manuscripta geodaetica (1990) 15:137-150

Nonlinear least squares

P.J.G. Teunissen

manuscpipt;
geodaetica,

€ Springer-Verlag 1990

Geodetic Computing Centre, Faculty of Geodesy, Delft University of Technology, Thijseweg 11. NL-2629 JA Delft, The Netherlands

Received October 17, 1989; Accepted March 19, 1990

Abstract

This paper discusses the numerical characteristics of a
number of iterative algorithms for solving nonlinear least
squares problems. The methods discussed all belong to
the class of iterative descent methods. The basic princi-
ples of these methods are discussed, necessary and suffi-
cient conditions of convergence are given, and the rates
of convergence of these methods are derived. Particular
attention is given to the Gauss-Newton method. This
method is especially suited for solving (small residual)
nonlinear least squares problems since it takes avantage
of the ”sum of squares” structure of the objective func-
tion to be minimized. The differential geometric ap-
proach for nonlinear adjustment of (Teunissen, 1985) is
applied to facilitate a geometric interpretation of the nu-
merical characteristics of the Gauss-Newton method.

1 Introduction

The numerical estimation of parameters is typically a
problem of optimization. The estimation of parame-
ters requires frequently the maximization or minimiza-
tion of an objective function. Typical objective functions
are risk functions, robust loss functions, posterior den-
sity functions, likelihood functions and (weighted or un-
weighted) sums of squares. Of these, the two most com-
mon methods of estimation are maximum likelihood and
least squares. In maximum likelihood, the estimates of
the parameters are taken as those values that maximize
the likelihood function given the data. Thus if p,(y | )
is the density of the random data vector y (the under-
score indicates randomness), the optimization problem
of maximum likelihood reads

(1)

In general no direct methods exist for solving (1) when
the parameter = enters to the third or higher power in
py(y | z). For these cases one will therefore have to take

maxpy(y | ).
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recourse to computational techniques that are sterative
in nature. That is, one starts with an initial guess z¢ of
the solution Z and then proceeds to generate according
to some preassigned rule a sequence z;,z3,z3,... that
hopefully converges to £. Various iterative techniques
exist which can be used to solve a nonlinear optimiza-
tion problem like (1) (Ortega and Rheinboldt, 1970). In
view of a comparison with the Gauss-Newton method
we present the Steepest-Ascent (Descent) method, the
Newton method and the Trust-Region method. The ba-
sic principles of these methods are discussed, sufficiency
conditions of convergence are given, and the rates of con-
vergence of these methods are derived.

In most geodetic applications it is customary to as-
sume that the random m-vector y has a multivariate
normal (or Gaussian) distribution

pyly | 2) = (20) /2 | Qy |2 capl—3 Il y = A(=) I

with || . ||I2= (.)*Q;'(.) and A() : R* - R™,m > n.
In this case the maximization problem (1) can be turned
into the minimization problem

min || y - A(z) || . (2)
This is the least squares problem.

The minimization problem (2) can be solved directly
if the map A(.) is linear, ie. if A(a1z; + azz2) =
a1 A(z1) + azA(z2) Yay, a; € R, z;,z2 € R*. The cor-
responding linear least squares estimators are given by
the well-known formulae
Pay ¢=Ply

Pay |l2)*=ll P{yl?

where: P, is the orthogonal projector that projects onto
the range of A and along its orthogonal complement;
P} =1—-P,; and A~ is an (arbitrary) inverse of A. The
estimators §, & and || & || are unique, and the estimator
% is unique if and only if the map A has full rank n.

(3)
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If the map A(.) is nonlinear then generally no direct
methods exist for solving (2). In this case one has to
fall back on iterative techniques. One can in princi-
ple solve (2) with one of the iterative techniques men-
tioned earlier. These methods however do not take ad-
vantage of the special structure of the objective function
of (2). The Gauss-Newton method on the other hand
does take advantage of the sums of squares structure of
the objective function. The method is therefore espe-
cially suited for solving (small residual) nonlinear least
squares problems. The numerical characteristics of the
Gauss-Newton method are discussed using concepts from
differential geometry (Teunissen, 1984). The concept of
normal curvature is introduced and it is shown how the
optimality conditions and the rate of convergence of the
Gauss-Newton method can be expressed in terms of the
normal curvatures of the manifold A(z). A parameter in-
variant convergency criterion is formulated and bounds
on the error magnitudes of the computed quantities are
derived in terms of curvature measures.

Differential geometric concepts have also been used in
studies on nonlinear problems by [Blaha and Besette,
1989; Borre and Lauritzen, 1989; Grafarend and Schaf-
frin, 1989]. Nondifferential geometric numerical studies
of nonlinear geodetic inverse problems can be found in

[Kubik, 1967; Saito, 1973; Schek and Maier, 1976; Pope,
1982; Bahr, 1988]

2 Iterative Descent Methods

Consider the problem of finding (local or global) solu-
tions to the problem:

zeR* , F:R" — R (4)
The methods that will be discussed for solving the mini-
mization problem (4) are all iterative descent algorithms.
By iterative, we mean, that the algorithm generates a se-
quence of points, each point being calculated on the basis
of the points preceding it. An iterative algorithm is initi-
ated by specifying a starting point, the initial guess. By
descent, we mean that as each new point is generated by
the algorithm the corresponding value of F(z) evaluated
at the most recent point decreases in function value. Ide-
ally, the sequence of points generated by the algorithm
in this way converges in a finite or infinite number of
steps to a solution of (4).

The methods discussed all adhere to the following
scheme:

min F(z) ,

k=0,1,2,... (5)

i Set k = 0. An initial guess is provided externally.

Thy1 = Tk + tedi

ii Direction generation: Determine a direction vector
dj in the direction of the proposed step.

iii Line search strategy: Determine a positive scalar ti
such that F(zk+1) < F(z).

iv Test whether the termination criterion is met. If so,
accept zx+1 as the solution of (4). If not, increase
k by one and return to step ii.

