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URBANIZATION AND RENEWABLE AND NON-RENEWABLE ENERGY 

CONSUMPTION IN OECD COUNTRIES: AN EMIRICAL ANALYSIS 

 

Abstract 

This article aims to analyse the impact of urbanization on renewable and non-renewable energy 

consumption in OECD countries by using the STIRPAT model and data for the period of 1980 to 

2011. Demographic factors including total population, urbanization and population density are found 

to be significant factors, particularly with respect to non-renewable energy consumption. The results 

also reveal that while total population and urbanization positively influence non-renewable energy 

consumption, population density has a negative impact on non-renewable energy consumption. From 

the demographic factors only total population has a significant impact on renewable energy 

consumption. Granger causality results indicate that there is unidirectional causality from non-

renewable energy use to population density in the short run. However, no causal linkage is found 

between urbanization and non-renewable energy use. Likewise, no causal direction is seen between 

renewable energy use and any of the demographic factors. 
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URBANIZATION AND RENEWABLE AND NON-RENEWABLE ENERGY 

CONSUMPTION IN OECD COUNTRIES: AN EMPIRICAL ANALYSIS 

1. Introduction 

Urbanization leads to relative concentration of population as well as economic 

activities in urban areas. As a result of migration from rural to urban areas, in fact the 

labour force is transferred from the agricultural sector in the rural areas to the 

industrial and service sectors in the urban areas. This structural transformation of the 

economy causes many fundamental changes in natural resources and energy use as 

well. Although the transformation of production from the low-energy intensive 

agricultural sector to the high-energy intensive industrial sectors yet this sector is 

affected by the introduction of new technologies and industrialisation. Due to growing 

rates of urbanization the volume of production and the market range increase over the 

past decades. Moreover, urban living as compared to rural life is expected to require 

more energy as a result of travelling to work by fuel-using vehicles, and also 

constructing, operating, and maintaining urban infrastructure and services including 

housing, water supply, roads and bridges (Jones, 2004; Parikh and Shukla, 1995; 

Madlener and Sunak, 2011). Growing dependency on fossil fuels as a result of 

concentration of people in cities has led to efforts by policy makers to substitute clean 

energy resources for fossil fuels. For example, some major cities, particularly in 

developed countries, have begun to link homes and offices to renewable energy in 

order to create a fossil-fuel free district in the near future. 

The urbanization–energy use relationship has been studied extensively in recent 

years, and while some researchers show that urbanization increases energy 

consumption, some others argue that urbanization can improve the efficient use of 

public infrastructure, resulting in less energy use. However, it is still less clear what 

sort of energy is more likely to be affected by urbanization. Recently, with the new 

approach to using more renewable energy, particularly for generating electricity in 

large cities, the question arises as to whether urbanization can expand the use of 

renewable energy. Therefore, it is important to study the impact of urbanization on 

disaggregated energy consumption in terms of renewable and non-renewable in order 

to gauge as to how urbanization affects disaggregated energy use and where policy 

makers should focus their attention in this regard. 
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There are a number of studies that have investigated the urbanization–energy 

relationship, but none of these studies analyse the impact of urbanization on 

renewable and non-renewable energy consumption. This article aims to investigate 

the effects of urbanization on disaggregated energy consumption controlling for other 

demographic and economic factors such as population size, population density, 

economic growth, industrialization and tertiarisation etc. using data from the OECD 

countries over the period from 1980 to 2011. 

The present study differs from the existing empirical studies in a number of ways. 

First, it estimates the impact of urbanization on non-renewable and renewable energy 

consumption employing a STIRPAT (STochastic Impacts by Regression on 

Population, Affluence, and Technology) model. Second, it controls for population 

density which is a key factor that influences energy consumption, and has been rarely 

considered in previous studies. Third, it takes into account statistical concerns over 

the presence of heterogeneity and cross-section dependence that can result in 

misleading inference and inconsistent estimates, and has been ignored by previous 

researchers.  

The structure of the rest of the article proceeds as follows. Section 2 provides a 

critical review of empirical studies and develops research hypotheses. Section 3 

describes the analytical models and data. The analysis of empirical results is presented 

in Section 4. Finally, Section 5 concludes the article and provides policy implications. 

2. Review of the Empirical Literature and Research Hypotheses 

2.1 Review of the Empirical Literature 

While there has been useful modelling exercises on the relationship between energy 

consumption and economic growth, energy consumption and urbanization, but there is 

hardly any application between renewable and non-renewable energy consumption 

and urbanization. A good number of studies have been conducted over the last 

decades on the urbanization-energy consumption linkages either by using cross-

section or by time series data or by pooling both time series and cross section data. 
1 
 

                                                             
1 With the development of time series econometric modelling the number of studies on the causal 

linkages among economic variables such as energy consumption and income growth (e.g. Shahbaz et al 
2012) energy consumption and urbanization (e.g. O’Neill et al 2012), financial development and 

energy consumption (e.g. Islam, et al 2013), financial development and economic growth (e.g. Hsues et 

al, 2013), stock prices and exchange rates (e.g. Liang et al 2013) are far too voluminous to review, we 

only focus on urbanization and energy consumption in this article. 
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These studies have been conducted on divergent lines; some have focused on 

developing countries, some on developed and some on both developed and 

developing countries. In addition, some studies have focused on a single country and 

other on multiple countries. Using cross-section data for 59 developing countries in 

1980, Jones (1991) concludes that a 10% increase in the proportion of the population 

living in cities increases per capita energy consumption by 4.5% to 4.8%, holding 

constant per capita income and industrialization. However, Jones’ findings may be 

subject to some limitations. For instance, the coefficients are estimated only based on 

a single year (1980) which might yield unreliable results due to using a very small 

sample size of data. 

Parikh and Shukla (1995) also provide an early analysis of the relationship 

between urbanization and energy use over the period from 1965 to 1987 for a sample 

of developing countries. Their results, obtained from a panel data fixed-effects model, 

indicate that a 10% increase in a country's urban population leads to a 4.7% rise in its 

per capita total energy consumption. In a similar study, Imai (1997) employs a 

weighted least square method using data from 1980 to 1993 and finds a positive 

relationship between energy consumption and urbanization in Thailand, China, India, 

Iran, Japan, Turkey, USA and Germany. However, using a bivariate model in this 

study can increase the likelihood of reaching incorrect conclusions due to the omitted 

variables. 

There are a number of studies dealing with the relationship between 

urbanization and aggregate energy consumption in China (Zhang and Zhao, 2001; 

Wei et al., 2003; Shen et al., 2005; Liu, 2009; O'Neill, 2012; Zhang and Lin, 2012), of 

which Liu (2009) finds the presence of a unidirectional causality running from 

urbanization to total energy consumption both in the long run and in the short run. 

Using a similar approach for a single country Turkey, Halicioglu (2007) finds a 

unidirectional causality running from urbanization and GDP to energy consumption. 

