunset/sunrise)
- Reading monster stories
- Write monster poems
- Expressions associated with feelings about the dark
- Lists, captions, pictures, words, or questions for a Day and Night Word Wall
- Descriptions of shadows
- Stories created for puppet shows
- The days of the week are related to astronomical objects (Saturday – Saturn; Sunday – Sun; Monday – Moon)

Languages Other Than English
- Make associated word charts in English and the school’s LOTE curriculum
- The names of the Earth and Sun in different languages
- Cultural stories of the origins of day and night including Dreamtime stories
- Aboriginal story of ‘The emu in the sky’
- Monster stories associated with other cultures
- Greetings for ‘good morning’ and ‘good evening’ in other languages
The Five Learning Outcomes of the Early Years Learning Framework provide broad and observable outcomes of young children’s learning and development. Examples of these outcomes in relation to the grass still green at night! Are the physical characteristics of the dark area are presented below. As there are many ways that children express their learning, these should be considered a guide only.

Outcome 1. Children have a strong sense of identity

| Children feel safe, secure and supported |
| Children develop their emerging autonomy, interdependence, resilience and sense of agency |
| Children become socially responsible and show respect |

- make choices about safety and personal care while engaging in a night walk with family
- enjoy quiet times and playful times during light and dark times of the day
- confidently celebrate the beauty of the night

| Children develop knowledgeable and confident self-identities |
| Children learn to interact in relation to others with care, empathy and respect |
| Children become aware of fairness |

- accept and know that it is OK to be afraid
- use home language to contribute to a class record of their weekend routine
- invite community members to class to share stories and culture
- role play night work of adults
- make choices about imitating people who work at night
- use home language to contribute to a class record of their weekend routine

| Outcome 2. Children are connected and contribute to their world |

- explore how different cultures respond to day time and night time activities
- respect others’ ideas about what causes shadows
- hear Australian Aboriginal stories about constellations

| Outcome 3. Children have a strong sense of well being |

- make choices about safety and personal care while engaging in a night walk with family
- enjoy quiet times and playful times during light and dark times of the day

| Outcome 4. Children are confident and involved learners |

- Children develop dispositions for learning such as curiosity, cooperation, confidence, creativity, commitment, enthusiasm, persistence, imagination and reflectivity |
- Children research their own learning through connecting with people, place, technologies and natural and processed materials |

- encourage others to contribute ideas for Venn diagrams |
- invite others to share equipment when exploring shadow play |
- make connections between their shadows and a drawn representation (silhouette) |
- problem solve what causes night time dark by using a ball and a torch |

| Outcome 5. Children are effective communicators |

- Children develop a range of skills and processes such as problem solving, enquiring, experimenting, hypothesising, researching and investigating |
- Children research their own learning through connecting with people, place, technologies and natural and processed materials |

- express opinions and conduct experiments about finding the colour of grass at night |
- construct a journal of day time and night time activities |
- compare differences of day time and night time |

- use their senses to describe how they feel in dark places |
- invite community members to share stories and culture

- use photographs presented in a PowerPoint to relate where they found specific shadows
- create a classroom timetable |
- notice how shadows change size and pattern throughout the day
CONNECTIONS TO AUSTRALIAN CURRICULUM: SCIENCE

The Australian Curriculum: Science consists of three interrelated strands: Science Understanding, Science as a Human Endeavour, and Science Inquiry Skills. Examples of these strands in relation to Is the grass still green at night? Astrophysics of the dark are presented below.

NB Information based on the draft version of Australian Curriculum: Science (Draft Version 1.0.1, 8/3/2010).

Science Understanding

Living things
- What are nocturnal animals?
- How do nocturnal animals see in the dark?
- How do our senses change in the dark?
- How do people adjust their lives if they work during night time and sleep during day time?

The environment
- Day and night are caused by Earth rotating about its axis
- The Earth rotates once every 24 hours
- The relationship between the Earth and the Sun
- Night time is a shadow

Materials
- What materials are used to make a torch (or a clock)?
- What types of materials reflect light?
- What materials can block out heat and light?
- What is needed to make a shadow?

Energy
- What are shadows and how do they change?
- What causes torch light?
- What powers lights used at night time (street lights, car lights)?
- How does the Sun produce light and heat?

Science as a Human Endeavour

Nature of science
- What does an astronomer do? (Do they only work at night?)
- How can an astronomer help people?
- How does a telescope work?