Generally one can say that the individual methods
falling under (5) differ in their choice of the direction-
vector di and the scalar tx. The iterative techniques fall
roughly into two classes: direct search methods and gra-
dient methods. Direct search methods are those which
do not require the explicit evaluation of any partial
derivatives of the function F(z), but instead rely solely
on values of the objective function F(z), plus information
gained from the earlier iterations. Gradient methods on
the other hand are those which select the direction vector
dx using values of the partial derivatives of the objective
function F(z) with respect to the independent variables,
as well as values of F(z) itself, together with information
gained from earlier iterations. The required derivatives,
which for some methods are of order higher than the
first, can be obtained either analytically or numerically
using some finite difference scheme. This latter approach
necessitates extra function evaluations close to the cur-
rent point zj, and effectively reduces a gradient method
to one of direct search.

We will restrict ourselves to gradient methods for
which the required derivatives can be obtained analyti-
cally. The descent methods that will be discussed are:
the Steepest Descent method, Newton’s method and the
Trust Region method. But before discussing these meth-
ods we first develop the general structure .of iterative
descent methods. :

The direction vector dy of (5) is said to be in a descent
direction if a positive scalar tx exists such that

F(Ik + tkdk) < F(:L'k). (6)

If we apply Taylor’s expansion to F(zx + txdk) at zx we
get

F(Ik + tkdk) = F(Ik) + tkazF(Ik)‘dk + O(tk).

The Landau order term o(t) indicates the remainder in
the Taylor series. It has the property lim¢_.o0 o(t)/t = 0.
This shows that if

[8:F(zx)"dx < 0] (7)

then it is possible to choose a positive scalar tx so that
(6) holds. Direction vectors di that satisfy inequality (7
are thus vectors that lie in the direction of descent. The
various descent directions at zj of the function F(z) are
shown in figure 1. It follows from inequality (7) that the
descent direction vectors can be represented as

di = —Q(zx)3: F(z)

(8)



~ F{xy )= const.

Figure 1: Contours of F(z) and descent directions at
Tk.

where Q(zx) is an arbitrary but positive-definite matrix
that may depend on zi.

Substitution of (8) into (5) shows that the descent
methods take the general form

(9)

The two variables in (9) are the positive scalar tx and the

positive-definite matrix Q(zx). Different choices for ¢;

and Q(zx) corresporrd with different descent algorithms.
If we define a vector function ¢ : R* — R" as

l$k+1 =z — txQ(zx)0: F(zx) I

8(z) = = - H()Q(=)3. F(2), (10)
with the scalar line search function t(x), equation (9)
can be written in the compact form

Note that since t(z) is positive and Q(z) is positive-
definite, the solutions of z = ®&(z), the socalled fized
points of &(z), are identical to the solutions of 3, F(z) =
0, i.e. the stationary points of F(z). This implies that if
the sequence generated by (11) converges to a fixed point
of ®(z), the sequence generated by the descent method
(9) will converge to a stationary point of F(z).

The iteration scheme (11) is known as the fized point
iteration method. It is sometimes also called the method
of successive approximation and also Picard’s method.
The following theorem gives sufficient conditions for the
fixed point method to convergence to the unique solution

of z = &(z).

(11)

Theorem: Fixed point iteration
Let 1 be a set of R™,{} C R".
Assume that

id(z)eN,vVzen
ii ®(z) is continuous Vz € O

iii || &(z2) = ®(z1) [Scllzz -z |,
0<c<l,Vz,zo €1
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Then:
1. A solution Z of z = §(z) exists in 0
2. The solution £ is unique

3. The fixed point algorithm converges to Z, that is
limk—ooo T = z

Proof: see e.g. (Naylor and Sell, 1982).

Although the theorem gives sufficiency conditions for
the guaranteed convergence of the sequence zzy; =
®(zx),k =0,1,2,3,..., to a unique fixed point, its use-
fulness in practical applications is unfortunately rather
limited. This is due to the difficulty one has in practi-
cal applications with verifying the sufficiency conditions.
Especially the verification of the inequality condition iii
for all pairs of vectors in {1 is most difficult. This task
becomes somewhat simpler if we may assume that &(z)
has continuous partial derivatives and that Q is convex.
With the mean value theorem follows then that

| ®(z2) — @(z1) | = || 3:%8(2)(z2 ~z1) ||
< 118:2(2) [lll 22 — 21 |

with 2 = zy + t(z2 — 2,),0 £ ¢t < 1. This result im-
plies that we may check condition iii of the theorem by
verifying whether

¢ =max || 8.%(z) ||< 1. (12)
zeQl

With this result we are now also able to formulate more

tractable convergency conditions for the class of descent

methods (9). By taking the partial derivatives of (10)

we get

3:%(z) = I - ) _ 9:94(2)3aF(z) - t(2)Q(2)92, F(z)
a=1
(13)
where gq(z),a = 1,2,...,n, are the column vectors of
the positive-definite matrix t(z)Q(z). Hence,

| 0:®(z) || < |l I: t(z)Q(I)aizF(z) I +
+3 1 8:0a(@) I 8P () | ()

This shows that convergence of the descent methods is
guaranteed if

I I-t(z)Q(z)8%, F(a) I< 1 (15)

and if the second term on the right hand side of (14)
can be made sufficiently small. Since 3,F(%) = 0 and
3. F(z) is continuous, then by the very definition of con-
tinuity for each ¢ > O there exists a § > O such that if
| z—2 ||< 6, then || 8. F(z) — 8- F (&) ||=|| 8 F(z) | < e.
This implies that the second term on the right hand side
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of (14) can be made sufficiently small for a sufficiently
small neighborhood of 2. Thus convergence of the de-
scent methods is guaranteed if (15) holds and if the initial
guess is sufficiently close to the solution Z. The practi-
cal problem with the above proof of guaranteed conver-
gence is of course still that one never knows beforehand
whether the initial guess is indeed sufficiently close to
%. Nevertheless the above derivation shows clearly what
the cause for a possible lack of convergence can be. And
it also shows, see (15), how convergence can be enforced
by a suitable choice for the scalar t(z).

3 The Steepest Descent Method

The steepest descent method is one of the oldest itera-
tive descent methods for solving a minimization problem.
The method goes back to Cauchy (1847). The steepest
descent method is characterized by the following simple
choice for the positive-definite matrix Q(zx) of (9):

Qz) = I

The steepest descent method takes therefore the form

(16)

[Ik+1 =z — tkaIF(Ik)] (17)

The choice (17) is motivated by the fact that the vector
dr = —3,; F(zi) minimizes :

6,F(zk)‘d,¢
(drdi)?