Mishra et al. (2009) also reveal a unidirectional causal relationship between 

urbanization and energy consumption in the short run for a panel of nine Pacific 

Island countries. In a very recent study in Tunisia, Shahbaz and Lean (2012) find 

bidirectional causality between industrialization and energy consumption in the long 

run and unidirectional causality from urbanization to energy consumption in the short 

run. 
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York et al. (2003a) are the first to develop and use the STIRPAT model to 

study the impact of urbanization on aggregate energy use. Their results indicate that 

population is a major driver of the energy consumption; and urbanization, as an 

indicator of modernization, monotonically increases energy use. In contrast, Liddle 

(2004) finds that urbanization and population density negatively affect energy use in 

OECD countries from 1960 to 2000. However, it is noteworthy to mention that Liddle 

considers road transport energy use in this study and implies that more densely 

populated and urbanized societies have less demand for personal transport. In a 

similar study on road transport energy use in high income countries Poumanyvong et 

al. (2012) obtain evidence opposite to that of Liddle (2004). Focusing on fourteen 

European Union Nations over the period from 1960 to 2000, York (2007) proves that 

demographic factors including population size, age structure and urbanization along 

with economic development affect energy consumption positively. However, 

predicting energy consumption for the year 2025, based on demographic and 

economic factors, the author shows that low fertility and thereby decline in population 

size in Europe can help restrict expansion in energy consumption. 

It appears that Liddle and Lung (2010), after Liddle (2004) and York (2007), 

is the only recent study that investigates the effect of urbanization on energy 

consumption exclusively for a panel of developed countries. Employing a STIRPAT 

method for 17 developed countries covering the period from 1960 to 2005, the authors 

reveal that urbanization has a positive and fairly large effect on both residential 

energy consumption and residential electricity consumption. Considering different 

development stages in 99 countries from 1975 to 2005, Poumanyvong and Kaneko 

(2010) investigate the relationship between urbanization and energy use, controlling 

for population size, GDP per capita, share of industry and service sectors in GDP. 

These authors demonstrate that while urbanization increases energy use in the middle- 

and high-income countries, it decreases energy use in the low-income countries.  

Thus, a considerable number of studies have assessed the urbanization and 

energy consumption nexus. However, there is no consensus as yet as to how 

urbanization affects energy consumption. Furthermore, there are only a few studies on 

OECD countries on this issue. In addition, there are only a few studies that focus on 

population/urban density in the empirical literature although the population density in 

urban areas is closely related to urbanization and pollutant emissions. 
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Newman and Kenworthy (1989) measure per capita transport energy 

consumption and population densities in a range of large cities in high-income 

countries and find that high population density decreases per capita transport energy 

use. However, Newman and Kenworthy’s study is criticised for not using a 

multivariate analysis that can affect the research result. Their results are also said to 

be limited due to using 1980s data, which is suspected as not being accurate and 

consistent (Mindali et al., 2004). 

Larivière and Lafrance (1999) find that in Canada, more urbanized areas have 

lower energy consumption per capita. Using data for 45 Chinese cities, Chen et al. 

(2008) reveal that urban density has a negative effect on household energy 

consumption. The authors argue that this effect is caused by compactness of 

residential structure. Thus, population density plays a critical role in energy use 

reduction and should be considered as a policy variable in empirical analysis. Given 

the limited number of studies on the relationship between population density and 

energy consumption further study gathering more empirical evidence on this issue is 

imperative. 

2.2 Research Hypotheses 

Some previous analysis identifies several causes of increased energy usage due to 

urbanization. First, the direct ‘running costs’ of cities are high for functions like space 

heating, air conditioning and lighting in buildings. Second, transporting goods and 

services now accounts for 30% of global energy consumption, a share that increases 

with the spatial and functional differentiation of economies and the shift from rural to 

urban lifestyles (Schurr et al., 1979). Third, cities are also centers of indirect energy 

consumption including most obviously those resources required to produce food and 

other biomass. With lower percentages of the population engaged in agricultural 

activities and the need to supply food to larger non-agricultural populations, primary 

sector activities become more resource and energy intensive (Jones, 1991). Finally, 

due to increases in travel distances and mobility of passengers and freight in urban 

areas more energy is likely to be consumed (Jones, 2004; Rodrigue et al., 2006; 

Hankey and Marshall, 2010; Poumanyvong et al., 2012). These reasons lead to the 

hypothesis that urbanization positively affects total energy use. 

The lack of studies on urbanization and disaggregated energy consumption raises 

the question as to how urbanization influences renewable energy sources. Most of the 
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world’s energy comes from non-renewables and fossil fuels including oil, coal and 

gas. However, energy efficiency in the urban environment has become an important 

issue particularly for solving the problem of pollution in cities (Larivière and 

Lafrance, 1999). Some cities and regions have undertaken the provision and 

production of renewable energy, in addition to pursuing goals of increasing renewable 

energy consumption through land-use zoning, transportation, building and natural 

resource policies. Some cities in the OECD own and operate power generating 

facilities, which provide them with more options for increasing local use of renewable 

energies. Local governments also develop their own sources of renewable energy by 

capturing and converting energy from one or more renewable energy sources that 

exist in many cities and towns (IEA, 2009). Therefore, based on these evidences, it 

can be safely argued that if urbanization could increase renewable energy use, the 

consequence would be a substantial reduction in fossil fuels consumption which in 

turn results in less pollutant emissions. 

There is also evidence indicating a negative association between the total energy 

consumption of a city and its overall density, that is, the higher the density, the lower 

energy consumption. For instance, Japan’s urban areas are around five times denser 

than Canada’s, and the use of energy per capita (as measured by total primary energy 

supply) in Japan is around 40% that of Canada’s. The link is still visible for countries 

in the same geographical context with similar heating needs, such as Denmark and 

Finland; Denmark’s urban areas are denser than Finland’s by a factor of four and 

people in Denmark consume 2.5 times less energy than the Finns (Kamal-Chaoui and 

Robert, 2009). Thus, it can be hypothesized that increasing density is likely to reduce 

energy use. 

3.  Methodology and Data Description 

3.1 Empirical Model 

An analytical tool that is a useful framework for assessing the determinants of 

environmental degradation, is IPAT [Impact = Population × Affluence × Technology] 

identity (Ehrlich and Holdren, 1971 and Holdren and Ehrlich, 1974). According to 

this identity, the main factors of environmental impacts (I) are Population (P), 

Affluence (A), and Technology (T). Affluence represents per capita consumption or 

production, and technology indicates the environmental impact per unit of 

consumption or production (York et al., 2003a; Lozano and Gutierrez, 2008). 
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Following the IPAT identity, another approach the so-called ImPACT related to the 

case of GHG emissions, illustrates the key determinants of total emissions are 

population (P), per capita GDP(A), energy consumption per unit of GDP (C), and CO2 

emissions per unit of energy consumption (T) (York et al., 2003a, Lozano and 

Gutierrez, 2008). Despite the fact that the IPAT and ImPACT are parsimonious and 

flexible, and also indicate easily the effect of driving forces on environmental 

conditions, they suffer from some limitations. For example, IPAT and ImPACT 

considers proportionality between the key determinant factors. Therefore, Dietz and 

Rosa (1997) presented a new model, namely STIRPAT. 