Everyday science
- Compare human activity during day time with human activity during night time
- The importance of shade cloth over playground equipment
- Multiple shadows of sportspersons when playing under lights

Science Inquiry Skills

Questioning and predicting
- Is the grass still green at night?
- What causes night time dark?
- What materials can block out heat and light?
- Predict the shade of a shadow before testing

Investigation methods
- Use torches responsibly
- Photograph shadows to develop a PowerPoint
- Use table tennis ball and pipe cleaner to develop a day/night model
- Convert a box into a darkroom

Observing and measuring
- Draw own perception of day time and night time
- Draw around a shadow and observe how the shadow changes over time

Communicating
- Use the term ‘rotation’ or ‘spinning’ of the Earth to explain day and night
- Record observations in a day/night book
- Observe and record changing shapes and positions of a shadow
- Draw or photograph the shape of a shadow
- Use the term ‘rotation’ or ‘spinning’ of the Earth to explain day and night
- Write myths about day time and night time

Reflecting on methods
- How else could it be proved that the grass is still green at night?
- What could be added to the ‘dark room’ to make it more effective?
- What detail could be added to silhouettes?
- How can a shadow puppet play be produced?

Case Study 2. “I Can See Some Green Where the ‘Moon’ is Shining on the Grass!”

Background
Jill (pseudonym) is teacher of a Pre-primary class of 26 girls in a Perth inner city independent school. Her history as an educator includes teaching in Junior Primary classrooms for 13 years and in her current position is the Early Learning Coordinator. Jill enjoys teaching science and finds it easy to integrate scientific concepts into her teaching and learning program.

How was the book used?
While looking through Planting the Seeds of Science, Jill was taken by the flexibility offered in the choice of activities, and the integrated curriculum learning areas associated with the book. She found this made planning science lessons easy. As she read each module she thought they would all be fun to implement.

After reading through the entire book, Jill chose to develop the science concepts associated with Is the grass still green at night? Astrophysics of the dark. She selected various ideas and activities from the book which were considered appropriate for her class. She started the module with a group discussion to find the girls’ notions about whether or not the grass was green at night. Children’s ideas ranged from the grass being blue, dark green, brown, silver and green at night. The children then made their own comparisons between day time activities and night time activities.

How was the module modified?
Without a consensus about whether or not the grass was in fact still green at night, and without the opportunity to have a sleep over or a late night at the school for the girls to test their ideas, the class discussed ways to remedy this conundrum.

The day time activity that met their needs was to place a box with a hole in it over some grass in the darkest place they could find at school. They looked through the hole in the box to check the colour of the grass. The girls soon realised they also needed a light source to test their ideas, and decided to use a torch to represent the Moon. (This simple yet effective modification made by Jill has now been added to the book.) Some of the conversation recorded at the testing is presented below.

Teacher: What do you see when you look into the box? (with no light)
Child A: It’s sort of greenish black.
Child B: A bit dark green.
Child C: I see black.
Child D: Dark and light green on there and dark blue.

Teacher: What do you see now? (with torch)
Child A: I can see some green where the ‘Moon’ is shining on the grass!
Child B: Some bits around it are dark greenish and bits away are real dark.
Child C: The Moon shines light at night.
Teacher: Where does the Moon get its light from?
Child C: The Sun.
Teacher: Yes, you are right, it is the Sun. The Sun’s light shines on the Moon at night... we call this reflection

Child A: Then the Moon shines so we can see it... but it can only make the grass shiny not green.
Teacher: But let’s think... is the grass still green at night?
Child A: Yes, but the Moon can’t shine much more light.

An overview of the book
“I found the book very easy to use. It presents ideas that you can plan around and [it] actually acknowledges that even the youngest students have knowledge to build on. And I like the variety. The flexibility is best for my class because I know my students and what their interests are so I can adapt these ideas to suit their science needs.”

Jill went on to explain how this particular resource did not expect a teacher to be rigid about what had to be taught for science in early childhood education. This enabled the teacher to move to where the children’s interests were, and because of its early childhood appropriateness avoided the tendency to ‘push down the curriculum’.

The Q & A section helped Jill with correct scientific facts so that alternative conceptions would be avoided. She thought the assessment ideas made tasks easier, and she enjoyed having a resource with a ‘folk’ flavour. Overall, Jill found she could implement a good science program easily using the children’s interests and Planting the Seeds of Science.