Thus within a linear approximation, the direction vector
dr = —3,F(zx) points in the direction of the steepest
descent of the function F(z) at z.

One of the advantages of the steepest descent methods
is its great simplicity. No partial derivatives of F(z) of
the order higher than the first are needed and no matri-
ces need to be inverted. A drawback of the method is
however that its performance is dependent on the more
or less arbitrary choice of the variables z used to define
the minimization problem. This can be seen as follows.

Suppose that R is an invertible n X n matrix. We
can represent points in R™ either by the standard vector
z or by Z where RZ = z. The problem of finding z
to minimize F(z) is equivalent to that of finding Z to
minimize G(Z) = F(Rz). Thus using steepest descent,
the direction vector in case of minimizing G(Z) will be
di = —R*3,F(Rz:) which in the original variables is
di = —RR*3,F(zi). Thus, we see that if RR* # I
the change of variables changes the direction of a search.
Hence, a new choice of variables may substantially alter
the performance characteristics of the steepest descent
method.

Another drawback of the steepest descent method is
that it has the tendency to zig-zag, when it is combined

with an ezact line search strategy and the contours of the
objective function are elongated. An exact line search
strategy is a strategy in which the positive scalar t; is
chosen so as to minimize F(zx + txdx). If tx is a mini-
mizer of F(zy + txdy) then

0=

2t (tk) = azF(Ik + tkdk‘)‘dk = 3,F(zk+1)‘dk.

This shows that if an exact line search is used, the suc-
cessive directions of search, di and di4, are orthogonal
to each other. Hence the steepest descent method will
obviously zig-zag when the contours of F(z) are very
elongated (see figure 2). The zig-zagging is absent of
course when the contours of F(z) are circular. In fact,
the steepest descent method with an exact line search
will locate the minimum of F(z) in one step if the con-
tours of F(z) are circles (or hyperspheres).

Figure 2: Zig-zagging of the steepest descent method.

An important performance measure of an iteration
method is its rate of convergence. The rate of conver-
gence of an iterative technique is related to the way the
error magnitude at the (k + 1)th step, || zx+1 — 2 ||, is
related to the error magnitude in the previous step. The
rate of convergence shows therefore whether convergence
of an iteration method is rapid enough to make the whole
scheme practical.

In order to derive the rate of convergence for the steep-
est descent method we expand (17) into a Taylor series
at the solution Z. This gives

Thpr — & = (I~ .07, F()|(ze — £) +o(l| ze — 2 ]]) (18)

If £ is a local minimizer of F'(z) then the matrix 82, F(z)
is positive semi-definite and its eigenvalues may be or-
dered so that

0<A A2 << A
By taking the norm of (18) we therefore get

” Tht) — % ”S ma.:):{l 1— 1ty I,I 1—t A, |}

Nazx—z | 4ol ze—2]) (9

This shows that the steepest descent method has a linear
rate of convergence for points sufficiently close to the
solution. Thus for points sufficiently close to the solution
the error magnitude gets reduced by a factor maz{| 1 —
teAdr |, | 1 — tA, |} at each iteration step. The closer



this factor is to 1 the slower the rate of convergence; the
closer the factor is to O the faster the rate of convergence.

If the positive scalar ti is taken to be equal to one
in each iteration step (this is the simplest line search
strategy), the rate of convergence of the steepest descent
method becomes approximately

Wi —2 S maz{{1=2al, [1=Aa [} 2 = 2]

(20)
This shows that the error magnitude gets reduced if the
extreme eigenvalues of 32, F(2) satisfy

0<'\1)An<2'

(21)

Hence, see also (15), local convergence cannot be guar-
anteed if one or more eigenvalues of the positive semi-
definite matrix 82, F(Z) lie outside the open interval
(0,2).

The rate of convergence of (20) can be improved and
local convergence can be guaranteed, however, if the pos-
itive scalar ¢ is chosen so as to minimize maz{| 1—tx ), |
, | 1 = tedn |}. It follows from figure 3 that the corre-
sponding optimal choice for i is

te = 2/(A1 + An). (22)

With this choice for tx it follows from (19) that instead
of (20) we have

An— A1

hown - 2ls [t - 20| o)

Note that if the matrix 82_F(%) is positive definite
then the factor (A, — A1)/(An + A1) is always less than
one and local convergence is guaranteed. This factor
is close to one if the condition number, A,/A;, of the
matrix 32_F(%) is large, i.e. if the contours of F(z) are
very elongated near the solution Z.

A
1-tApl

|1 _t,“q l

12 1 -
./\ n .A,f"./\.n -A'1

Figure 3: Optimal choice for t is t = 2/(A; + An).

4 Newton’s Method

Newton’s method is characterized by the following choice
for the positive-definite matrix t;xQ(zx) of (9):

teQ(zx) = (02, F(2)] 7. (24)
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Newton’s method takes therefore the form

(25)

Tir1 = Tk — |02, F(zx)] "0 F(zx)

We will give two motivations for the choice (24). The
first one goes back to the basic idea on the basis of which
Newton’s method was originally introduced. Newton’s
method was originally conceived as an iterative tech-
nique for solving a system of nonlinear equations. The
basic idea of the method is best explained for a function
G(z) with one variable z. Let the nonlinear equation
which needs to be solved be

(26)

Yi

Figure 4: Newton’s method:
%(Ik) = G(zk)/(xk - Ik+1).

At a given point zj the graph of the function G(z) is
approximated by its tangent, and an approximate solu-
tion to equation (26) is taken to be the point zx+; where
the tangent crosses the z-axis. The process is then re-
peated from this new point. This procedure defines a
sequence of points according to the recurrence relation

T4+l = Tk — [de(Ik)]—lc(Ik). (27)
If we replace G(z) in (26) by d, F(z), the recurrence rela-
tion for determining a stationary point of F(x) becomes
seer = ok~ (AL (@) MaF(z).  (29)
In order to generalize this result to the multivariate case,
note that in the above procedure the original nonlinear
equation, G(z) = 0 or d,F(z) = 0, is linearized about
the point z; and then solved for zx4;. If we apply this
procedure to the system of nonlinear equations 8. F(z) =
0, linearization gives
0 = 8, F(zx) + 82, F(zx)(zk+1 — Zk) (29)

from which zx41 follows as (25).
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Since Newton’s method is based on a linearization of
0. F(z), one can interpret the method as one that com-
putes the minimum of a quadratic approzimation of F(z)
at each iteration step. This shows the distinct difference
with the steepest descent method. The steepest descent
method is namely based on a linear approzimation of
F(z) at each iteration step. As a consequence, if the
function F(z) is quadratic, Newton’s method will locate
the minimum in one iteration step, whereas the steepest
descent method needs in general an infinite number of
iteration steps.