STIRPAT basically has the following model: 

i

d

i

c

i

b

ii eTAPI        (1) 

Taking the natural logarithm of both sides: 

ititititit eTdAcPbI ln)ln()ln()ln(lnln     (2) 

where α represents a constant, b, c, and d are the exponents of P, A, and T, which 

indicate respectively the elasticities of impact of population, affluence and 

technology. e is the error term and t denotes the year. The subscript i illustrates the 

differences between the quantities of I, P, A, T, and e across observational units. 

According to York et al. (2003a), additional factors can be entered into the basic 

STIRPAT model as components of the technology (T). However, the authors note that 

it is important to ensure that the additional factors are conceptually consistent with the 

multiplicative specification of the model. For instance, while Shi (2003) uses the 

share of industry and services in GDP as a proxy for T in an investigation on 

emissions, Martínez-Zarzoso et al. (2007) employs the share of industry in GDP and 

energy intensity as a proxy. In a study of national energy use, York (2007) uses 

urbanization to express T. Similar to Shi (2003), Poumanyvong and Kaneko (2010) 

represent T with the share of industry and service sectors in GDP in an analysis of 

energy use and emissions. In this study, following Shi (2003) and Poumanyvong and 

Kaneko (2010), T is considered as the share of the industry and service sectors in 

GDP. As the main aim of this study is to estimate the impact of urbanization and 

population density on energy use, the basic model is modified by adding these two 

factors. While there are several studies that have added urbanization into the 

STIRPAT model (York et al. 2003a, 2003b; York 2007; Liddle and Lung 2010; 

Poumanyvong and Kaneko 2010; Poumanyvong et al. 2012), to the best knowledge of 
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the authors, this is one of the first studies that includes population density in the 

model. Therefore, the empirical models for non-renewable and renewable energy 

consumption can be written as:  

itit

itititititit

eUg

PDfSeINDdAcPbN

ln)ln(

)ln()ln()ln()ln()ln(lnln



 
  (3) 

itit

itititititit

eUg
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ln)ln(

)ln()ln()ln()ln()ln(lnln



 
  (4) 

In Equation 3, N is non-renewable energy consumption, P is total population size, 

A is GDP per capita, IND is the share of the industry sector in GDP (industrialization), 

S is the share of the service sector in GDP, PD is population density and U is 

urbanization. In Equation 4, R is renewable energy consumption and the variables on 

the right hand side remain the same as in Equation 3. 

3.2 Econometric Approach 

To provide valid empirical evidence on long run relationships among economic 

variables it is imperative to test the time series properties of the variables in question. 

Unit root test identifies whether the variables are stationary or non-stationary. There 

are a number of tests developed in the Time Series Econometrics for testing unit 

roots. We use several popular unit root tests such as augmented Dickey and Fuller 

(1979) (ADF) test, the Phillips and Perron (1988) (PP) test, Breitung (2000), Levin et 

al. (2002) (LLC) test, and Im et al. (2003) (IPS) test to check the stationarity of 

variables. We use several tests of unit roots in order to provide an analysis of 

sensitivity and robustness. 

The next step is to use cointegration analysis. Cointegration analysis is intended to 

establish whether there exists a long-run relationship among the set of the integrated 

variables in question. There are several panel cointegration tests in the literature; each 

of them has its merits and drawbacks. However, panel cointegration tests of 

Westerlund (2006, 2007) and Fisher based on the multivariate framework of Johansen 

(1998) as proposed by Maddala and Wu (1999) are used for both non-renewable and 

renewable energy use models. Maddala and Wu’s Fisher cointegration test is residual 

based and combine the p-values of individual (system-based) cointegration tests in 

order to obtain a panel test statistic while Westerlund tests are based on structural 

rather than residual dynamics and allow for a large degree of heterogeneity (e.g. 

individual specific short-run dynamics, intercepts, linear trends and slope parameters). 
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3.3 Panel Causality Test 

Panel cointegration tests are only able to indicate whether the variables are 

cointegrated and whether a long-run relationship exists between them. In order to 

examine the direction of causal linkages between the variables Granger causality is 

tested based on the following equations, considering each variable in turn as a 

dependent variable for each model (non-renewable and renewable energy use 

models):  
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In Equation 5, LN is non-renewable energy consumption and in Equation 6, LR is 

renewable energy consumption. In both above equations, LP is total population size, A 

is GDP per capita, LIND is the share of the industry sector in GDP, LS is the share of 

the service sector in GDP, LPD is population density and LU is urbanization. 

The residuals obtained from estimating the long-run relationship between the variables 

in non-renewable and renewable energy use models are used as dynamic error 

correction terms in the above equations. The causal relationship between the variables 

is tested considering each variable in turn as a dependent variable in each equation. 

Because the first differences of the dependent variables are correlated with the first 

difference error terms in the above equations, it is necessary to use instrumental 

variable procedures to cope with this problem. A possible solution is represented by 

the Generalised Method of Moments (GMM) technique.  

There are two widely used variants of GMM estimators in dynamic panel models, 

the GMM estimator in first difference, proposed by Arrelano and Bond (1991), and 

the GMM in system proposed by Blundell and Bond (1998). The first-differenced 

GMM approach consists in taking the equation to be estimated in first-differences in 

order to eliminate the specific-effect component. Then, lagged levels of the right hand 

side variables are used as instruments. In the system GMM estimator, lagged 

differences of the series are used as instruments for the equations. Blundell and Bond 
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(1998) point out that the first-differenced GMM estimator has poor finite sample 

properties, and it is downwards biased, especially when T is small. Therefore, this 

study uses the system GMM estimator to estimate the Equations 5 and 6. 

3.4 Data Description 

The variables used in this study include total population, GDP per capita, 

industrialization, share of service sector in GDP, population density, urbanization, and 

renewable and non-renewable energy consumption. Total population is measured by 

midyear population size, and GDP per capita (US$ in PPP, year 2000 prices) is gross 

domestic product divided by midyear population. While population living in urban 

areas (% of total) is applied here as a reliable proxy for urbanization, industrial value 

added (% of GDP) is considered as a proxy for industrialization. Services sector value 

added as the percentage of GDP is considered as a proxy for the share of the services 

sector in GDP. According to World Development Indicators, population density is 

defined as the number of people living per square Kilometre of land area. All these 

data are sourced from the World Bank’s World Development Indicators. Renewable 

and non-renewable energy data are obtained from the U.S. Energy Information 

Administration (EIA). The 29 OECD countries are Australia, Austria, Belgium, 

Canada, Chile, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, 

Ireland, Italy, Japan, South Korea, Luxembourg, Mexico, the Netherlands, New 

Zealand, Norway, Poland, Portugal, Spain, Sweden, Switzerland, Turkey, the United 

Kingdom and the United States. Due to unavailability of data, only 29 of the 34 

countries that comprise the OECD are included in the analysis. The rationale behind 

selecting the time period from 1980 to 2011 is the unavailability of renewable energy 

data. 

All the variables are converted into natural logarithms prior to conducting the 

analysis. To test for multicollinearity between independent variables, the variance 

inflation factors (VIF) for each predictor is calculated. The results (presented in 

Appendix Table 1) indicate no existence of severe multicollinearity between 

independent variables as all the VIF values are less than 10. 