The second motivation for the choice (24) is based
on inequality (15). Note that with (24) inequality (15)
is trivially fulfilled, which implies that Newton’s method
has a guaranteed convergence for points sufficiently close
to the solution. Thus, contrary to the steepest descent
method no line search is needed to enforce local conver-
gence.

In order to derive the rate of convergence for New-
ton’s method we expand (25) into a Taylor series at the
solution Z. This gives

1
Zers = & = =2 (ox — 2)'(0.(02. F(3)] 0% F (2))
(2~ 2) + o]l 7 — £ 1)
or,

with [82_F(2)]~ 183

ZZTT

F(&) = -8.[0%, F(2)] 19, F (%),

Ili+1 —-z=
5 (zx — 2)° [[82, F(2)]7'02,.F (2)] (ak - 2)
+o(|| zx — £ ||)

(30)

This shows that Newton’s method has a gquadratic rate
of convergence.

Although the information requirements associated
with the evaluation, storage and inversion of the ma-
trix 32, F(z) as required by Newton’s method are rather
heavy, the method has proved, due to its guaranteed lo-
cal convergence and quadratic rate of convergence, to be
extremely effective in dealing with general minimization
problems. Difficulties with Newton’s method occur how-
ever when the matrix 62, F(z) is non-invertible or when
it fails to be positive definite. These difficulties can be
overcome by using a so-called trust region method. This
method, which can be considered as a regularized ver-
sion of Newton’s method, will be discussed in the next
section.

5 The Trust Region Method

The trust region method was introduced by Levenberg
(1944) for nonlinear least squares, modified by Mar-
quardt (1963) and further developed and generalized by
Goldfeld, Quandt and Trotter (1966). The method is

characterized by the following choice for the positive def-
inite matrix txQ(zx) of (9):

teQ(zk) = [02.F (z¢) + e R| ™ (31)
where aj is a non-negative scalar and R is a positive
definite matrix. The trust region method takes therefore
the form :

Trp1(ak) = 2k — (0%, F(zx) + ax R}~ 18- F(zi) | (32)

This formula already shows some of the basic ideas un-
derlying the trust region method. Since matrix R is
positive definite by assumption, a sufficiently large ajx
ensures the positiveness of (31). Thus by adjusting ax,
a possible lack of positive definiteness of 32, F(zx) can
be circumvented and a descent direction can be gener-
ated. Furthermore note that for R = I, the trust region
method can be interpreted as a compromise between
Newton’s method and the method of steepest descent.
For a; = 0, we get
oty = 2k — (0% F(z)| 0. F(z)  (39)
which is Newton’s method, and for large ax we have
approximately
2%, = zk — af 19, F(zk) (34)
which is the steepest descent method with a; ! playing
the role of the line search scalar t;. Thus the direc-
tion of search of the trust region method interpolates
between the Newton direction and the steepest descent
direction (see figure 5). Since Newton’s method is based
on a quadratic approximation of F(z) and the method
of steepest descent is based on a linear approximation,
it seems that with the trust region method one can, by
adjusting ay, control the approximation used for F(z).

Xk

o F{x) =F{x,)

Figure 5: dyy = Newton direction, dgsp = Steepest
Descent direction, drg = Trust Region direction.

In order to get a better understanding of this phe-
nomenon, let us study the different approximations in-
volved. We start from the following Taylor series expan-
sion of F(z):

F(z) = a(z) + of]| z - =z« ||*) (35)



with
F(lzk) + 3. F(zx)*(z — zk)+
+-2-(a: — z)* 32, F (zx)(z — zk)

)= (36)

As we know Newton’s method is based on the approx-
imation a(z) of F(z). The Newton solution zj,, fol-
lows then from minimizing {provided this is possible) the
quadratic function a(z). Thus a(a:k_H) < a(z)Vz € R"
and a(:ck+1) < a(:ck) F(z) if $k+1 # zx. From this
and F(z,;) = a(zl,,) + o(l] zpy; — =& ||?) follows
that the objectxve function gets reduced, i.e. F(zh,,) <
F(zk), if o(]| z§, , —z& ||?) is small enough. Thus descent
of the objective function occurs when a{zf, ) can still
be considered an adequate approzimation of F(zk_H)

Problems may occur however when this approximation
is not adequate, that is, when o(|| zf',, — z& ||?) is too
large. This may happen if matrix [82_F (zi)] ™! of (33) is
“large”, i.e. when the matrix 32, F(zy) is poorly condi-
tioned and thus the contours of a{z) are very elongated.
If the approximation of F(z) by a(z) is inadequate one
can improve the approximation by restricting the region
for . In the steepest descent method this is achieved
by replacing z — zi in (35) and (36) by txdk, by tak-
ing di in the direction of steepest descent, —3: F, and
then by adjusting tx so that || 2§34, — zx ||=]| txdk || is
sufficiently small and F(z3%,) = F(zk + tedx) < F(zx)
holds. This idea of a line search along the direction vec-
tor di to restrict the region of z by validity of the Taylor
approximation can in principle also be applied to New-
ton’s method. Instead of (33) one gets then

zhyy = 2k — te[03, F (k)] T 02 F(zk).  (37)
By taking t, sufficiently small one can then again en-
sure that F(z¥, ) < F(zx), provided that 92, F(zx)
is positive-definite. The problem with this modifica-
tion of Newton’s method is however that it cannot deal
with those cases where 92, F(z) lacks positive definite-
ness or is singular. The basic idea of the trust region
method is now to replace the one dimensional steepest
descent-like restriction along a fixed direction dix by an
n-dimensional restricted region for z. That is, in the
trust region method again the quadratic approximation
(36) is used, but now with the additional restriction that
z should lie within an ellipsoidal region for which a(z)
is trusted to be an adequate approximation of F(z) (see
figure 6).