4. Empirical Results 

4.1  Panel Unit Root Test 

The empirical estimation begins with the examination of the stationarity properties of 

the variables by employing a number of popular panel unit root tests. These tests 
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include augmented Dickey and Fuller (1979) (ADF) test, the Phillips and Perron 

(1988) (PP) test, Breitung (2000), Levin et al. (2002) (LLC) test, and Im et al. (2003) 

(IPS) are used test to check the stationarity of variables. The null hypothesis for each 

panel unit root test is that there is a unit root while the alternative hypothesis is no unit 

root. Table 1 displays the results of the panel unit root tests which suggest that all 

variables in question are non-stationary at their levels, but stationary at their first 

differences, i.e. each variable is integrated of order one. 

Table 1: Panel Unit Root Tests without Structural Breaks  

Method LP LA LIND LS LU LPD 

ADF       

Level 4.271 
(1.000) 

70.889 
(0.119) 

52.890 
(0.665) 

47.070 
(0.847) 

62.787 
(0.310) 

44.106 
(0.911) 

First 

difference 

-4.739 

(0.000)*** 

164.514 

(0.000)*** 

288.792 

(0.000)*** 

221.686 

(0.000)*** 

80.649 

(0.026)** 

136.584 

(0.000)*** 
       

PP       

Level 16.738 

(1.000) 

33.266 

(0.996) 

31.542 

(0.998) 

38.933 

(0.074)* 

0.318 

(1.000) 

 31.097 

(0.998) 
First 

difference 

-2.542 

(0.005)*** 

178.791 

(0.000)*** 

332.740 

(0.000)*** 

384.467 

(0.000)*** 

97.195 

(0.001)*** 

78.324 

(0.038)** 

       
Breitung       

Level 5.636 

(1.000) 

4.629 

(1.000) 

0.395 

(0.653) 

1.608 

(0.946) 

5.079 

(1.000) 

0.274 

(0.608) 

First 
difference 

-1.150 
(0.024)** 

-2.740 
(0.003)*** 

-9.394 
(0.000)*** 

-8.232 
(0.000)*** 

-15.262 
(0.000)*** 

-1.586 
(0.056)* 

       

LLC       
Level 1.005 

(0.842) 

-0.997 

(0.159) 

-0.323 

(0.373) 

-0.325 

(0.372) 

3.377 

(0.999) 

3.661 

(0.999) 

First 
difference 

5.502 
(0.000)*** 

-5.221 
(0.000)*** 

-15.189 
(0.000)*** 

-9.343 
(0.000)*** 

-3.774 
(0.000)*** 

-3.478 
(0.000)*** 

       

IPS       

Level 4.355 
(1.000) 

-1.289 
(0.098)* 

1.910 
(0.971) 

1.142 
(0.873) 

0.374 
(0.646) 

6.971 
(1.000) 

First 

difference 

4.735 

(0.000)*** 

-7.629 

(0.000)*** 

-14.701 

(0.000)*** 

-10.833 

(0.000)*** 

-18.540 

(0.000)*** 

-5.408 

(0.000)*** 

Note: Probabilities of the test statistics are presented in parentheses. ***, ** and * indicate that the test 
statistic is significant at 1%, 5% and 10% levels, respectively. The Schwarz Information Criterion 

(SIC) has been used to determine the optimal lag length. 

The above unit root tests do not control for structural breaks. These 

stationarity results may be unreliable if there is a presence of structural instability in 

series. To prevent achieving invalid results we employ the panel stationarity test of 

Carrion-i-Silvestre et al. (2005) allowing cross-sectional dependence, which assumes 

a highly flexible trend function by incorporating an unknown number of changes in 
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level and slope. Table 2 presents the panel stationarity test allowing for structural 

breaks in series. These results indicate that the null hypothesis of stationarity is 

rejected for the total population, GDP per capita, industrialisation, share of the service 

sector in GDP and urbanization at 5% level and for most of the variables at 2.5% and 

1% by both the homogeneous and heterogeneous long-run versions of the test. The 

number of breaks and their position for each country and variable are also calculated 

by means of Monte Carlo simulations based on 20,000 replications. The results are 

provided in Appendix Table 2. The identified breaks in different series in all 29 

countries are associated with various episodic events such as oil price shocks in the 

early 1980s, Asian financial crisis in 1998-99, slowdown of various big economies 

such as the US in 2001, US stock market collapse, terrorist attacks in New York, 

Afghanistan and Iraq wars in the 2000s and some big businesses collapsed in the mid-

2000s and so on. All these events contributed to the structural breaks in various series. 

Table 2: Panel Unit Root Tests with Structural Breaks  

Variables Bartlett 

Kernel 

Quadratic 

Kernel 

Bootstrap critical values 

5% 2.5% 1% 

LP      

Homogeneous 6.744*** 6.514** 6.323 6.510 6.711 

Heterogeneous 

 

6.918* 7.131* 6.891 7.452 7.859 

LA       

Homogeneous 11.428*** 11.888*** 9.781 9.979 10.163 

Heterogeneous 9.639*** 9.519*** 7.508 8.631 8.357 

 

LU      

Homogeneous 10.249*** 10.021** 8.363 9.472 10.236 

Heterogeneous 

 

9.381*** 9.415*** 7.501 8.993 9.303 

LPD      

Homogeneous 5.326 5.461 5.513 5.815 6.012 

Heterogeneous 

 

4.964* 5.433* 4.959 5.572 5.630 

LIND      

Homogeneous 9.316*** 9.322*** 7.703 8.110 8.741 

Heterogeneous 

 

8.120*** 8.121*** 5.504 6.823 7.330 

LS      

Homogeneous 13.391* 13.731** 12. 831 13.555 13.789 

Heterogeneous 12.097 12.280 13.561 13.829 13.995 

Note: The number of structural breaks is up to 5. The long-run variance is estimated using both the 

Bartlett and the Quadratic spectral kernel with automatic spectral window bandwidth selection as in Sul 

et al. (2005). Furthermore, all bootstrap critical values allow for cross-sectional dependence. ***, ** 

and * indicate that the test statistic is significant at 1%, 2.5%, and 5% levels, respectively. 
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It is apparent from Table 2 that all the variables are non-stationary at their levels 

even when allowing for structural breaks. However, the panel stationarity tests in first 

differences show that all variables are integrated of order one, consequently panel 

cointegration tests can be employed to study the long-run equilibrium process. 

4.2 Panel Cointegration Test 

Having identified that all the variables contain a panel unit root and are integrated of 

order one, the next step is to determine whether there is a cointegration relationship 

between the variables. Table 3 displays the results of the Johansen panel cointegration 

test. The results of the cointegration test from both a trace test as well as a maximum 

eigen-value test indicate the existence of cointegration at 1% significance level for 

both non-renewable and renewable energy use models.  

Table 3: Johansen Fisher Cointegration Test for Non-renewable and Renewable 

Energy Use Models 

Model Fisher statistic 

(from trace test) 

Fisher statistic 

(from max-eigen test) 

 

Non-renewable energy-use model    

None 1123.0 

(0.000)*** 

607.1 

(0.000)*** 

 

At most 1 648.6 

(0.000)*** 

323.7 

(0.000)*** 

 

At most 2 393.6 
(0.000)*** 

210.7 
(0.000)*** 

 

At most 3 234.7 

(0.000)*** 

152.5 

(0.000)*** 

 

At most 4 139.2 

(0.000)*** 

120.0 

(0.000)*** 

 

At most 5 98.53 
(0.000)*** 

98.53 
(0.000)*** 

 

Renewable energy-use model    

None 1145.0 

(0.000)*** 

587.2 

(0.000)*** 

 

At most 1 680.2 

(0.000)*** 

351.4 

(0.000)*** 

 

At most 2 397.4 

(0.000)*** 

217.8 

(0.000)*** 

 

At most 3 227.6 

(0.000)*** 

138.7 

(0.000)*** 

 

At most 4 145.2 
(0.000)*** 

121.4 
(0.000)*** 

 

At most 5 106.7 

(0.000)*** 

106.7 

(0.000)*** 

 

Note: The Schwarz Information Criterion (SIC) has been used to determine the optimal lag length. 

*** indicates that the test statistic is significant at 1% level. 
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Next, the Westerlund cointegration test controlling for cross-sectional dependence is 

conducted and the results are reported in Table 4. It is seen from this table that group-t 

and panel-a reject the null hypothesis of no cointegration at 1% and 5% significance 

levels respectively in both non-renewable and renewable energy use models. 

Therefore, overall evidence from the Johansen Fisher (Maddala and Wu, 1999) and 

Westerlund (2006, 2007) tests for cointegration show that there is a long-run 

relationship between the dependent variables (non-renewable and renewable energy 

use) and the independent variables (total population, GDP per capita, share of the 

industry sector in GDP, share of service sector in GDP, urbanization and population 

density) in selected OECD countries. Given the presence of a panel cointegration 

relationship between the variables, the next step is estimation of the long-run 

structural coefficients. 

Table 4: Westerlund Cointegration Test for Non-renewable and Renewable 

Energy Use Models 
Statistic       Value P-value 

   

Non-renewable energy-use model 

Group-t -2.973 0.000*** 

Group-a -3.547 1.000 

Panel-t -12.743 0.016** 

Panel-a -3.858 0.998 
   

Renewable energy-use model 

Group-t -3.163 0.000*** 
Group-a -2.114 1.000 

Panel-t -12.522 0.025** 

Panel-a -1.811 1.000 

Note: *** and ** indicate that the test statistics are significant at 1% and 5% levels, respectively. 

Following Westerlund (2006, 2007) maximum lag length is selected according to 4          . 

The null hypothesis of the test is “no cointegration”. 

4.3  Panel Long-Run Estimates 

Before moving to formal modelling, the diagnostic tests including cross-sectional 

dependence, heteroskedasticity and serial correlation are checked. The results of the 

diagnostic tests for non-renewable and renewable energy use models are presented in 

Appendix Table 3. The results of the different cross-section dependence tests under 

both random and fixed effects estimations show that the null hypothesis of no cross-

sectional dependence is rejected in both non-renewable and renewable energy use 

models under all of the used tests —Friedman, Frees, and Pesaran— meaning the 

residuals of the two models are correlated. The results of heteroskedasticity based on 
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a modified Wald test indicate the existence of the problem of heteroskedasticity at a 

1% level of significance in both models. Finally, the findings of serial correlation test 

based on Wooldridge suggest that the two models suffer from a positive serial 

correlation. In the case of the existence of cross-section error dependence, in addition 

to heteroskedasticity and serial correlation, conventional panel estimators (such as 

fixed or random effects) can result in misleading inference and even inconsistent 

estimators (Phillips and Sul, 2003). Pesaran (2006) proposes an estimation method, 

called Common Correlated Effects (CCE), which allows for unobserved factors to be 

correlated with exogenous regressors and idiosyncratic components to be independent 

across countries. Furthermore, this estimator holds under different situations such as 

serial correlation in errors, unit roots in the variables and possible contemporaneous 

dependence of the observed regressors with the unobserved factors (Kapetanios and 

Pesaran, 2007; Pesaran and Tosetti, 2011). Therefore, in this study, the common 

correlated effects (CCE) estimator by Pesaran (2006) is employed 
2
. 

The results of the long-run estimates of the variables are reported in Table 5. 

The estimated coefficients of total population are positive and statically significant at 

10% level for non-renewable and renewable energy use. While the elasticity of non-

renewable energy use to population size is 1.763, the elasticity of renewable energy 

use to population size is 0.710. This result indicates that population growth increases 

energy consumption in terms of both non-renewables and renewables. However, the 

magnitude of the long-run elasticity of non-renewable energy use with respect to the 

population is much greater than the elasticity of renewable energy use with respect to 

the population. The positive relationship between population and energy use can be 

seen in some previous studies (York, 2007; Liddle and Lung, 2010; Poumanywong 

and Kaneko, 2010; Poumanywong et al., 2012). 

GDP per capita has a positive and statistically significant effect on both non-

renewable and renewable energy use at 1% and 5% levels, respectively. The results 

indicate that a 1% increase in GDP per capita increases non-renewable energy use by 

0.537% and renewable energy use by 0.268% in the long run. The relationship 

between industrialization and both non-renewable and renewable energy use is 

positive and significant at 1% and 5% levels, respectively. The estimated coefficients 

                                                             
2 For a detailed discussion of this approach refer to Pesaran (2006), and Pesaran and Tosetti 

(2011). 



16 
 

indicate that an increase in industrialization increases non-renewable energy use by 

0.389%, and renewable energy use by 0.125%. The effect of the share of services in 

GDP on non-renewable energy use and renewable energy use is positive and 

significant at 10% and 5% levels, respectively. 

Table 5: Coefficients of CCE Estimates for Non-renewable and Renewable 

Energy Use Models 

Dependent Variables Non-renewable energy use Renewable energy use 

LP 1.763 (1.82)* 0.710 (1.75)* 

LA 0.537 (3.18)*** 0.268 (1.89)** 

LIND 0.389 (2.99)*** 0.125 (1.91)** 

LS 0.536 (2.25)** 0.294 (2.12)** 

LU 0.821 (2.15)** 1.154 (0.24) 

LPD -0.482 (-1.94)** -0.437 (-0.80) 

Note: Related-statistics are presented in parentheses. ***, ** and * indicate that the test statistic is 

significant at 1%, 5% and 10% levels, respectively. 

The estimated coefficients suggest that an increase in the share of services in GDP is 

associated with 0.536% increase in the non-renewable energy use and 0.294% 

increase in the renewable energy use. It is worth noting that the impacts of economic 

growth, industrialization and the share of services in GDP on non-renewable energy 

consumption are greater than that on the renewable energy use. It appears that, 

although the benefits of clean and renewable energy are evident, yet the displacement 

of fossil fuel usage by renewable energy resources has occurred at a very low rate. 