If we define the quadratic form

A(z) = a(z) + %ak(x — zx)" R(z — zk)

it follows that if 82, F(zx)+ ax R is positive definite then

A(zk+1(ax)) < A(z) Yz € R™.
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o lix=xyllg=r

'a(X) = F(Xk)

“F(x) =Fxy)

Figure 6: The trust region:
Iz~ zi o= [(z — z%)* R(z — =&)]} < .

This implies that
a(zk+1(ax)) < a(z)

vz € {z ||| z — =& [|RS|| zh+1 (k) = 2 |-}

Thus zx+1(cx)) of (32) minimizes a(z) over the ellipsoid
| 2 — zx RSN zk+1(ak) = zk [|R-

The “radius” r{ax) =| zx+1(ak) — zk |r is a decreas-
ing function of ai. In order to show this, we consider

the problem
a:sF(Ik)e,' = A,’RC,’ y 1= 1, sy (38)

The eigenvectors ¢; , t = 1,...,n, form a basis of R"

and they can be chosen so that
eiRej =65 , 4,7=1,...,n. (39)

Suppose that

Zc.Re‘ # 0.

F(zx) =

Then with (38),
-—[32 F(zyx) + axR)™13,. F(z4)

= —Z/\ +aki

=1

Tri1 (oK) — zk

and thus with (39)

o) =l st == |3 (55|

1=1

1/2

(40)
This shows the monotone decreasing property of r(ax)
if \i +ax > 0, i.e. if 3%, F(zx) + ax R is positive definite.
The trust region is therefore an expanding ellipsoid if ax
gets smaller, and a contracting ellipsoid if ay gets larger.
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The trust region method operates now as follows. At
the kth-iteration the point zx4;(ax) of (32) is com-
puted for a certain ax > 0. Then the actual reduction
F(zk+1(ax)) — F(zk) is compared with the predicted re-
duction a(zk41(ak)) — a(zk) = a(zk+1(ar)) — Flzi). If
the prediction is poor, the parameter aj is increased in
order to contract the trust region, and the computations
are repeated; otherwise zx4+;(ax) is accepted as the new
iteration point.

6 The Gauss-Newton Method

We will now consider the nonlinear least squares prob-
lem, i.e. the minimization problem in which the objective
function is a weighted sum of squared terms
1 2

Flz)= 3 lly-A() | (41)
where || . |[2= (.)*Q7'(.); Qy is positive definite; y is
an m-dimensional data vector, and A(.) is a nonlinear
vector function or map from R™ into R™. The factor %
in (41) is merely introduced for convenience.

For varying values of z, A(z) traces locally an n-
dimensional surface or manifold embedded in R™. If
the metric of R™ is described by the positive definite
matrix Q' !, the scalar || y — A(z) || equals the distance
from point y to the point A(z) on the manifold. Hence,
the problem of minimizing F(z) corresponds to the prob-
lem of finding that point on the manifold, say § = A(%),
which has least distance to y. This geometry of the non-
linear least squares problem is sketched in figure 7.

Figure 7: Geometry of nonlinear least squares.

The minimizer of (41) can in principle be located by
one of the iterative descent methods of the previous sec-
tions. Since

9:F(z) = —9: A(z)" @5 e(2), (42)

with e(z) = y — A(z), the steepest-descent method takes
the form

(43)

Tks1 = Tk + t0: Azk)" Qy te(z)

And since

02, F(z) = 8, A(2)"Q; ' 9. A(z) — (2)"Q, 182, Alz)

Newton’s method takes the form

T4l =Tk + [3,A(zk)‘Q;13,A(zk)+

—e(z)*Qy 182, A(zk)| 10, A(z1)" Qj te(z) | 44

Although the steepest-descent method and Newton’s
method are iterative methods that can locate the mini-
mizer of (41), they do not take advantage of the special
structure of the objective function {(41). A method which
does take advantage of the “sum of squares” structure
of the objective function is the Gauss-Newton method.
This method is therefore especially suited for solving
nonlinear least squares problems.

The Gauss-Newton method belongs to the same class
of iterative descent methods as the steepest-descent
method, Newton’s method and the trust-region method.
The method is characterized by the following choice for
the positive-definite matrix Q(zx) of (9)

Q(ze) = [0 A(zx)" Qy ' 92 A(zi)] ™.

With (42) follows therefore that the Gauss-Newton
method takes the form

(45)

Zit1 = Tk + ti[02 A(2x)* Qg L.

B, A(z1)] 182 A(zx) Q5 Le(2) (46)

Note that the Newton direction reduces to the Gauss-
Newton direction if 32, F(z) is replaced by [82,F(z) +
a(z)n*Q; 182, A(z)], with n = e(z)/ || ¢(z) || and & =
| e(z) ||. But the particular choice (45) is perhaps best
motivated if we draw a parallel with linear least squares
problems. A least squares problem is said to be linear
if the map A(z) is linear. If A(z) is linear, the min-
imizer of F(z) follows from solving a system of linear
equations. Thus the nonlinearity of 3, F(z) is due to
the nonlinearity of A(z). The idea is therefore to ap-
proximate F(z) by a function which is obtained by re-
placing A(z) in || y — A(z) || by its linearized version
A(zk) + 82 A(zk)(z — zx). Hence, instead of using a
Taylor-expansion of F(z) =|| y — A(z) || with first or
second order terms as is done in case of the steepest
descent method or Newton’s method, one approximates
F(z) through a linearization within the norm. The re-
sulting approximation

| vy — A(zx) — 3z A(zk)d ||

is then minimized as function of di. This gives the so-
lution dx = —Q(zx)3; F(zx). Thus the Gauss-Newton
direction dj can be seen as the solution of a linear(ized)
least squares problem. The geometry of the Gauss-
Newton method is therefore also one of orthogonal pro-
jection. That is, the vector 9, A(zx)dk, which lies in the
tangent space of the manifold A(z) at A(zy), is the or-
thogonal projection of the residual vector e(z) = y— A(z)
onto this tangent space (see figure 8).



Figure 8: Orthogonal projection onto tangent space of
A(z) at A(zk).