The positive relationship between GDP per capita, the share of industry and services 

in GDP and energy consumption, is also found in previous studies that have 

investigated these three factors simultaneously, controlling for urbanization 

(Poumanywong and Kaneko 2010; Zhang and Lin, 2012). The relationship between 

urbanization and energy consumption is as expected: positive but significant only for 

non-renewable energy consumption. Similarly, the effect of population density on 

both non-renewable and renewable energy use are negative, however, significant only 

for non-renewable energy use. 

It appears that, although the use of renewable energy sources (hydropower, 

biomass, biofuels, wind, geothermal, and solar), particularly for electricity generation, 

has increased recently in developed countries, the main energy source used by 
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humans is still non-renewable fossil fuels. The use of renewable sources is also 

limited by the fact that they are not always available. An increase in non-renewable 

energy use due to urbanization can also be explained by following arguments in 

Poumanyvong et al. (2012) who reveal that the impact of urbanization on transport 

and road energy use is high in high income group countries (higher than the low and 

middle income groups). On the one hand, while energy consumption in motorised 

individual passenger traffic is up to 10 times as high as consumption in a well-

organised and demand-oriented public transport system, people in developed 

countries depend heavily on the individual automobiles for their daily trips (Weiler, 

2006; Poumanyvong et al., 2012). On the other hand, transport is heavily dependent 

on fossil fuels (97% of transport energy is based on oil (Weiler, 2006)). Therefore, all 

the evidence supports the positive association between urbanization and non-

renewable energy consumption in OECD countries. 

The results obtained in this study may not be exactly comparable with those of 

other studies that use aggregate energy consumption. However, considering energy 

consumption regardless of energy type, the findings can be compared with previous 

studies. The positive link between urbanization and energy consumption is supported 

by York (2007), Liddle and Lung (2010) and Poumanywong and Kaneko (2010) who 

also find that urbanization influences energy consumption positively in developed 

countries. Likewise, Jones (1991), Parikh and Shukla (1995), Imai (1997), York et al. 

(2003b), and Mishra (2009) achieve similar results for different countries.  

As mentioned earlier, the linkage between population density and non-

renewable energy use is significant, while the relationship between population density 

and renewable energy use is insignificant. The long-run relationship between 

population density and non-renewable energy use shows that the effect of population 

density on non-renewable energy use is negative and statistically significant at 5% 

level. The results indicate that a 1% increase in population density leads to 0.482% 

decrease in non-renewable energy consumption in the long run. This result supports 

the hypothesis implying that increasing density reduces energy use. This finding is 

consistent with an early study by Newman and Kenworthy (1989) and Larivière and 

Lafrance (1999) who find a negative relationship between population density and 

energy use in high income countries and Canada, respectively. The finding is also in 

line with Chen et al. (2008) who reveal that urban density has a negative effect on 

household energy consumption in Chinese cities. 



18 
 

Population density can reduce environmental impact through clustering a 

mixture of residential, office, retail, and outdoor recreational uses together, thereby 

shrinking travel distances and encouraging walking, cycling and public transport that 

reduces the use of fossil fuels. Despite urbanization, greater density improves the 

economics of public transport systems, and thereby results in lower energy use per 

passenger-kilometre of travel in such places. Furthermore, another attribute of high 

population density is through its effect on building sectors. Multi-family housing 

allows for more efficient energy use than single-family homes. For instance, energy 

use in places like New York City or Philadelphia is significantly less than that in 

Dallas or Phoenix, which have dispersed settlement patterns (Darmstadter, 2001).  

Although the limited number of studies so far shows that population density 

decreases energy consumption in general, the results of this study indicating that 

population density reduces non-renewable energy consumption in particular, can shed 

further light on the existing literature. Moreover, this finding helps policy makers to 

improve urban planning that can finally make a substantial contribution to climate 

change mitigation. As an energy management policy, controlling disparity of 

population and the level of urbanization, which are associated with increased demands 

for energy, can result in a significant reduction in pollutant emissions. 

4.4 Panel Causality Analysis 

In this section short-run and long-run Granger causality is analysed. Table 6 and 

Table 7 display the results of the panel error correction for non-renewable and 

renewable energy use models, respectively. The short-run results of the explanatory 

variables effects on non-renewable energy use indicate that from the demographic 

variables, including total population, urbanization and population density, only total 

population has a significant impact on non-renewable energy consumption. The 

impact of GDP per capita on non-renewable energy use is positive and significant at 

the 1% level in the short run. The relationship between the share of services in GDP 

and non-renewable energy use is positive and significant, whereas the relationship 

between the share of industry in GDP and non-renewable energy use is insignificant. 

The effects of the same explanatory variables on renewable energy use (Table 7) 

indicate that none of the studied independent factors has a significant impact on 

renewable energy consumption in the short run.  
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In relation to the short-run effects of non-renewable and renewable energy 

consumption on the other variables, the results from Table 6 and Table 7 respectively, 

illustrate that while non-renewable energy use has a statistically significant impact on 

total population and population density, renewable energy use does not show any 

significant relationship with any of the variables. The short run causality directions 

show that there is bidirectional causality between non-renewable energy use and total 

population, unidirectional causality from GDP per capita to non-renewable energy 

use, unidirectional causality from the share of services in GDP to non-renewable 

energy use, and unidirectional causality from non-renewable energy use to population 

density.  

A neutral relationship between urbanization and energy consumption (for both 

renewable and non-renewable) in this study is consistent with Halicioglu (2007) who 

also finds no Granger causality between urbanization and energy consumption for 

Turkey in the short run. However, this result contrasts with the unidirectional 

causality running from urbanization to energy consumption found by Liu (2009) and 

Mishra et al (2009) for China and for the Pacific Island countries, respectively. In 

contrast, Shahbaz and Lean (2012) demonstrate a unidirectional causality running 

from energy consumption to urbanization for Tunisia.  

In relation to the long-run causality results, the error correction terms in both non-

renewable and renewable energy use equations are negative and significant, revealing 

that there is Granger causality from total population, GDP per capita, the share of 

industry in GDP, the share of services in GDP, urbanization and population density to 

non-renewable energy use and to renewable energy use in the long run. The 

coefficients of the error correction terms also suggest that the deviation of non-

renewable and renewable energy consumption from short run to the long run is 

corrected by 91% and 92% respectively each year; and convergence to equilibrium 

after a shock to both non-renewable and renewable energy consumption takes one 

year (Table 6 and Table 7). 