This geometric interpretation of the Gauss-Newton
method already makes intuitively clear that the geome-
try of the manifold A(z) must play an important role in
the local behaviour of the method. The role of the geom-
etry of the manifold will be made precise in the following
sections.

7 Geometry of Optimality
Conditions

It is well known that a point % is a (local or global)
minimum of the objective function F(z) if

a) 8,F(8) =0
b) 82,F(2)>0

When applied to the objective function F(z) =
3 | y— A(z) |[>= 1 || e(z) ||? these necessary and suffi-
cient conditions become

a) 8.F(%) = -3:4(2)"Qg'e(2) =0
b) 9% F(2) =Q(2)7! — ¢(2)*Q;'92,4(2) > 0
(47)

Both these conditions can be given an interesting geo-
metric interpretation (Teunissen 1984, 1985). The geo-
metric interpretation of (47a) is rather simple. Equation
(47a) states namely that the residual vector e(z) should
be orthogonal to the tangent space of manifold A(z) at
the solution Z. The interpretation of (47b) is somewhat
more complicated. In order to interpret (47b) geometri-
cally we first introduce the concept of normal curvature
[Krarup, 1982; Teunissen, 1984].

The nonlinearity of the manifold can be defined as the
deviation of the manifold from its tangent space in the
neighborhood of the point of tangency. It is convenient
to introduce the function

d(z) = n*Qy ' [A(z) — A(z0)], (48)
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where n is a unitvector normal to the tangent space of
the manifold at the point A(zo). Thus

n'Q,'0:A(z0) =0 and n*Qy'n=1. (49)

Note that we assume the metric of R™ to be described
by the positive-definite matrix Q;l

The function d(z) describes the perpendicular distance
along n from the tangent space to the point A(z) on the
manifold. If we assume as before that the map A(z) is
sufficiently smooth, substitution of its Taylor expansion
at zo in (48) gives with (49),

d(z) = %Az'[n‘Q;lang(zo)]Az+ . (50)

The second fundamental form of the manifold is de-
fined as the quadratic form

II=v*[n*Q, 182, A(z)v ,
(51)
' with v€R", n€R(3;A(z))t cR™

Thus for small values of v the function 2d(z) can be
approximated by the second fundamental form II with
errors of third or higher orders in v. A study of the form
IT will therefore give information about the shape of the
manifold A(z) near the point of tangency.

With the second fundamental form it is now a small
step to introduce the concept of normal curvature. In
Gaussian surface theory the normal curvature is defined
as the ratio of the second fundamental form and the first
fundamental form [Spivak, 1979]. The first fundamental
form is defined as

I=vQ(z) v ,
(52)
with Q(z)~! = 3, A(z)*Q; '3; A(z).

With the first fundamental form one can compute the
arclength of a curve in the manifold. The matrix Q(z)~!
is known as the induced metric of the manifold. Note
that Q(z)~! corresponds to the normal matriz of the
problem of linearized least-squares inversion.

With (51) and (52) the normal curvature becomes

_ I v [nQytal Alz)v
kn(v) = T v‘é(z)"v

The extreme values of this ratio are the principal nor-
mal curvatures. They follow as the eigenvalues of the
generalized eigenvalue problem

(53)

| n*Q, 182, A(z) - AQ(z) ™" |=0.

Since in the classical Gaussian surface theory A(z)
is a map from R? into R3, the dimension of the range
space of 8. A(z), R(8.A(z)), is two and the dimension of
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its orthogonal complement, R(8:4(z))*, is one. Thus
in the classical case one has just one second fundamen-
tal form and two principal normal curvatures. In our
case however, A(z) is a map from R™ into R™. There-
fore dim R(9, A(z)) = n and dim R(3.A(z))* = m —n.
This implies that in our case the number of principal
normal curvatures equals n.(m —n). We will denote the
n-number of principal normal curvatures for the normal
direction n by

ki <KZ <. < kR (54)
It should be noted that the normal curvature is invariant
under a change of variables in A(z). This can be seen as

follows. Let z(Z) be a one-to-one map from R™ to R".
Then

82, A(z) = 0,2°92,A(z(2))9z2z + 3. A(z(2))82,z
Q(E)"! = 8,z°Q(z(z)) " !082z
v = 08,z0.

Substitution into
0" (n"Qy 103, 4(2))0
7 Q(z)" 1o
shows then, since n*Q;'9:A(z(z)) = 0, that k,(9) =
kn(v). This invariance of the normal curvature under a

change of variables implies that the curvature k,(v) is
an intrinsic property of the manifold A(z) embedded in
R™.

In order to relate the normal curvature to condition
(47b), note that (47b) is equivalent to

v*(e(2)"Qy 102, A(2))v

<1V R™. 55
" QE) v vE (55)
Hence, if we introduce the unit normal vector
PO C)
Il e(2) 1l
we may write (55) with the help of (53) also as
ki(v) || e(2) |I<1 YveER:. (56)

This important result shows that condition (47b) is
governed by two distinct quantities, namely the curva-
ture of the manifold and the amount of inconsistency of
the observation vector.

We can now rephrase the necessary and sufficient con-
ditions of (47) in geometric terms as

a) e(3) L R(3.A(3))

b) K2 [ e(3) )< 1 (57)

Note that both these conditions are invariant under a
change of variables.

As an exemplification of (57), assume that A(z) is a
circle embedded in R? with curvature k. Figure 9 shows
for this case four possible situations that may occur. In
all four cases the point % is a stationary point and sat-
isfies condition (57a). In figure 9a, A(Z) is a minimizer
because of negative curvature. In figure 9b, A(Z) is a
minimizer since the curvature, although positive, is still
small enough relative to || € ||. In figure 9¢, A(Z) is a
nonunique minimizer. And in figure 9d, A(%) is a maxi-
mizer instead of a minimizer.

A
A(X)
c

a)
@A(;)

c)
Figure 9: a) k negative, b) k positive but k|| & |< 1, c)
k positive and k || é ||= 1, d) k positive and k || & ||> 1.

@A(i)
b)

@A(i}
d)

8 Local Convergence - of the

Gauss-Newton Method

In order to derive the rate of convergence of the Gauss-
Newton method we expand (46) into a Taylor series at
the solution Z. With 8. A(£)*Q, 'e(2) = 0, this gives

Ther — 2= [(1 - te)] + txQ(2)[e(2)" @y ' 02, A(2)]].
2k — ) + o(ll 25 — 3 )
(58)
This shows that the Gauss-Newton method has a linear
rate of convergence for points sufficiently close to the
solution Z. If we take the eigenvectors v; , t =1,...,n,
of the generalized eigenvalue problem

AQy 102, A(2)v = K5Q(2) u
as base vectors of the tangentspace of the manifold A(z)
at #, and reparametrize zx4+; — % and zx — £ as

n n
o i A i
T+l — E = E up v and I — 2= E Up Uy
=1

s=1



we can write (58) in terms of the principal normal cur-
vatures as

by = [(1—tx) + ks || e(2) Iui +o(ll 2 — 2 1)) (59)

This expression shows that the local convergence of the
Gauss-Newton method is tnvariant against a change of
variables. Hence, the rate of convergence of the Gauss-
Newton method cannot be speed up or slowed down by
a particular choice of parametrization. If the positive
scalar t; in (59) is taken to be equal to one, the rate of
convergence becomes approximately

| zk+1 — 2 ||< [maz({] k; |, | k3 [} 1 e(2) ] 1| =% — 2 |

(60)
The parameter norm in this expression is with respect
to the induced metric Q(Z)~!. Expression (60) shows
that the error magnitude gets reduced if

maz (| k}, |,| k3 1} [l e(2) [I< 1 (61)
i.e. if the observation point y lies within a hypersphere
with centre A(Z) and a radius equal to the inverse of the
in absolute value largest curvature. If this is the case
then by virtue of (15) local convergence of the Gauss-
Newton method is guaranteed. Note however that local
convergence is not necessarily ensured by the fact that
A(%) is a local minimum of || y — A(z) ||. This follows if
we compare inequality (61) with (57b). In figure 9a for
instance, A(Z) is a minimizer, but || ¢(Z) || may still be
too large for convergence to occur.

As an exemplification of (60), assume that A(z) rep-
resents a unit circle, that @, = I and y = (1.5,0.0)".
The least squares solution is then given by 2 = 0 and
the local convergence factor by

ks || e(2) ||= —0.5. (62)
The results of the Gauss-Newton iteration are given in
table 1. They clearly show that the error magnitude gets
reduced by the factor (62) in each iteration step. Also
note the oscillatory character of the iteration. Oscilla-
tion or overshoot generally occurs if the curvatures are
negative (confer (59) for ty = 1). Undershoot on the
other hand occurs if the curvatures are positive.

[k [ AT(z) =cosz | A%(z) =sinz | zx |

1 0.96235 -0.27180 -0.27526
2 0.99124 0.13205 0.13244
3 0.99785 -0.06560 -0.06564
4 0.99946 0.03274 0.03275
5 0.99987 -0.01637 -0.01637
6 0.99997 0.00818 0.00818

Table 1: Gauss-Newton iteration for orthogonal
projection onto a unit circle.
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Note that (60) may also be used to obtain a numer-
ical estimate of the curvature (see also table 1)! This
estimate can then be used to estimate the bias in the
least squares estimators (Teunissen, 1988; Teunissen and
Knickmeyer, 1988) and to diagnose the statistical signif-
icance of nonlinearity (Teunissen, 1989a,b).

If inequality (61) is not satisfied, one can enforce local
convergence by a suitable choice for the positive scalar
tx of (59). It follows (compare with our discussion of the
steepest descent method) that the optimal choice for tx
is

e = 1/[1= I o(2) || 30k} + k)L

With this choice for tx it follows from (59) that instead
of (60) we have

(63)

A

e [ el (kg — k)
e N P P ey =y

Iz — 2]

64)
In this case local convergence is guaranteed if (57b)
holds. Equation (63) shows that the simplest choice
te = 1 is close to optimal if either || ¢(Z) || is small
enough or the average of the extreme curvatures is small
enough. Thus for points sufficiently close to the solution,
the simplest line search strategy can be considered ade-
quate if the manifold is moderately curved at Z and/or
the observation point is close enough to the manifold.

So far it was assumed that we were dealing with a
curved manifold with inconsistent data. But what hap-
pens with the local convergence behaviour of the Gauss-
Newton method if either the manifold is flat (zero-
curvature) or the data is consistent (zero-residual vec-
tor)? In order to answer this question we first note that
for a flat manifold, the orthogonal projector

Py, a = 0. A(2)[0:A(z)" @y ' 9: A(2)] 710 A(2)" Q"
is constant and independent of z, and
A(2) =g+ Pa,aly—9) Vg€ Az)
With this follows that

Q(zx)3zA(zk)" Qy Hy — Alzk)) =
Q(zk)0:A(zx)* Qy ' Pa aly — Alzk)) =
Q(zk)3: A(z)* Qg H(A(2) — Alzk))

This result shows that for both the cases of a flat man-
ifold and consistent data, the observation vector y in (46)
may be replaced by A(£). From a Taylor series expan-
sion at % of (46) with y replaced by A(Z) follows then
with tx = 1 and the identity

83:Q(2)Q(2) ™" + Q(2)92, A(2)Qy ' 3: A(z) +
+Q(3)31A(z)*Q;13§,A(1) = 0
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that

Tes1 — £ = 2Q(2)0:A(2)* Qg [(zx — 2)"-
02, A(2)(zk — 2)] + o(l| 2 — £ |I?)

This shows that the rate of convergence of the Gauss-
Newton method is quadratic in case of flat manifolds
and/or consistent data. If we take the norm of (65) we
get

(65)

I ome1=2 lI= 3 | Po.a(2x-2)02.4(2)(2x—2) | (66)

This shows that the convergence factor is determined by
the tangential components of 32, A(£). Compare this
with for instance (58), where the convergence factor de-
pends on the normal component of 82, A(Z).