20 
 

Table 6: Panel Causality Test for Non-renewable Energy Use Model 

Dependent 
Variables 

  Source of causation (independent variable) 

 Short run   Long run 

 
 LN  LP  LA  LIND  LS  LU  LPD ECT 

 LN _ 2.207  

(1.67)* 

0.137 

(2.78)*** 

0.044 

(0.67) 

0.190 

(1.69)* 

0.680 

(0.44) 

0.215 

(0.37) 

-0.914 

(-12.61)*** 

 LP 0.004 
(1.88)** 

_ -0.003 
(-1.49) 

0.003 
(1.25) 

-0.005 
(-0.99) 

0.081 
(0.93) 

0.054 
(1.87)** 

-0.006 
(-1.73)* 

 LA 0.002 

(0.10) 

0.919 

(1.79)* 

_ 0.183 

(4.00)*** 

0.168 

(3.03)*** 

0.735 

(1.19) 

0.374 

(0.93) 

0.248 

(4.49)*** 

 LIND 0.003 

(0.08) 

1.021 

(1.84)* 

0.250 

(4.47)*** 

_ 1.088 

(15.05)*** 

2.429 

(1.86)* 

1.09 

(2.52)* 

-0.019 

(0.33) 

 LS -0.011 
(-0.83) 

0.200 
(0.63) 

0.208 
(6.49)*** 

0.401 
(16.50)*** 

_ 0.863 
(1.13) 

0.765 
(3.10)*** 

-0.006 
(-0.19) 

 LU 0.002 

(1.62) 

0.02 

(0.47) 

-0.001 

(-0.56) 

0.004 

(1.96)** 

0.007 

(2.05)** 

_ 0.016 

(0.69) 

0.001 

(0.62) 

 LPD 0.004 

(2.15)** 

0.101 

(2.17)** 

-0.003 

(-1.19) 

-0.005 

(-1.72)* 

-0.014 

(-2.74)*** 

0.025 

(0.44) 

_ 0.004 

(0.85) 

Note: z-statistics are presented in parentheses. ***, ** and * indicate that the test statistic is significant at 1%, 5% and 10% levels respectively. The optimal lag length for the 

variables is two and determined by the Akaike and the Schwarz Information Criteria. ECT indicates the estimated error correction term. 
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Table 7: Panel Causality Test for Renewable Energy Use Model 

Dependent 
Variables 

  Source of causation (independent variable) 

 Short run   Long run 

 
 LR  LP  LA  LIND  LS  LU  LPD ECT 

 LR _ 0.166  

(0.04) 

-0.014 

(-0.06) 

0.196 

(0.79) 

0.294 

(0.72) 

-2.382 

(-0.53) 

1.270 

(0.43) 

-0.922 

(-13.22)*** 

 LP -0.000 
(-0.45) 

_ -0.004 
(-1.17) 

0.003 
(1.32) 

-0.005 
(-0.90) 

0.080 
(0.89) 

0.062 
(2.14)** 

0.000 
(0.10) 

 LA -0.001 

(-0.21) 

0.746 

(1.78)* 

_ 0.204 

(4.06)*** 

0.204 

(3.33)*** 

0.347 

(0.49) 

0.472 

(1.07) 

0.001 

(0.15) 

 LIND 0.003 

(0.89) 

0.995 

(1.82)* 

0.235 

(4.55)*** 

_ 1.082 

(15.00)*** 

3.075 

(2.35)** 

0.931 

(2.18)** 

0.004 

(0.41) 

 LS 0.000 
(0.24) 

0.274 
(0.88) 

0.180 
(6.11)*** 

0.385 
(15.83)*** 

_ 0.996 
(1.30) 

0.766 
(3.13)*** 

0.003 
(0.52) 

 LU 0.004 

(1.77)* 

0.02 

(0.55) 

-0.001 

(-0.89) 

0.003 

(1.97)** 

0.004 

(1.71)* 

_ 0.003 

(0.15) 

0.000 

(0.55) 

 LPD -0.000 

(-0.66) 

0.109 

(2.35)** 

-0.002 

(-0.70) 

-0.005 

(-1.69)* 

-0.012 

(-2.36)** 

0.020 

(0.35) 

_ 0.000 

(0.73) 

Note: z-statistics are presented in parentheses. ***, ** and * indicate that the test statistic is significant at 1%, 5% and 10% levels respectively. The optimal lag length for the 

variables is two and determined by the Akaike and the Schwarz Information Criteria. ECT indicates the estimated error correction term. 
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5. Conclusion and Policy Implications 

This article contributes to previous research on the determinants of non-renewable 

and renewable energy consumption by incorporating urbanization into the stochastic 

model, STIRPAT. This model is used here in predicting impact of urbanization on 

both types of energy use and estimating causal effects. The use of highly flexible 

panel techniques has allowed us to better characterise the order of integration of 

variables used in the model and thereby provide more robust cointegration and 

causality analyses compared to earlier studies. More specifically we employed 

recently developed unit root test by Carrion-i-Silvestre et al. (2005) and panel 

cointegration test by Westerlund (2006) which account for structural breaks and cross 

sectional dependence. Accounting for cross-sectional dependence, we find that 

urbanization has a positive and significant impact on non-renewable energy use in 

OECD countries, whereas the effect of urbanization is not so significant on renewable 

energy use. In relation to the effect of population density, a significant negative 

relationship is found between population density and non-renewable energy 

consumption. In addition, Granger causality results indicate that there is unidirectional 

causality from non-renewable energy use to population density in the short term. 

However, no causal linkage is found between urbanization and non-renewable energy 

use. Likewise, no causal direction is seen between renewable energy use and any of 

the demographic factors in the short run. The coefficients of the dynamic error 

correction terms in both non-renewable and renewable energy use models are 

negative and significant, implying that the variables adjust towards a long run 

equilibrium level, after a shock occurs. 

The absence of a significant association between renewable energy use and 

urbanization and also between renewable energy use and population density illustrate 

that although the use of renewable energy sources has increased recently in developed 

countries, the main energy source available for people to use is still non-renewable 

fossil fuels. In the case of the positive relationship between urbanization and non-

renewable energy use, it can be said that economic development and increasing 

incomes which are followed by urbanization, leads to changes in consumer needs, 

which in turns results in an increasing energy consumption. Moreover, urbanization 

through its increasing effect on transport energy demand increases the use of non-

renewable sources. Therefore, as an energy management policy, controlling disparity 
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of population and the level of urbanization may result in a significant reduction in 

energy consumption. Moreover, the results of this study indicate that population 

density reduces non-renewable energy consumption can help policy makers improve 

urban planning that can finally make a substantial contribution to climate change 

mitigation. 
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Appendix 

 

Appendix Table 1: Multicollinearity test: VIF Values 

Variable VIF 1/VIF 

LS 4.60 0.217387 

LIND 2.97 0.336490 

LA 2.12 0.471891 

LP 1.31 0.764511 

LU 1.30 0.767854 

LPD 1.20 0.833617 

Mean VIF 2.25  

Note: The VIF values are all below 10, implying that there is no multicollinearity. 

  

Appendix Table 2: Estimated breaks for individual countries 

Countries Variables Number of 
breaks 

Dates of breaks 

1 2 3 4 5 

Australia LP 2 1981 1998    

 

 

LA 4 1985 1989 1994 2001  

 LIND 3 1982 1996 2000   

 LS 2 1983 1994    

 LU 2 1986 1993    

 LPD 1 1981     

Austria LP 3 1982 1989 1993   

 

 

LA 4 1982 1991 1998 2002  

 LIND 2 1983 1992    

 LS 1 1987     

 LU 3 1980 1987 1999   

 LPD 2 1981 1998    

Belgium LP 2 1983 1989    

 LA 3 1988 1996 2001   

 LIND 2 1989 2003    

 LS 2 1983 1997    

LU 1 1991 

 LPD 2 1988 1998    

Canada LP 2 1984 1999    

 LA 2 1981 1997    

 LIND 3 1984 1995 2002   

 LS 2 1986 1998    

 LU 3 1986 1996 2000   

 LPD 1 1987     

Chile LP 2 1984 1993    

 LA 2 1986 1999    

 LIND 3 1983 1994 2003   

 LS 4 1980 1989 1993 2004  
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Countries Variables Number of 

breaks 

Dates of breaks 

1 2 3 4 5 

 LU 2 1985 1998    

 LPD 2 1987 1994    

Denmark LP 2 1987 1994    

 LA 3 1982 1994 2000   

 LIND 3 1984 1992 1999   

 LS 1 1988     

 LU 2 1986 1995    

 LPD 1 1983     

Finland LP 2 1985 1996    

 LA 3 1984 1997 2001   

 LIND 2 1983 1998    

 LS 3 1980 1989 1996   

 LU 2 1991 2002    

 LPD 1 1989     

France LP 2 1982 1998    

 LA 2 1983 1999    

 LIND 2 1989 2001    

 LS 2 1988 2002    

 LU 3 1981 1988 1995   

 LPD 2 1983 1991    

Germany LP 2 1985 1997    

 LA 4 1984 1992 1998 2003  

 LIND 3 1985 1996 2001   

 LS 1 1989     

 LU 2 1984 1993    

 LPD 2 1984 1992    

Greece LP 1 1986     

 LA 3 1983 1997 2002   

 LIND 3 1984 1996 2001   

 LS 3 1982 1991 2000   

 LU 2 1983 1994    

 LPD 2 1983 1996    

Hungary LP 2 1985 1994    

 

 

LA 1 1985     

 LIND 2 1983 1994    

 LS 2 1982 1998    

 LU 3 1982 1997 2000   

 LPD 2 1982 1997    

Iceland LP 1 1994     

 LA 3 1984 1992 1999   

 LIND 2 1987 1997    

 LS 2 1984 1996    

 LU 2 1983 1992    

 LPD 1 1993     

Ireland LP 2 1985 1997    
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Countries Variables Number of 

breaks 

Dates of breaks 

1 2 3 4 5 

 LA 4 1982 1989 1996 2001  

 LIND 3 1985 1997 2003   

 LS 2 1984 1997    

 LU 3 1981 1987 1998   

 LPD 2 1988 1995    

Italy LP 1 1991     

 LA 4 1983 1990 1998 2003  

 LIND 3 1983 1989 1999 2001  

 LS 2 1984 1994    

 LU 3 1982 1989 1994   

 LPD 2 1982 1987    

Japan LP 3 1981 1988 1991   

 LA 2 1984 1998    

 LIND 3 1986 1995 2002   

 LS 2 1988 2000    

 LU 2 1989 1996    

 LPD 1 1989     

South Korea LP 3 1985 1991 1997   

 LA 2 1988 2000    

 LIND 3 1987 1997 2001   

 LS 2 1984 1994    

 LU 1 1994     

 LPD 2 1989 1995    

Luxembourg LP 2 1986 1996    

 LA 3 1981 1989 1998   

 LIND 2 1987 2000    

 LS 2 1983 1999    

 LU 2 1987 1994    

 LPD 1 1992     

Mexico LP 2 1981 1997    

 LA 2 1991 2002    

 LIND 2 1995 2001    

 LS 2 1984 1995    

 LU 2 1989 1994    

 LPD 2 1989 1997    

Netherlands LP 3 1984 1988 1992   

 LA 2 1983 1997    

 LIND 2 1983 1999    

 LS 2 1993 2000    

 LU 1 1997     

 LPD 2 1987 1997    

New Zealand LP 2 1989 1994    

 LA 3 1983 1997 2000   

 LIND 2 1986 1994 2002   

 LS 2 1983 1991    
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Countries Variables Number of 

breaks 

Dates of breaks 

1 2 3 4 5 

 LU 2 1981 1986    

 LPD 1 1982     

Norway LP 2 1984 1991    

 LA 4 1984 1989 1996 2004  

 LIND 2 1983 1995    

 LS 1 1997     

 LU 2 1984 1989    

 LPD 2 1982 1989    

Poland LP 2 1989 1996    

 LA 3 1982 1989 1994   

 LIND 4 1985 1989 1992 2001  

 LS 2 1987 1995    

 LU 2 1987 1992    

 LPD 2 1986 1993    

Portugal LP 2 1985 1999    

 LA 3 1987 1991 2003   

 LIND 4 1986 1989 1994 2001  

 LS 2 1985 1990    

 LU 1 1986     

 LPD 2 1989 1991    

Spain LP 3 1987 1990 1998   

 LA 2 1989 1993 2001   

 LIND 2 1984 1998    

 LS 3 1982 1986 1997   

 LU 2 1988 1993    

 LPD 1 1993     

Sweden LP 2 1984 1996    

 LA 4 1982 1987 1994 2003  

 LIND 2 1983 1998    

 LS 2 1983 1997    

 LU 1 1986     

 LPD 2 1982 1987    

Switzerland LP 3 1987 1991 2002   

 LA 2 1986 1999    

 LIND 4 1987 1997 2000 2004  

 LS 2 1986 1991    

 LU 2 1983 1993    

 LPD 2 1985 1998    

Turkey LP 2 1989 1997    

 LA 3 1984 1989 1994   

 LIND 2 1984 2000    

 LS 2 1986 1989    

 LU 2 1983 1983    

 LPD 2 1982 1989    

UK LP 2 1983 1988    
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Countries Variables Number of 

breaks 

Dates of breaks 

1 2 3 4 5 

 LA 3 1987 1993 2001   

 LIND 2 1989 1997    

 LS 2 1984 1997    

 LU 2 1986 1994    

 LPD 1 1986     

US LP 2 1989 1996    

 LA 2 1984 1997    

 LIND 2 1989 2000    

 LS 2 1993 1998    

 
LU 1 1983     

 
LPD 2 1985 1989    

 

Appendix Table 3: Diagnostic tests for non-renewable and renewable energy use 

models 

 FE Estimation RE Estimation 

Non-renewable energy use model 

 
  

Cross-Sectional Dependence 
Pesaran (P-value) 0.000*** 0.000*** 

Frees (Q) 8.616*** 8.565*** 

Friedman (P-value) 0.000*** 0.000**** 
   

Heteroskedasticity   

Modified Wald (P-value) 0.000***  
   

Serial Correlation   

Wooldridge (P-value) 0.000***  

   
Renewable energy use model   

   

Cross-Sectional Dependence 
Pesaran (P-value) 0.000*** 0.000*** 

Frees (Q) 6.679*** 6.574*** 

Friedman (P-value) 0.000*** 0.000**** 

 
 

  

Heteroskedasticity   

Modified Wald (P-value) 0.000***  
   

Serial Correlation   

Wooldridge (P-value) 0.000***  

Note: FE and RE denote fixed effects and random effects estimations. *** indicates that the P-value or 

test statistic is significant at the 1% level. 
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