If we let t,,a = 1,...,n, be an orthonormal ba-
sis of R(8;A(Z)) we can write the orthogonal projector
PB,A(i) as

n
Po,az) = D tata@yl.

a=1

Substitution into (66) gives

u k41 — 2 II=
3 | Eomitalan - 2)°[t2Qy 102, A(2)] (2 — 2) ||
(67)
In analogy to (53) we define the tangential curvature
by

v [t"Qy 9%, Alz)]v
v*Q(z)~1v
with v € R™ and t € R(3,4(z)). It can be shown [Teu-
nissen, 1985] that (68) is closely related to the concept
of covariant differentiation of differential geometry. The
v¢(v) describe therefore the nonlinearity of the param-
eter curves in the manifold. Note that (68) in contrast
to (53), is not invariant under a change of variables in

A(z).
With (68), equation (67) can be written as

7 (v) = (68)

S .
| Zesr — 2 ||= 5[2 S S

a=1

(69)

Compare this result with (60).

As an exemplification of (65), assume that A(z) rep-
resents a straight line, that A!(z) = ezp(10z), A%(z) =
ezp(10z), Q, = I and y = (0,2¢)*. The least squares
solution is then given by Z = 0.1 and the convergence
factor by

2Q(2)5. 4(3)"Q; 12, A(2) = 5.

The results of the Gauss-Newton iteration are given in

table 2. They clearly show the quadratic rate of con-

vergence. Also note that e.g. (z4 — Z) = 5(z3 — £)°.

[k ][ A'(z) = ezp(10z) | A%(z) = ezp(10z) | x|

1 5.57494 5.57494 0.17183
2 3.33967 3.33967 0.12059
3 2.77267 2.77267 0.10198
4 2.71881 2.71881 0.10002
5 2.71828 2.71828 0.10000

Table 2: Gauss-Newton iteration for orthogonal
projection onto a straight line with a nonlinear
parametrization.

9 A Convergence Criterion

Every iteration method needs one or more termination
criteria in order to be able to test whether the iteration
should be continued or not. Apart from the computer-
time to termination and/or the number of iterations, the
most important termination criterion is the one which
measures the success in obtaining an optimal solution.
Since iterative descent methods try to locate a stationary
point of the objective function F(z), convergence can be
declared if the gradient of F(z), evaluated at the current
iteration point zj, falls below a preset tolerance level. A
test for convergence is therefore

| 8z F(zk) ||< e
For our least squares problem this becomes
| 8z A(zx)* Qy *elzk) |I< e

In order to make the norm of the gradient invariant to a
change of variables and thus insensitive to scale changes
we choose to take the norm in (70) with respect to the in-
duced metric Q(zx)~!. This gives for the Gauss-Newton
method the convergency test

(70)

[l zesr = 2 1< €] (71)

Note that since 3; A(zk)(zk+1 — 2x) = Pa,A(z,) the con-
vergency test can also be written as

[l Ps,acznre(ze) < €| (72)

where the norm is with respect to the metric Q;l.

In order to apply the convergency test we need to
choose a value for the tolerance level e. On what should
we base our choice for ¢? It seems natural to base the
choice for ¢ on the quality of the observation vector y.
Since z; is the eract least squares solution of the per-
turbed minimization problem

min || [y = Pa. aten e(ze)] — A(2) |

(see figure 10), it follows that the tolerance level ¢ of
(72) should be chosen such that a perturbation of y with
Py, a(z,)€(zk) is considered insignificant.



R(oxAlx,)

Figure 10: Perturbation of y with Py, 4(z)e(zx).

Once convergence is declared it is of interest to know
the error magnitude of the computed quantities zg,
A(zx) and | e(zk) |-

In order to determine the relation between the above
convergency indicator and the error magnitude of z, we
expand Pj_4(z,)€e(zx) in a Taylor series at . This gives

Py, sz e(ze) = 3:A(2)[Q(2)07, A(2)Qy " e(2)+
—I)(zx — &) +o(]| zx - 2 |])

From this follows, if £ is a local minimum of || y— A(z) ||
and thus k2 || e(Z) |[< 1 (see (57b)), that

(1=K &l = =2 }<
+o(ll zx — 2 ||) =
| Pa,a(zv)e(zx) |l

(SR TENEY
+oll 2x — 2 1)

Y

Hence, we have the approximate interval

| z+1 — z& || s | Zeer =z |l
A Sl -2 S | (78
1-kL el I | 1-k7 11 ¢l (73)

In an analogous way we can derive the approximate in-
tervals

” Tk+1 — Tk ”
1-ky || é]

” Zk+1 — Tk ”

T—kL ] <|l A(=zx) — A(2) |I<

(74)
and

I ean) 12 = I o(2) | (75)

3
< ”xkil_x.kl
= 1-k3lel

And similarly we find for the error magnitude of the
individual parameters, the upper bound

| zk+1 — zk I

—— 76
T kg 2] (76)

lI:—ia |S Oza
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with oz= the square root of the ath-diagonal element of
Q(2).

All the above inequalities show how the error mag-
nitudes of the computed quantities are related to the
convergency indicator || Zxk+1 — zx {|. In particular note
that || zx — 2 || can be large if &2 || € || is close to one.
This happens if y is close to the centre of curvature of
k?, in which case the objective function || e(z) || is flat
near Z.

10 Conclusions

In this paper the numerical characteristics of a class
of iterative descent methods for solving nonlinear least
squares problems were discussed. Particular attention
was given to the Gauss-Newton method. The advan-
tage of this method when compared with the Steepest-
Descent method is that it is invariant against a change of
variables. It was shown that the Gauss-Newton method
takes advantage of the "sum of squares” structure of
the objective function and that it can be interpreted
as a "regularized” version of the Newton method. The
numerical characteristics of the Gauss-Newton method
were presented in terms of differential geometric con-
cepts. It was shown that the Gauss-Newton method ex-
hibits a linear rate of convergence determined by the
length of the residual vector and the maximum curva-
ture of the manifold. Thus local convergence is guar-
anteed if the data point lies within a hypersphere with
centre A(2) and a radius equal to the inverse of the in ab-
solute value largest curvature. The simplest line search
strategy was shown to be adequate if the manifold is
moderately curved and/or the datapoint is close enough
to the manifold. In the special case of zero curvature
and/or consistent data the Gauss-Newton method ex-
hibits a quadratic rate of convergence which is deter-
mined by the nonlinearity of the parameter curves. Fi-
nally, a parameter invariant convergency criterion was
formulated and bounds on the error magnitudes of the
computed quantities were derived.
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